System and method for arbitration of a plurality of processing modules
Method and apparatus for an arbitrated high speed control data bus system providing high speed communications between microprocessor modules in a complex digital processing environment. The system features a simplified hardware architecture featuring fast FIFO queuing, TTL CMOS compatible level clocking signals, single bus master arbitration, synchronous clocking, DMA, and unique module addressing for multiprocessor systems. The system includes a parallel data bus with sharing bus masters residing on each processing module decreeing the communication and data transfer protocol. Bur arbitration is performed over a dedicated, independent, serial arbitration line. Each requesting module competes for access to the parallel data bus by placing the address of the requesting module on the arbitration line and monitoring the arbitration line for collisions, eliminating the need for both bus request and bus grant signals.
Latest InterDigital Technology Corporation Patents:
- Determining and sending channel quality indicators (CQIS) for different cells
- METHOD AND APPARATUS FOR MAINTAINING UPLINK SYNCHRONIZATION AND REDUCING BATTERY POWER CONSUMPTION
- Method and system for improving responsiveness in exchanging frames in a wireless local area network
- DL BACKHAUL CONTROL CHANNEL DESIGN FOR RELAYS
- Method and apparatus for maintaining uplink synchronization and reducing battery power consumption
This application is a continuation of U.S. patent application Ser. No. 10/166,216 filed on Jun. 10, 2002; which is a continuation of U.S. patent application Ser. No. 09/079,600, filed on May 15, 1998, which issued on Jun. 11, 2002 as U.S. Pat. No. 6,405,272; which is a continuation of U.S. patent application Ser. No. 08/671,221, filed on Jun. 27, 1996, which issued on May 19, 1998 as U.S. Pat. No. 5,754,803, all of which are incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
This invention relates generally to a system for transferring data between a data processing module and a plurality of data processing modules. More particularly, the invention relates to a high-speed data communication system which transfers information between different digital processing modules on a shared parallel bus.
2. Description of the Related Art
For communication within a digital device, such as between a CPU (central processing unit), memory, peripherals, I/O (input/output) devices, or other data processors, a communication bus is often employed. As shown in
A communication bus typically contains a set of data lines, address lines for determining which device should transmit or receive, and control and strobe lines that specify the type of command is executing. The address and strobe lines communicate one-way from a central processing unit. Typically, all data lines are bidirectional.
Data lines are asserted by the CPU during the write instruction, and by the peripheral device during read. Both the CPU and peripheral device use three-state drivers for the data lines.
In a computer system where several data processing devices exchange data on a shared data bus, the two normal states of high and low voltage (representing the binary 1's and 0's) are implemented by an active voltage pullup. However, when several processing modules are exchanging data on a data bus, a third output state, open circuit, must be added so that another device located on the bus can drive the same line.
Three-state or open-collector drivers are used so that devices connected to the bus can disable their bus drivers, since only one device is asserting data onto the bus at a given time. Each bus system has a defined protocol for determining which device asserts data. A bus system is designed so that, at most, one device has its drivers enabled at one time with all other devices disabled (third state). A device knows to assert data onto the bus by recognizing its own address on the control lines. The device looks at the control lines and asserts data when it sees its particular address on the address lines and a read pulse. However, there must be some external logic ensuring that the three-state devices sharing the same lines do not talk at the same time or bus contention will result.
Bus control logic or a Abus master@ executes code for the protocol used to arbitrate control of the bus. The bus master may be part of a CPU or function independently. More importantly, control of the bus may be granted to another device. More complex bus systems permit other devices located on the bus to master the bus.
Data processing systems have processors which execute programmed instructions stored in a plurality of memory locations. As shown in
To move data on a shared bus, the data, recipient and moment of transmission must be specified. Therefore, data, address and a strobe line must be specified. There are as many data lines as there are bits in a word to enable a whole word to be transferred simultaneously. Data transfer is synchronized by pulses on additional strobe bus lines. The number of address lines determines the number of addressable devices.
Communication buses are either synchronous or asynchronous. In a synchronous bus, data is asserted onto or retrieved from the bus synchronously with strobing signals generated by the CPU or elsewhere in the system. However, the device sending the data does not know if the data was received. In an asynchronous bus, although handshaking between communicating devices assures the sending device that the data was received, the hardware and signaling complexity is increased.
In most high-speed, computationally intensive multichannel data processing applications, digital data must be moved very rapidly to or from another processing device. The transfer of data is performed between memory and a peripheral device via the bus without program intervention. This is also known as direct memory access (DMA). In DMA transfers, the device requests access to the bus via special bus request lines and the bus master arbitrates how the data is moved, (either in bytes, blocks or packets), prior to releasing the bus to the CPU.
A number of different types of bus communication systems and protocols are currently in use today to perform data transfer. As shown in the table of
Accordingly, there exists a need for a simplified data processing system architecture to optimize data and message transfer between various processor modules residing on a data bus.
SUMMARY OF THE INVENTIONMethod and apparatus for an arbitrated high speed control data bus system is provided which allows high speed communication between microprocessor modules in a more complex digital processing environment. The system features a simplified hardware architecture featuring fast FIFO (first-in/first-out) queing, TTL CMOS (complimentary metal-oxide silicon) compatible level clocking signals, single bus master arbitration, synchronous clocking, DMA, and unique module addressing for multiprocessor systems. The present invention includes a parallel data bus with sharing bus masters residing on each processing module controlling the communication and data transfer protocols. The high-speed intermodule communication bus (HSB) provides between various microprocessor modules. The data bus is synchronous and completely bidirectional. Each processing module that communicates on the bus will have the described bus control architecture. The HSB comprises, in one embodiment, eight shared parallel data lines for the exchange of digital data, and two independent lines for arbitration and clock signals. The need for explicit bus request or grant signals is eliminated. The HSB can also be configured as a semi-redundant system, duplicating data lines while maintaining a single component level. The bus is driven by three-state gates with resistor pullups serving as terminators to minimize signal reflections.
To move data on the HSB, each processing module specifies the data, the recipient, and the moment when the data is valid. Only one message source, known as the bus master, is allowed to drive the bus at any given time. Since the data flow is bidirectional, the bus arbitration scheme establishes a protocol of rules to prevent collisions on the data lines when a given processing module microprocessor is executing instructions. The arbitration method depends on the detection of collisions present only on the arbitration bus and uses state machines on each data processing module to determine bus status. Additionally, the arbitration method is not daisy chained, allowing greater system flexibility. The state machines located on each processing module are the controlling interface between the microprocessor used within a given processing module and the HSB. The circuitry required for the interface is comprised of a transmit FIFO, receive FIFO, miscellaneous directional/bidirectional signal buffers and the software code for the state machines executed in an EPLD (erasable programmable logic device).
Objects and advantages of the system and method will become apparent to those skilled in the art after reading the detailed description of the preferred embodiment.
BRIEF DESCRIPTION OF THE DRAWINGS
The preferred embodiment will be described with reference to the drawing figures where like numerals represent like elements throughout.
The high-speed intermodule bus (HSB) 20 of the present invention is shown in simplified form in
The HSB 20 is a packetized message transfer bus system. Various processor modules 34 can communicate data, control and status messages via the present invention.
The HSB 20 provides high speed service for a plurality of processor modules 34 with minimum delay. The message transfer time between modules is kept short along with the overhead of accessing the data bus 28 and queuing each message. These requirements are achieved by using a moderately high clock rate and a parallel data bus 28 architecture. Transmit 24 and receive 26 FIFOs are used to simplify and speed up the interface between a processor module 34 CPU 32 and the data bus 28.
Referring to
The parallel data bus 28 (HSB_DAT) lines 0-7,
The relationship of the data 28 and control signal transitions to the clock 42 edges are important to recovering the data reliably at a receiving module. Data is clocked out from a transmitting module 24 onto the data bus 28 with the negative or trailing edge of the clock signal 42. The data is then clocked on the positive or leading edge of the clock signal 42 at an addressed receiving module. This feature provides a sufficient setup and hold time of approximately 40 ns without violating the minimum setup time for octal register 60.
Before data can be transmitted on the data bus 28, the bus controller 22 must obtain permission from the arbitration bus 50,
No explicit bus request and grant signals are required with the serial arbitration method of the present invention. The preferred method eliminates complex signaling and signal lines, along with the requisite centralized priority encoder and usual granting mechanism. The arbitration method is not daisy chained so that any processor module location on the bus 28 may be empty or occupied without requiring a change to address wiring.
In the present invention, the open-collector arbitration bus 50 permits multiple processing modules 34 to compete for control of the data bus 28. Since no processing module 34 in the digital system knows a priori if another processing module has accessed the arbitration bus 50, modules within the HSB system may drive high and low level logic signals on the HSB simultaneously, causing arbitration collisions. The collisions occur without harm to the driving circuit elements. However, the collisions provide a method of determining bus activity.
The arbitration bus 50 includes pullup resistors connected to a regulated voltage source to provide a logic 1 level. The arbitration bus driver 52,
As known to those familiar with the art, the connection is called Awired-OR@ since it behaves like a large NOR gate with the line going low if any device drives high (DeMorgan=s theorem). An active low receiver inverts a logic 0 level, producing an equivalent OR gate. Using positive-true logic conventions yields a Awired-AND,@ using negative logic yields a Awired-OR.@ This is used to indicate if at least one device is driving the arbitration bus 50 and does not require additional logic. Therefore, if a processing module 34 asserts a logic 1 on the arbitration bus 50 and monitors a logic 0, via buffer 53 on monitor line 55 (BUS_ACT_N), the processing module 34 bus controller 22 determines that a collision has occurred and that it has lost the arbitration for access.
The arbitration method depends on the detection of collisions and uses state machines 46 and 48,
Each processing module 34 bus controller 22 located on the HSB 20 monitors, (via a buffer 53), and interrogates, (via a buffer 52), the arbitration bus (HSBI_ARB1_N) 50. Six or more high level signals clocked indicate that the bus is not busy. If a processing module 34 desires to send a message, it begins arbitration by serially shifting out its own unique six bit address onto the arbitration bus 50 starting with the most significant bit. Collisions will occur on the arbitration bus 50 bit by bit as each bit of the six bit address is shifted out and examined. The first detected collision drops the processing module 34 wishing to gain access out of the arbitration. If the transmit state machine 46 of the sending module 34 detects a collision it will cease driving the arbitration bus 50, otherwise it proceeds to shift out the entire six bit address. Control of the data bus 28 is achieved if the entire address shifts out successfully with no errors.
A priority scheme results since logic O's pull the arbitration bus 50 low. Therefore, a processor module 34 serially shifting a string of logic O's that constitute its address will not recognize a collision until a logic 1 is shifted. Addresses having leading zeroes effectively have priority when arbitrating for the bus 50. As long as bus 28 traffic is not heavy, this effect will not be significant.
In an alternative embodiment, measures can be taken to add equity between processor modules 34 if required. This can be done by altering module arbitration ID=s or the waiting period between messages.
Once a processor module 34 assumes bus mastership it is free to send data on the data bus 28. The bus controller 22 enables its octal bus transceiver (driver) 60 and transmits at the clock 42 rate. The maximum allowed message length is 512 bytes. Typically, messages will be 256 bytes or shorter. After a successful arbitration, the arbitration bus 50 is held low by the transmitting processor module 34 during this period as an indication of a busy arbitration bus 50.
Once the data transfer is complete, the bus controller 22 disables its octal bus transceiver (drivers) 60 via line 54 (HSB_A_EN_N) and releases the arbitration bus 50 to high. Another arbitration anywhere in the system may then take place.
An alternative embodiment allows bus 28 arbitration to take place simultaneous with data transfer improving on data throughput throughout the digital system. In the preferred embodiment, the delay is considered insignificant obviating the added complexity.
The bus controller 22 is required to control the interface between the processing module 34 microprocessor 32 and the HSB 20 and between the HSB and the bus (data bus 28 and arbitration bus 50) signals. In the preferred embodiment the bus controller 22 is an Altera 7000 series EPLD (erasable programmable logic device). The 8 bit internal data bus 30 interfaces the bus controller 22 with the processor module 34 CPU 32. The processor module 34 CPU 32 will read and write directly to the bus controller 22 internal registers via the internal data bus 30. The bus controller 22 monitors the arbitration bus 50 for bus status. This is necessary to gain control for outgoing messages and to listen and recognize its address to receive incoming messages. The bus controller 22 monitors and controls the data FIFO=s 24 and 26, DMA controller 33, and bus buffer enable 54.
The components used in the preferred embodiment are shown in Table 1.
Address decoding and DMA gating are required and are performed by the bus controller 22. The bus controller 22 also contains a number of internal registers that can be read or written to. The CPU 32 communicates with and instructs the bus controller 22 over the 8 bit internal data bus 30.
Loading the transmit FIFO 24 is handled by the bus controller 28, DMA and address decoding circuits contained within the bus controller 22. Gaining access to the bus 28 and unloading the FIFO 24 is handled by the transmit state machine.
On power up the bus controller 22 receives a hardware reset 56. The application software running on the processor module 34 CPU 32 has the option of resetting the bus controller 22 via a write strobe if the application requires a module reset. After a reset, the bus controller 22 monitors, at input BUS_ACT, the arbitration bus 50 on line 55 to determine bus activity and to sync with the data bus 28.
After a period of inactivity, the bus controller 22 knows that the bus 28 is between messages and not busy. A processor module 34 can then request control of the bus via arbitration. If no messages are to be sent, the bus controller 22 continues to monitor the arbitration bus 50.
The processor module CPU 32 writes messages into the transmit FIFO 24 at approximately 20 MBps. The DMA controller, a Motorola 68360 33 running at 25 MHz will be able to DMA the transmit FIFO 24 at approximately 12.5 MBps. Since only one message is allowed in the transmit FIFO 24 at any one time, the CPU 32 must buffer additional transmit messages in its own RAM 40. Since the maximum allowable message length is 512 bytes with anticipated messages averaging 256 bytes, a FIFO length of 1 KB is guaranteed not to overflow. Once a message has been successfully sent, the transmit FIFO 24 flags empty and the next message can be loaded.
A typical 256 byte message sent by a processing module 34 CPU 32 at 12.5 MBps will take less than 21 μsec from RAM 40 to transmit FIFO 24. Bus arbitration should occupy not more than 1 μsec if the bus is not busy. Total elapsed time from the loading of one transmit message to the next is approximately 43 to 64 μsec. Since not many messages can queue during this period, circular RAM buffers are not required.
As shown in
Data transferred on the bus 28 is monitored by each processing module 34 located on the bus 28. Each bus controller 22 in the entire processor system contains the destination addresses of all devices on the bus 28. If a match is found, the input to that receiving processing module 34 FIFO 26 is enabled. Since multiple messages may be received by this FIFO 26, it must have more storage than a transmit FIFO 24. The receive FIFO 26 has at a minimum 4 KB×9 of storage. This amount of storage will allow at least 16 messages to queue within the receive FIFO 26 based on the message length of 256 bytes. A message burst from multiple sources could conceivably cause multiple messages to temporarily congest the receive FIFO 26. The receiving module CPU 32 must have a suitable message throughput from the receive FIFO 26 or else a data overflow will result in lost information. DMA is used to automatically transfer messages from the receive FIFO 26 to RAM 40. The transfer time from the receive FIFO 26 to RAM 40 is typically 21 μsec.
When a message is received by the bus controller 22, a request for DMA service is made. Referring to
The total elapsed time that it takes for a source to destination message transfer is approximately 64 to 85 μsec. As shown in
Controlling the HSB 20 requires two state machines; one transmitting information 70, the other receiving information 72. Both state machines are implemented in the bus controller 22 as programmable logic in the form of Altera=s MAX+PLUS II, Version 6.0 state machine syntax.
Any arbitrary state machine has a set of states and a set of transition rules for moving between those states at each clock edge. The transition rules depend both on the present state and on the particular combination of inputs present at the next clock edge. The Altera EPLD 22 used in the preferred embodiment contains enough register bits to represent all possible states and enough inputs and logic gates to implement the transition rules.
A general transmit program flow diagram 70 for the transmit state machine is shown in
The processor module CPU 32 initiates the inquire phase 74. As shown in
As shown in
Referencing
The state machine for controlling the receive FIFO 26 is similarly reduced into two state machines. As shown in
Referencing
As shown in
There are two embodiments for the software to transmit messages. The first embodiment will allow waiting an average of 50 μsec to send a message since there are no system interrupts performed. This simplifies queuing and unqueuing messages. The second embodiment assumes that messages are being sent fast, the operating system is fast and preemptive, system interrupts are handled quickly, and idling of the processor 32 is not allowed while messaging.
Upon completion of the transmit DMA, data bus 28 arbitration must take place. After the data bus 28 has been successfully arbitrated, the bus controller 22 may release the transmit FIFO 24 thereby placing the contents on the data bus 28. An empty flag signals a complete transfer to the bus controller 22 and processor module 34 CPU 32.
While specific embodiments of the present invention have been shown and described, many modifications and variations could be made by one skilled in the art without departing from the spirit and scope of the invention. The above description serves to illustrate and not limit the particular form in any way.
Claims
1. A method for controlling access to a data bus which is shared by a plurality of data processing modules, the method comprising:
- providing an arbitration bus independent from the data bus;
- placing a unique address of the data processing module bit by bit on the arbitration bus, while monitoring the arbitration bus simultaneously, wherein the data processing module stops placing its address when a bit different from its own address bit is detected on the arbitration bus;
- asserting the data bus when the data processing module succeeds to place and detect all the bits of its own address on the arbitration bus; and
- withholding the arbitration bus until data transfer is completed.
2. The method of claim 1 further comprising a step of monitoring the arbitration bus for a predetermined duration before placing the address on the arbitration bus, whereby the data processing module places its own address only if the arbitration bus is not busy.
3. The method of claim 2 wherein the data processing module monitors the arbitration bus for a period equal to the length of the address of the data processing module.
4. The method of claim 1 wherein the address of the plurality of data processing modules are prioritized.
5. The method of claim 1 wherein the address of the data processing module is a binary code.
6. An apparatus for transferring data through a data bus, the apparatus comprising:
- a data bus;
- an arbitration bus; and
- a plurality of data processing modules, each data processing module comprising a bus controller for placing a unique address of the data processing module in series on the arbitration bus while detecting occurrence of collision on the arbitration bus simultaneously, whereby the data processing module withholds the data bus if the data processing module succeeds to place all the bits of its own address on the arbitration bus without collision.
7. The apparatus of claim 6 wherein the bus controller of the data processing module monitors the arbitration bus for a predetermined duration before placing the address on the arbitration bus, whereby the data processing module places its own address only if the arbitration bus is not busy.
8. The apparatus of claim 7 wherein the data processing module monitors the arbitration bus for a period equal to the length of the address of the data processing module.
9. The apparatus of claim 6 wherein the address of the plurality of data processing modules are prioritized.
10. The apparatus of claim 6 wherein the address of the data processing module is a binary code.
Type: Application
Filed: Nov 23, 2004
Publication Date: May 5, 2005
Applicant: InterDigital Technology Corporation (Wilmington, DE)
Inventor: Robert Regis (Huntington, NY)
Application Number: 10/996,494