Projectile throwing or launching apparatus
A sports ball throwing apparatus is disclosed which may be used to propel projectiles including footballs, softballs soccer balls and model rockets and airplanes. The apparatus has a barrel the azimuth and elevation of which are adjustable for launching a projectile in different directions. A projectile having a cavity is mounted on the end of the barrel to be launched using air pressure stored in the apparatus. Safety is provided in that compressed air is not available until a projectile having a cavity is mounted on the end of the barrel and a switch closes a circuit to activate an air compressor. The switch may be placed at either end of barrel so long as it is operated when the projectile is fully mounted on the barrel. In addition, a seal inside the base of the projectile is used to seal the barrel so that compressed air is not available until the projectile is fully mounted on the barrel. Spiral flight of the projectile is provided by helical grooves on the outside of the barrel that engage protrusions on the inside of the projectile cavity when the projectile is mounted on the barrel for launching. When the projectile is launched the protrusions ride along the helical grooves and impart a spiral spin to the projectile. To assist in the spiral spin of the projectile there are straight grooves on the surface of the projectile and at an angle to the longitudinal axis of the projectile. Air passing over the moving projectile interacts with the grooves on its surface to maintain the spiral spin of the projectile.
This utility patent application claims rights under 35 U.S.C. 119(e) from U.S. provisional patent application No. 60/512,813 entitled “Sports Ball Throwing Machine”, and filed Oct. 18, 2003.
FIELD OF THE INVENTIONThis invention relates to projectile throwing or launching apparatus and more particularly to apparatus that throws or launches a model rocket or sports ball.
BACKGROUND OF THE INVENTIONIn the prior art there are numerous apparatus that are used for passing, throwing or launching footballs, sports balls and other projectiles such as model rockets. Such throwing apparatus can emulate spiral flight form. One version of such an apparatus is disclosed in U.S. Pat. No. 4,026,261 which describes an apparatus that employs two spaced, rotatably-driven, pneumatic-tired wheels that have their outer surfaces confronting each other and spaced apart a distance less than the maximum diameter of a football to be thrown. The wheels are mounted in such a way that the planes in which they rotate can be independently varied. In this manner, the direction and rate of spin of a spiral pass can be set. Alternatively, the wheels can be positioned to rotate in the same plane as is often done to attain end-over-end flight.
Another apparatus for passing footballs is disclosed in U.S. Pat. No. 4,723,532 which also utilizes spaced apart confronting surfaces of spinning wheels.
These prior art football passing apparatus are complex and expensive and meant mainly for use in professional football.
Yet another apparatus used for passing footballs is disclosed in U.S. Pat. No. 4,291,663. This football passing apparatus utilizes a spring that is located in a cylindrical, hollow tube. The spring is first extended and is then released to provide the force to propel a football. One end of the spring is connected to an upper end of the tube, and the other end of the spring is loose but connected to a platform that is mounted on and rides alongside the outside of the tube. To connect the platform to the spring internal to the tube there is an elongated narrow aperture though the wall of the hollow tube that extends in a helical fashion along a portion of the tube. The spring and platform are connected through this aperture. When the spring is extended the platform connected thereto is at the bottom of the helical, elongated aperture. A football having a coaxial cylindrical channel through its length is placed down over the exterior of the hollow tube to sit on the platform. When the stretched spring is released the platform travels up the tube in a spiral fashion along the helical aperture. The football sitting on top of the platform is thereby launched with a spiral spin. The one drawback to this football passing apparatus is that to throw a pass of twenty yards or so requires a spring that is so strong that it cannot practically be used by children.
SUMMARY OF THE INVENTIONThe projectile throwing apparatus disclosed herein is only described with reference to a football because it is desirable to provide spin to a football. However, the apparatus may be used with other sports balls, such as a soccer ball or a model rocket where a spiral spin may not be needed.
The novel apparatus described and claimed herein uses an air compressor and store compressed air is used to launch a projectile such as a sports ball or model rocket. By adjusting the level of air pressure of the stored compressed air until a ball or rocket is thrown or launched, a projectile may be thrown or projected a short distance or a relatively long distance.
The projectile passing apparatus has a chamber and a barrel in which the compressed air is stored until utilized to launch a projectile such as a football. The projectile has a cavity in its rear end that is placed over a launching end of the barrel. The barrel is pointed in a direction and at an elevation at which it is desired to launch the projectile. When the compressed air is released the projectile on the end of the barrel is launched from the barrel in the chosen direction and elevation.
To prevent any items, other than the projectile provided with the throwing apparatus from being placed on the end of the barrel and being launched, a safety switch is provided. The safety switch only permits the air compressor to be energized to produce compressed air when the provided projectile is placed on the launching end of the barrel. The switch provides a first level of safety against misuse of the throwing apparatus.
A second level of safety is provided against misuse of the projectile throwing apparatus. When the provided projectile is not positioned on the launching end of the barrel, the chamber and barrel of the apparatus are not sealed and air pressure cannot build up therein to launch anything even if the air compressor is activated. Inside the cavity in the rear of the projectile is a sealing element that seals the end of the barrel to permit air pressure to build up in the barrel and chamber only when the projectile is fully mounted on the launching end of the barrel. Thus, the safety switch may not be operated to activate the air compressor and build up air pressure.
To launch a projectile on the launching end of the barrel a manually adjustable release mechanism is provided. When the compressed air reaches a certain pressure level as determined by the release mechanism, the projectile is released and is launched. With higher air pressure the further the projectile will be thrown and visa versa.
When it is desired to impart a spin to a projectile, such as a football, during launch other elements are utilized. On the outside wall of the barrel are helical, rifling grooves. These grooves start at the launching end of the barrel and go back along the barrel. Inside the cavity in the rear of the projectile are protrusions. A protrusion sits in each of the grooves when the ball is placed on the end of the barrel to be launched. When the projectile is launched the protrusions ride along the grooves as the projectile leaves the barrel thereby imparting a spiral spin to the projectile. Such a spiral spin is desirable for a football.
The projectile has a number of straight, parallel grooves in its outer surface that are not helical but are at an angle with respect to the longitudinal axis of the projectile. These grooves help maintain the spiral spin of the projectile after it is launched from the throwing apparatus. As the projectile travels through the air the air moving over the projectile interacts with the side walls of the grooves to maintain the spin of the projectile.
DESCRIPTION OF THE DRAWINGSThe invention is best understood upon reading the following Detailed Description in conjunction with the drawing in which:
The projectile throwing or launching apparatus disclosed herein is only described with reference to a football because it is desirable to provide spin to a football. However, the apparatus may be used with other sports balls, such as a soccer ball or softball, or with a model rocket, where spin may not be needed. The apparatus uses an air compressor to create compressed air that is stored and used to launch the sports ball or other projectile. By adjusting the pressure of the compressed air a projectile may be launched a short distance or a relatively long distance.
In
There is a pair of individual insulated conductors 17a and 17b making up a wire cable 17 that goes to end 16 of barrel 12 to a football safety switch. The football safety switch provides a first level of safety against misuse of apparatus 10 in that only the ball provided with apparatus may be launched therefrom because only it can operate the football safety switch. The safety switch is shown in and described in greater detail with reference to
There is as a main body 52 of the apparatus 10 in which is detachably mounted a rechargeable battery 13 that provides electrical power for running the apparatus. Battery 13 may be released using a latch 12. There is also a main power on-off switch 14 that is used to turn apparatus 10 on and off. Mounted through the wall of main body 52 is an air compressor 47 that is used to provide compressed air to launch a football from apparatus 10.
A second level of safety is provided against misuse of the throwing apparatus 10. When the provided football (not shown) is not positioned on the open end 16 of barrel 12, chamber 11 and barrel 12 are not sealed in order to build up air pressure if compressor 47 is activated without the use of the football safety switch that is activated by the presence of the football on launching end 16 of barrel 12. This is shown in and described in greater detail with reference to
Either fastened to base portion 30 or made as part thereof are four legs or prongs 32, only two of which are shown in this figure. All four legs are shown in
The end 12a of barrel 12 has a constriction shaped therein as shown. That constriction forms a cylindrical hole the diameter of which is slightly smaller than the outside diameter of O rings 33 and 34. It is this feature that contributes to creating an air tight seal at the end of barrel 12 as described hereinafter in greater detail with reference to
Inside end 16 of barrel 12 is an element 27 that is connected to rod 18. Element 27 moves freely inside barrel 12 and coaxially therewith. Element 27 has formed therewith a cylindrical element 28 that has an outside diameter that will require it to be force fit between the four legs or prongs 32 with O rings 33 and 34 in cavity 21 of football 19 when football 19 is mounted on the end of barrel 12. Element 27 has holes 49 there through that permit compressed air in chamber 11 and barrel 12 to travel out of barrel 12 around element 28 to launch football 19.
There are two conductors 17a and 17b making up a wire cable 17 that is routed through chamber 11 and barrel 12 as seen in
A second level of safety is also provided against misuse of the throwing apparatus 10. When the ball is not positioned on the end of the barrel, the chamber and barrel of the apparatus are not sealed to be able to build up air pressure if compressor 47 is energized without the use of football 19. This is because of holes 49 through element 21 and the space around element 28 to the open end 16 of barrel 12. As a result a jumper may not be placed across the mating contacts in the launching end of the barrel to activate the compressor 47 and build up air pressure in chamber 11 and barrel 12. This will be better understood when reading the description of
As will be better understood after reading the description of
Behind air piston 41 is a spring 39. One end of spring 39 sits in a recess (not shown) in the rear of piston 41, and the other end of the spring sits in a retainer cup 40. Cup 40 moves easily in chamber 37. Rod 18 passes through a hole in the middle of cup 40 and through a screw on end cap 38. With the parts assembled as shown end cap 38 is screwed onto the end of chamber 37. Cap 38 serves as a manual adjustment to set the distance that football 19 will be propelled. It can be seen in
When a football 19 is mounted on the end of barrel 12 and compressor 47 is energized, air from the compressor enters air chamber 11 via a pipe or tubing 35 that passes through the wall of chamber 11. An air tight seal is created between tubing 35 and the wall of chamber 11 by a sealant 36. Seal 36 prevents compressed air from escaping air chamber 11.
As air pressure increases in chamber 11 the pressure pushes against the face of air piston 41 and slowly moves it to the left, away from chamber 11. With air piston 41 attached to rod 18 and the rod is also connected to element 27 at the end of barrel 12, element 27 moves to the left a like distance. Thus, element 28 is being withdrawn from conductive pin 31 inside the base of football 19 at the same rate. Eventually piston 41 and elements 27 and 28 move to the rear far enough to allow compressed air to be released to launch football 19. The more spring 39 is compressed the higher the air pressure at launch point and the further football 10 will be thrown, and visa versa. After football 19 is launched the air pressure in air chamber 11 is zero and compressor 47 ceases functioning because the safety switch 59 has been opened as previously described. At that time spring 39 expands and returns air piston 41 to its normal position as shown in
Ball throwing apparatus 10 may be powered by rechargeable battery 13 that is also shown in
When battery 13 is being utilized to power compressor 47 there is a closed circuit through battery 13, compressor 47, main power switch 14, safety switch 59, and transfer contact 45. When converter 44 is being used to power apparatus 10 and transfer switch 45 is operated there is a complete circuit through AC/DC converter 44, compressor 47, main power switch 14, safety switch 59, and transfer contact 45.
In
In
Inside the cavity of football 19 for the first embodiment of the invention is a four pronged element 32 utilizing spring pressure provided by O rings, one of which 33, is shown around the four prongs of element 32. Elements 32 with O ring 33 cooperate with an element 28 inside the outer end 16 of barrel 12 to create an air tight seal that permits air pressure to build up in barrel 12 and chamber 11 when football 19 is mounted on launching end 16 of the barrel. This cooperation is best shown in and described with reference to
To release the air pressure and launch a football 19 on end 16 of barrel 12 a manually adjustable release mechanism is provided that is shown and described with reference to
Also shown inside cavity 21 in
In
In
In
In addition, if compressor 47 is somehow wrongfully actuated and air is pumped into chamber 11 at inlet 83, no air pressure can build up in chamber 11 and barrel 12 to launch football 19 until the end of barrel 12 is sealed. The sealing of the outer end of barrel 12 can only be accomplished when an authorized football 19 is placed on the end of barrel 12, just as with the first embodiment of the invention. The sealing of the barrel and chamber is accomplished with element 67 and “0” ring 68 as is described in detail with reference to
There are other elements shown in
In
When football 19 is fully seated on the end of barrel 12 the end of the barrel is fully sealed and air pressure can build up inside chamber 11 and barrel 12. At the same time the surface of football 19 contacts and depresses actuating arm 60 and thereby operates football safety switch 59. Since switch 59 is connected in series with main power switch 14, as shown in
Before air pressure can build up inside chamber 11 and barrel 12 the end of the barrel must be sealed. The sealing is accomplished by a cylindrical protrusion 67 in the base of cylindrical plastic sleeve 66 and “0” ring 68 mounted thereon. The outer diameter of the “0” ring is slightly larger than the inside diameter of the reinforced end 69 of barrel 12. When football 19 is fully seated on the end of barrel 12 the “0” ring and the end of protrusion 67 on which it is mounted are forced inside the open end of barrel 12. The “0” ring is slightly compressed and creates an air seal at the end of barrel 12. More than one “0” ring may be utilized for sealing the end of barrel 12 as required.
To remove football 19 from the end of barrel 12 after it has been fully seated and locked thereon by locking latch 58 a manual release button 88 on top of the mechanism is provided. When release button 88 is depressed downward, as indicated by the arrow, button 88 presses downward on the top left surface of a trip arm 65. Trip arm 65 rotates counter clockwise around pin 74 and locking latch 58 moves downward to thereby release football 19. The manual release button 88 may also be used to launch football 19 before the football is released dependent on the setting of a manually adjustable control 61 which is described in detail with reference to
More particularly, trip arm 65 is “L” shaped and has locking latch 58 at its lower end. Trip arm 65 is mounted on and pivots about pin 74. The top of trip arm is held to the right by a spring 64 that creates a clockwise torque about pin 74. Manual release button 88 is located on the top left side of pin 74 and when it is depressed downward it creates a counter-clockwise torque about pin 74. When the counter-clockwise torque is greater than the clockwise torque trip arm 65 rotates counter-clockwise and latching latch 58 is moved downward out of hole 71 to thereby release football 19. Any air pressure built up inside chamber 11 and barrel 12 causes football 19 to be launched from the end of barrel 12. As football 19 is launched from the end of barrel 12 the protrusions 72 inside plastic piece 66 inside the base of football 19 ride along the spiral grooves 73 on the outside surface of barrel 12. This imparts the spiral spin to football 12. As previously described with reference to
The operation of trip arm 65 and its latching latch 58 are described above but is repeated here. Trip arm 65 is “L” shaped and has locking latch 58 at its left end. Trip arm 65 is mounted on and rotates freely about a pin 74. The top right end of trip arm 65 is connected via a stretched spring 64 to an air pressure adjustment member 62. The stretched spring 64 places a clockwise torque on arm 65 that tends to rotate it clockwise causing latching latch 58 to move upward into hole 82 through the top wall of barrel 12, but this hole is sealed from the rest of the interior of barrel 12. The trip arm 65 will rotate clockwise as far as it can.
Air pressure adjustment member 62, to which the other end of spring 64 is connected, sits in a channel 85 and can move back and forth freely in the channel as indicated by the double headed arrow. The right end of member 62 is threaded and is screwed into a mating, internally threaded cap 61 which is the manual pressure adjustment 61 that sets how far a football 19 will be launched. In
To launch football 19 trip arm 65 must be rotated counter clockwise to lower latching latch 58 and thereby release football 19. This requires that a counter clockwise force be applied to trip arm 65. That is the function of the pressure sensing elements that are now described. There is a cylindrical channel 86 that has one end wall closed except for a small hole 84 there through via which the air pressure in chamber 11 and barrel 12 is sensed. Mounted inside channel 86 is a pressure piston 63 that can move left and right inside channel 86 as indicated by a double headed arrow. Mounted on the outside of a cylindrical portion of pressure piston 63 are “0” rings 75 that provide an air seal that prevents air under pressure inside chamber 11 from escaping around piston 63 and thereby preventing air pressure from building up inside chamber 11 and barrel 12.
The left end of pressure piston 63 is adjacent to trip arm 65 above pin 74. When air compressor 47 is started by operating the main power switch and having a projectile 19 fully inserted onto barrel 12 to operate switch 59, air pressure builds up inside chamber 11 and barrel 12. As the air pressure builds it is applied via hole 84 to the right end of pressure piston 63 thereby pushing the piston 63 to the left against trip arm 65. This occurs because the air pressure at trip arm 65 is that of the air surrounding the projectile launching mechanism. This creates a counter clockwise torque about pin 74 because piston 63 contacts arm 65 above pin 74. As the air pressure builds inside chamber 11, eventually the pressure exerted by pressure piston 63 against trip arm 65 is large enough to overcome the force created by spring 64, and trip arm 65 rotates counter clockwise enough so that its locking latch 58 moves downward to release football 19 which is then launched from barrel 12.
While what has been described herein is the preferred embodiment of the invention it will be understood by those skilled in the art that numerous changes may be made without departing from the spirit and scope of the invention. For example, there need not be a separate air chamber 11 and barrel 12. There could just be a barrel. The grooves 15 may be eliminated if it is not desired to provide a spiral spin to a sports ball such as a soccer ball.
Claims
1. An apparatus for propelling projectiles, the apparatus comprising:
- a barrel for aiming in a direction that a projectile is to be propelled, the barrel having a first end on which a projectile is mounted and from which the projectile will be propelled;
- a cavity in a side of the projectile, the cavity being placed over the first end of the barrel when the projectile is mounted on the barrel;
- means for propelling the projectile from the first end of the barrel; and
- means for imparting a spiral spin to the projectile as it is propelled from the barrel.
2. The projectile propelling apparatus in accordance with claim 1 wherein the means for imparting a spiral spin to the projectile comprises:
- a first element on the outer surface of the barrel; and
- A second element inside the cavity in the projectile, the second element loosely mating with the first element on the barrel when the projectile is mounted on the first end of the barrel, and when the projectile is propelled from the barrel the second element rides along the first element to thereby impart a spiral spin to the projectile.
3. The projectile propelling apparatus in accordance with claim 2 wherein the first element on the outer surface of the barrel is a groove that wraps helically around the outside of the barrel and extends to the first end of the barrel, and when the projectile is propelled from the first end of the barrel the second element in the cavity of the projectile rides along the first element on the outside of the barrel to thereby impart a spiral motion to the projectile.
4. The projectile propelling apparatus in accordance with claim 1 wherein the projectile is a sports ball having a front and a rear end and the cavity is located in the rear end of the football.
5. The projectile propelling apparatus in accordance with claim 4 wherein the projectile propelling means comprises means for providing compressed gas in the barrel which is used to propel the projectile from the barrel.
6. An apparatus for propelling projectiles, the apparatus comprising:
- a barrel for aiming in a direction that a projectile is to be propelled, the barrel having a first end on which a projectile is mounted and from which the projectile will be propelled;
- means for propelling the projectile from the first end of the barrel; and
- means for activating the propelling means only when the projectile is mounted on the barrel.
7. The projectile propelling apparatus in accordance with claim 6 wherein the propelling means is compressed air and wherein the first end of the barrel is normally open but is sealed so that compressed air may be stored therein only when the projectile is mounted on the barrel.
8. The projectile propelling apparatus in accordance with claim 6 wherein the projectile comprises:
- a cavity in a side of the projectile, the cavity being placed on the first end of the barrel when the projectile is to be propelled, and
- first sealing means in the cavity, the first sealing means cooperating with the first end of the barrel to seal same so that compressed air may be stored therein to propel the projectile.
9. The projectile propelling apparatus in accordance with claim 8 further comprising means for adjusting the compressed air pressure at which the projectile is to be propelled from the barrel.
10. The projectile propelling apparatus in accordance with claim 9 further comprising means for releasing the ball to be propelled from the barrel when the air pressure in the barrel reaches the air pressure at which the projectile is to be propelled from the barrel.
11. The projectile propelling apparatus in accordance with claim 10 further comprising means for holding the projectile on the first end of the barrel, the holding means cooperating with the release means to hold the projectile on the first end of the barrel until the release means indicates that the projectile is to be propelled from the barrel.
12. The projectile propelling apparatus in accordance with claim 11 further comprising means for manually releasing the holding means to either manually remove the projectile from the barrel or to propel the projectile from the barrel before the release means causes the projectile to be propelled from the barrel.
13. An apparatus for propelling projectiles, the apparatus comprising:
- a barrel for aiming in a direction that a projectile is to be propelled, the barrel having a first end on which a projectile is mounted and from which the projectile will be propelled; and
- a source of compressed air for propelling the projectile from the first end of the barrel;
- wherein the first end of the barrel is normally open but is sealed so that compressed air may be stored therein only when the projectile is mounted on the barrel.
14. The projectile propelling apparatus in accordance with claim 13 wherein the projectile comprises:
- a cavity in a side of the projectile, the cavity being placed on the first end of the barrel when the projectile is to be propelled, and
- first sealing means in the cavity, the first sealing means cooperating with the first end of the barrel to seal same so that compressed air may be stored therein to propel the projectile.
15. The projectile propelling apparatus in accordance with claim 14 further comprising means for adjusting the compressed air pressure at which the projectile is to be propelled from the barrel.
16. The projectile propelling apparatus in accordance with claim 15 further comprising means for releasing the ball to be propelled from the barrel when the air pressure in the barrel reaches the air pressure at which the projectile is to be propelled from the barrel.
17. The projectile propelling apparatus in accordance with claim 16 further comprising means for holding the projectile on the first end of the barrel, the holding means cooperating with the release means to hold the projectile on the first end of the barrel until the release means indicates that the projectile is to be propelled from the barrel.
18. The projectile propelling apparatus in accordance with claim 17 further comprising means for manually releasing the holding means to either manually remove the projectile from the barrel or to propel the projectile from the barrel before the release means causes the projectile to be propelled from the barrel.
19. A projectile comprising;
- an oblate spheroid body having a substantially symmetrical shape about a longitudinal axis and having an outer surface;
- a plurality of straight, parallel grooves in the outer surface of the projectile that are each at an angle with respect to the longitudinal axis of the projectile; and
- as the projectile travels through the air the air moving in the grooves interacts with the side walls of the grooves to cause a spiral spin to the projectile or to maintain an initial spiral spin of the projectile.
20. The projectile in accordance with claim 19 wherein the projectile is made from an elastic foam material.
21. The projectile in accordance with claim 20 wherein the projectile is a football.
Type: Application
Filed: Apr 27, 2004
Publication Date: May 19, 2005
Inventors: Jose Leal (Stow, MA), John Barletta (Southborough, MA)
Application Number: 10/832,589