Eyeglass with auxiliary lenses
Eyeglasses comprise a primary frame and an auxiliary frame detachably secured to the primary frame by interaction of magnetic members on the frames. The frames and magnetic members are configured to maintain the frames in a first orientation in which the auxiliary frame overlies the primary frame and a second orientation in which the auxiliary frame is disposed above and away from the optical axis of lenses carried in the primary frame.
The present invention relates to eyeglasses.
BACKGROUND OF THE INVENTIONEyeglasses are of course a well-known expedient to correct defects in the vision of the wearer. Eyeglasses are also used to shield the eyes of the wearer from adverse conditions, particularly bright sunlight.
For users of eyeglasses with corrective lenses, it is not unusual to provide additional auxiliary lenses that can be attached over the lenses of the corrective eyeglasses to provide protection against sunlight. Typically, the auxiliary lens is secured by mechanical clips but difficulty in attaching the clips has led to the adoption of magnetic retention for the auxiliary lens.
In normal use, the auxiliary lens will either be attached to or detached from the primary lens as the ambient light conditions vary. However, in certain situations, such as when driving a vehicle, it is desirable to retain the auxiliary lens on the primary lens even when the auxiliary lens is not required. Mechanical hinge arrangements that allow the auxiliary lens to be “flipped up” relative to the primary frame are known and in wide spread use. However, such arrangements require mechanical connection to the primary lens and the provision of a hinge mechanism at the bridge of the frame to allow for the adjustment of the auxiliary lens relative to the primary lens.
It is therefore an object of the present invention to obviate or mitigate the above disadvantages.
In accordance with one aspect of the present invention there is provided an eyeglass having a primary frame and an auxiliary frame. The frames are secured to one another by interaction of magnetic members on the frames. The frames and magnetic members are configured to be operable to maintain the frames in a first orientation in which the auxiliary frame overlies the primary frame and in a second orientation in which the auxiliary frame is disposed above and away from the optical axis of the lenses of the primary frame.
BRIEF DESCRIPTION OF THE DRAWINGSEmbodiments of the invention will now by described by way of example only with reference to the accompanying drawings in which:
Referring therefore to
Side arms 24, commonly referred to as temples, are connected by a hinge 26 to the temple region 28 of the primary frame. The temple region 28 is formed at the intersection of an upper frame member 30 and lens rim loop 32. It will be appreciated that the frame member 30 and rim loop 32 are moulded to provide a unitary construction although alternative constructions using individual components are envisaged within the scope of the invention.
The upper frame member 30 has an upwardly directed surface 32 that extends into the temple region 28. A notch 34 is formed in the upper surface 32 adjacent to but inwardly spaced from the end 36 of the temple region 28. As seen in
The spectacles 10 include an auxiliary frame 50 as shown in
In use, the auxiliary frame 50 may be located in front of the primary frame 12 with the surfaces 44, 66 in abutment to provide protection for the user and is secured by interaction between the magnetic inserts 42 and magnetic member 68. As noted above, at least one of the magnetic inserts 42, and magnetic member 68 must be a magnet and the other either a magnet or magnetisable material to ensure that the auxiliary frame 50 is retained on the primary frame 12. With the auxiliary frame in position, the tinted lenses 58, 60 provide additional protection to the user.
If the protection afforded by the lenses 58, 60 is no longer required, the configuration of the frames 12, 50 and magnetic inserts 42 enables the auxiliary frame 50 to be moved to an alternative position illustrated in
An alternative embodiment is shown in
In an alternative position shown in
A further embodiment is shown in
To move the auxiliary frame 50b to an alternative position shown in
A further embodiment is shown is
In each of the above embodiments, a pair of stable surfaces is provided to support the main and auxiliary frame members.
In a further embodiment shown in
Alternative cross sections of the inserts may be utilised to provide a pair of stable positions. Similarly, the stable positions may be provided by interaction with surfaces of the frame members 30, 64 where the insert does not provide a pair of stable positions or by the insert itself where the frame does not provide a pair of stable positions.
As seen in
A similar arrangement is shown in
In each of the above embodiments a pair of stable positions disposed at 90° to one another has been provided. Additional stable positions may be incorporated as indicated in the embodiments of FIGS. 20 to 22 and 23.
In the embodiment of
As may be seen from FIGS. 20 to 22, the auxiliary frame 50g may be rotated at 45° increments relative to the main frame 12g with a stable position provided at each increment. The auxiliary frame may thus be positioned over a 90° range as illustrated, or beyond to 135° or 180° if the design of frame permits.
A similar arrangement can be obtained in a manner similar to
In each of the above embodiments, planar surfaces or facets have been provided to introduce stability to the arrangement of primary and auxiliary lenses. It will be appreciated that stability may be introduced by utilising other arrangements, including pins and recesses or other inter-engaging formations with the retention provided by the interaction of the magnetic members. In some situations where the auxiliary frame is small and light, the magnetic retention over a large area, such as that shown in
Each of the above embodiments has also illustrated the location of the magnetic members at the temple regions. This location is preferred to provide inherent stability to the auxiliary frames when mounted. However, if preferred, the configuration of magnetic members and/or frame structure may be incorporated in the bridge 18 to provide a central mounting location where the configuration of frame permits. In this embodiment shown in
Other configurations as illustrated with respect to the temples may be incorporated in a similar manner into the bridges.
For example, as shown in
As shown in
Similarly, in
As a further alternative, as shown in
In each of the embodiments of FIGS. 27 to 29, the auxiliary lens is held in its operative position by engaging the underside of the upper bridge member 118. As shown, in
The auxiliary lens may then be positioned with the lip 130 behind the upper bridge 118n to hold the auxiliary lens in the alternative position clear of the optical axis.
As a further alternative as shown in
Although the invention has been described with reference to certain specific embodiments, various modifications thereof will be apparent to those skilled in the art without departing from the spirit and scope of the invention as outlined in the claims appended hereto.
Claims
1. Eyeglasses comprising a primary frame, and an auxiliary frame detachably secured to said primary frame by interaction of magnetic members on said frames, said frames and magnetic members being configured to maintain said frames in a first orientation in which said auxiliary frame overlies said primary frame and a second orientation in which said auxiliary frame is disposed away from the optical axis of lenses carried in said primary frame.
2. Eyeglasses according to claim 1 wherein each of said frames carries at least a pair of magnetic members at spaced locations.
3. Eyeglasses according to claim 1 wherein each of said magnetic members on said primary frame have a pair of planar abutment surfaces angularly disposed relative to one another and said magnetic members on said auxiliary frame engage respective ones of said abutment surfaces to provide said first and second orientations.
4. Eyeglasses according to claim 3 wherein said abutment surfaces are orthogonal.
5. Eyeglasses according to claim 3 wherein one of said abutment surfaces is directed forwardly from said primary frame and another of said abutment surfaces is directed upwardly.
6. Eyeglasses according to claim 3 wherein one of said abutment surfaces is directed upwardly and another of said abutment surfaces is directed rearwardly.
7. Eyeglasses according to claim 3 wherein one of said abutment surfaces is directed rearwardly and another of said abutment surfaces is directed downwardly.
8. Eyeglasses according to claim 3 wherein one of said abutment surfaces is directed forwardly and another of said abutment surfaces is directed downwardly.
9. Eyeglasses according to claim 1 wherein a magnetic member is located adjacent a temple region of said frames and a pair of abutment surfaces are provided in said temple regions to provide alternate locations for engagement of said auxiliary frame and said primary frame for retention by said magnetic members in one of said orientations.
10. Eyeglasses according to claim 9 wherein said pair of abutment surfaces are provided on said magnetic members.
11. Eyeglasses according to claim 10 wherein said abutment surfaces are planar.
12. Eyeglasses according to claim 11 wherein said abutment surfaces are orthogonal to one another.
13. Eyeglasses according to claim 9 wherein said abutment surfaces are located on one of said frames adjacent to said magnetic members.
14. Eyeglasses according to claim 13 wherein said magnetic members have a curved surface and said abutment surfaces are planar and project beyond said curved exterior surfaces.
15. Eyeglasses according to claim 9 wherein said primary frames include a notch formed in an outer surface in said temple region and said magnetic member is located within said notch.
16. Eyeglasses according to claim 15 wherein said magnetic members have outwardly directed surfaces flush with said outer surface.
17. Eyeglasses according to claim 16 wherein said notch is formed in an upper surface of said primary frame and extends between oppositely directed surfaces of said primary frame.
18. Eyeglasses according to claim 16 wherein said notch is formed in a lower surface and extends between oppositely directed surfaces of said primary frame.
Type: Application
Filed: Aug 9, 2004
Publication Date: May 12, 2005
Inventor: Thierry Ifergan (Aventura, FL)
Application Number: 10/913,471