Method for manufacturing a solid state imaging device and a method for manufacturing a lens
A solid state imaging device includes a transparent insulation film. The insulation film is laminated on transfer electrodes over the power supply lines. A transparent protection film, which has a refractive index that is greater than that of the insulation film, is laminated on the insulation film. The transparent insulation film has portions above the channels in which the thickness continuously increases from the center of adjacent channels to the associated channel separating region.
Latest Patents:
This application is based upon and claims the benefit of priority from the Japanese Patent Application No. 2002-63611, filed on Mar. 8, 2002, the entire contents of which are incorporated herein by reference.
BACKGROUND OF THE INVENTIONThe present invention relates to a solid state imaging device having improved light receiving efficiency and a method for manufacturing such a solid state imaging device.
In such a prior art configuration, the information charges that are produced by the light receiving pixels in the imaging section 1i are stored in the light receiving pixels for a predetermined time and then transferred to the storage section 1s at a high speed in response to a frame transfer clock Øf. The information charges are temporarily stored in the storage section 1s and then sequentially transferred to the horizontal transfer section 1h in units of single lines in response to a vertical transfer clock Øv. The information charges transferred to the horizontal transfer section 1h are sequentially transferred to the output section 1d in units of single pixels in response to a horizontal transfer clock Øh and successively converted to a voltage value to be output as an image signal Y(t).
Referring to
An interlayer insulation film 9, which is made of the same material as the gate insulation film 6, is formed on the transfer electrodes 7. A plurality of power supply lines 8, which are made of, for example, aluminum, are arranged in the interlayer insulation film 9 in a manner covering the channel separating regions 4. The power supply lines 8 are connected to the transfer electrodes 7 via contact holes 11, which are formed in the interlayer insulation film 9 at predetermined intervals. For example, when performing three-phase driving, a contact hole 11 is provided for every third transfer electrode 7, and a power supply line 8 is provided for every third transfer electrode 7. The interlayer insulation film 9 covers the power supply lines 8. Further, a silicon nitride surface protection film 10 is applied to the interlayer insulation film 9.
In the above solid state imaging device, the power supply lines 8 are formed in a manner covering the channel separating regions 4 in a light receiving area. The aluminum material forming the power supply lines 8 generally has a characteristic that reflects light. Thus, in the light that enters the light receiving area in a uniform manner, the light received by the power supply lines 8 is reflected by the surface of the power supply line 8. Accordingly, the power supply lines 8 stops light from being guided to the channels 5. This results in a deficiency in that such light is not retrieved as information charges.
BRIEF SUMMARY OF THE INVENTIONIn one aspect of the present invention, a solid state imaging device includes a semiconductor substrate having a planar surface. A plurality of channels are arranged in parallel spaced from each other at predetermined intervals on the planar surface of the semiconductor substrate. The solid state imaging device further includes a plurality of channel separating regions with each channel separating region arranged between a pair of adjacent channels. A plurality of transfer electrodes are arranged on the semiconductor substrate along a direction intersecting the channels. A plurality of power supply lines are arranged on the transfer electrodes along the channel separating regions. A transparent insulation film is laminated on the transfer electrodes covering the power supply lines. The transparent insulation film includes portions above the channels in which the thickness continuously increases from the center of each channel of a pair of adjacent channels to the channel separating region arranged between that pair of adjacent channels. A transparent protection film is laminated on the insulation film and has a refractive index that is greater than that of the insulation film.
A further aspect of the present invention is a method for manufacturing a solid state imaging device. The method includes disposing a plurality of channels in parallel spaced from each other at predetermined intervals on a semiconductor substrate, forming a plurality of channel separating regions with each region arranged between a pair of adjacent channels, extending a plurality of transfer electrodes on the semiconductor substrate along a direction intersecting the channels, forming a plurality of power supply lines on the transfer electrodes along the channel separating regions covering the channel separating regions, laminating a transparent insulation film having a predetermined thickness on the transfer electrodes, forming a mask pattern on the insulation film along the channels covering the power supply lines, anisotropically etching the insulation film along the mask pattern to decrease the thickness of the insulation film along the channels, isotropically etching the insulation film after the anisotropic etching to continuously increase the thickness of the insulation film above the channels from the center of each channel of a pair of adjacent channels to the channel separating regions between those channels, and laminating a transparent protection film having a refractive index that is greater than that of the insulation film on the semiconductor substrate.
Other aspects and advantages of the present invention will become apparent from the following description, taken in conjunction with the accompanying drawings, illustrating by way of example the principles of the invention.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGThe invention, together with objects and advantages thereof, may best be understood by reference to the following description of the presently preferred embodiments together with the accompanying drawings in which:
The present invention differs from the prior art in that a transparent insulation film 22 is formed on the transfer electrodes 7. At portions above the power supply lines 8, the thickness of the insulation film 22 increases in a continuous manner from between adjacent channels 5, or from opposite sides of each channel separating region 4, toward the center 4c of the channel separating region 4. Further, a transparent protection film 23 having a refractive index that is greater than that of the protection film 23 is applied to the insulation film 22.
The insulation film 22 is formed from an optically transparent insulating material having a refractive index of, for example, 1.4 to 1.5. Further, the insulation includes a silicon oxide film 9a and a boron phosphorous silicate glass (BPSG) film 9b. That is, the insulation film 22 has a structure including at least two layers. In other words, the insulation film 22 of the preferred embodiment includes a first layer, or the silicon oxide film 9a, in which the power supply lines 8 are formed, and a second layer, or the BPSG film 9b, which is laminated on the power supply lines 8.
The insulation film 22 is shaped so that its thickness continuously increases from opposite sides (channel sides) of each channel separating region 4 to the center of the channel separating region 4. In the preferred embodiment, the interface between the insulation film 22 and the protection film 23 above the power supply lines 8 is gradually curved from a position corresponding to the vicinity of the center 4c of each channel separating region 4 to positions corresponding to the adjacent channels 5, The interface continuously extends toward positions corresponding to the center 5c of each channel 5 and becomes parallel to the surfaces of the channels 5.
The insulation film 22 includes portions above the channels 5 in which the thickness continuously increases from the center 5c of each channel 5 to the adjacent channel separating regions 4. The insulation film 22 further includes portions above the channel separating regions 4 in which the thickness continuously decreases from the center 4c of each channel separating region 4 to the adjacent channels 5.
When the channel separating regions 4 or the power supply lines 8 are wide enough, the curve of the interface between the insulation film 22 and the protection film 23 may terminate above the channel separating regions 4 so that the interface is planar and parallel to the surface of each channel 5.
The protection film 23 is made of an optically transparent material having a refractive index that is greater than that of the insulation film 22, such as silicon nitride, which has a refractive index of 2. The protection film 23 covers the entire surface of the insulation film 22 and has a flat surface.
In this manner, the transparent protection film 23, the refractive index of which is greater than that of the insulation film 22, is laminated on the insulation film 22, the thickness of which continuously increases from the channel sides to the center 4c of each channel separating region 4. Accordingly, parts of the insulation film 22 function as prisms above the power supply lines 8 and guide the light received by the power supply lines 8 to the channels 5. This efficiently converts the light irradiated on the light receiving area to information charges.
The interface between the insulation film 22 and the protection film 23 is curved near boundaries between the channel separating regions 4 and the channels 5. An angle θ formed between the surface of the n-type silicon substrate 2 and the tangent of the interface between the insulation film 22 and the protection film 23 increases at portions closer to the center of each power supply line 8. Thus, the refraction of the light received vertically by the surface of the n-type silicon substrate 2 is greater at portions closer to the center of each power supply line 8. This increases the amount of light that is efficiently guided to the channels 5.
In the preferred embodiment, silicon nitride is used as the material of the protection film 23. However, the material is not limited to silicon nitride in the present invention. Any transparent material having a refractive index that is greater than the insulation film 22 may be used as the material of the protection film 23. The tangential angle θ, which represents curved forms, may be adjusted in accordance with the refractive index of the material to obtain the same advantages as the preferred embodiment.
The process for manufacturing the solid state device of the preferred embodiment will now be discussed with reference to FIGS. 3 to 9.
In a first step, which is illustrated in
In a second step, which is illustrated in
In a third step, which is illustrated in
In a fourth step, which is illustrated in
In a fifth step, which is illustrated in
In a sixth step, which is illustrated in
In this manner, by performing isotropic etching after anisotropic etching, the insulation film 22 is easily shaped to form prisms with curves. The thickness of the prisms is adjusted by controlling the anisotropic etching time. The tangential angle θ is adjusted by controlling the isotropic etching time. By properly controlling the two etching processes, the desired shape may be accurately obtained at the predetermined position above each power supply line 8 even if the channel separating regions 4 are extremely narrow like in a frame transfer type solid state imaging device.
In a seventh step, which is illustrated in
In this manner, a solid state imaging device, which has the insulation film 22 and the protection film 23 shown in
It should be apparent to those skilled in the art that the present invention may be embodied in many other specific forms without departing from the spirit or scope of the invention. Therefore, the present examples and embodiments are to be considered as illustrative and not restrictive, and the invention is not to be limited to the details given herein, but may be modified within the scope and equivalence of the appended claims.
Claims
1-14. (canceled)
15. A method for manufacturing a solid state imaging device, the method comprising:
- laminating a first transparent film having a predetermined thickness on a semiconductor substrate, wherein the semiconductor substrate has a plurality of pixel areas for converting irradiated light to information charges;
- anisotropically etching the first transparent film to decrease the thickness of the first transparent film within a predetermined area according to locations of the pixel areas;
- isotropically etching the first transparent film after the anisotropic etching to continuously increase the thickness of the first transparent film above the pixel areas from the center of each pixel area to outside of each pixel area; and
- laminating a second transparent film having a refractive index that is greater than that of the first transparent film on the semiconductor substrate.
16. The method for manufacturing a solid state imaging device according to claim 15, wherein the solid state imaging device has a plurality of separating regions that electrically separate each of the pixel areas, wherein isotropically etching includes continuously decreasing the thickness of the first transparent film above the separating regions from the center of each separating region toward each pixel area adjacent to each separating region.
17. The method for manufacturing a solid state imaging device according to claim 15, wherein the solid state imaging device is a frame transfer type, wherein the pixel areas are channels that are arranged in parallel spaced from each other at predetermined intervals on the semiconductor substrate and are separated by the separating regions.
18. The method for manufacturing a solid state imaging device according to claim 17, wherein the solid state imaging device has a plurality of separating regions that electrically separate each of the pixel areas, wherein isotropically etching includes continuously decreasing the thickness of the first transparent film above the separating regions from the center of each separating region toward each pixel area adjacent to each separating region.
19. A method for manufacturing a lens, the method comprising:
- laminating a first transparent film having a predetermined thickness on a semiconductor substrate;
- anisotropically etching the first transparent film to decrease the thickness of the first transparent film within a predetermined area;
- isotropically etching the first transparent film after the anisotropic etching to continuously increase the thickness of the first transparent film from inside of the predetermined area toward outside of the predetermined area; and
- laminating a second transparent film having a refractive index that is greater than that of the first transparent film on the semiconductor substrate.
20. The method for manufacturing a lens according to claim 19 further comprising performing an etch back process or chemical mechanical polishing on the surface of the second transparent film.
21. The method for manufacturing a lens according to claim 19, wherein the first transparent film is formed from silicon oxide and the second transparent film is formed from silicon nitride.
Type: Application
Filed: Dec 28, 2004
Publication Date: May 26, 2005
Applicant:
Inventor: Minoru Konishi (Hashima-shi)
Application Number: 11/025,618