Surgical balloon having varying wall thickness
A surgical balloon is provided for insertion into a uterus that includes a substantially continuous outer wall defining an exterior surface of the balloon on a first side and an interior hollow of the balloon on a second side, with the outer wall being formed from a stretchable elastic material and being stretchable by pressure within the inner hollow between a collapsed state and an expanded state. The substantially continuous outer wall has a base portion for coupling with shaft, an intermediate portion adjacent the base portion and an end portion at a distal end of the balloon and adjacent the intermediate portion. The base portion has a first primary wall thickness, the intermediate portion has a second primary wall thickness, and the end portion has a third primary wall thickness.
The present invention is a continuation-in-part of earlier filed U.S. patent application Ser. No. 09/749,077, filed on Dec. 27, 2000 and entitled “Conformal Surgical Balloon With Varying Wall Expansibility”, which is incorporated by reference herein in its entirety.
FIELD OF THE INVENTIONThe present invention relates to surgical balloons, and more particularly to balloons suitable for introduction into a body cavity for containing a thermally conductive media used for ablation of cells within the cavity.
BACKGROUND OF THE INVENTIONSurgical balloons have a variety of uses, including the containment of fluids used to necrose cells lining a body cavity. For example, it has now become common to treat excessive menstrual bleeding (menorrhagia) by inserting a balloon catheter into the uterus, filling the balloon with a thermally conductive media and heating or cooling the media to thermally kill the endometrial lining of the uterus. An exemplary thermal ablation process and apparatus utilizing a surgical balloon are described in U.S. Pat. No. 5,501,681 to Neuwirth et al.
As shown in U.S. Pat. No. 5,501,681, known surgical balloons are typically formed from latex, have a bulb shape, and inflate in a manner which enlarges the bulb shape uniformly to an approximately spherical or bulbous shape. In contrast, the uterine cavity is Y-shaped in cross-section. The material composition of known balloons is somewhat inelastic, preventing the balloons from readily conforming to the intra-uterine space. As a result, known bulbous surgical balloons do not inflate to contact the entire endometrial lining, in particular, in the area of the uterine cornua. This lack of contact may result in a portion of the endometrial lining escaping treatment.
It is therefore an object of the present invention to provide an improved surgical balloon that exhibits an increased contact area with a body cavity into which it is inserted when the balloon is inflated.
SUMMARY OF THE INVENTIONA surgical balloon is provided for insertion into a uterus. The surgical balloon includes a substantially continuous outer wall defining an exterior surface of the balloon on a first side and an interior hollow of the balloon on a second side, with the outer wall being formed from a stretchable elastic material and being stretchable by pressure within the inner hollow between a collapsed state and an expanded state. The substantially continuous outer wall has a base portion for coupling with shaft, an intermediate portion adjacent the base portion and an end portion at a distal end of the balloon and adjacent the intermediate portion. The base portion has a first primary wall thickness, the intermediate portion has a second primary wall thickness, and the end portion has a third primary wall thickness.
According to one embodiment, the wall thickness of the end portion is about 3 to 5 mil, according to another embodiment, wall thickness of the intermediate portion is about 4-6 mil, and in yet another embodiment, the wall thickness of the base portion is about 5-10 mil.
According to yet another embodiment, the second primary wall thickness is less than the first primary wall thickness, and the third primary wall thickness is less than the first and second primary wall thicknesses.
In an alternate embodiment, the end portion is substantially hemispherical in shape.
Also provided is a surgical balloon for insertion into a uterus including a substantially continuous outer wall defining an exterior surface of the balloon on a first side and an interior hollow of the balloon on a second side, with the outer wall being formed from a stretchable elastic material and being stretchable by pressure within the inner hollow between a collapsed state and an expanded state. The substantially continuous outer wall has a base portion for coupling with a catheter, and a substantially hemispherical shaped end portion positioned at a distal end of the balloon and adjacent the first portion. The end portion has a primary wall thickness less than a primary wall thickness of the base portion.
A surgical balloon is also provided for insertion into a uterus having a substantially continuous outer wall defining an exterior surface of the balloon on a first side and an interior hollow of the balloon on a second side, with the outer wall being formed from a stretchable elastic material and being stretchable by pressure within the inner hollow between a collapsed state and an expanded state. The substantially continuous outer wall has a base portion for coupling with a catheter, and an end portion at a distal end of the balloon. The end portion has a primary wall thickness less than a primary wall thickness of the base portion.
BRIEF DESCRIPTION OF THE FIGURESFor a better understanding of the present invention, reference is made to the following detailed description of an exemplary embodiment considered in conjunction with the accompanying drawings, in which:
The balloon 10, as described herein, can be used in place of conventional bulb-shaped balloons to perform ablation procedures. More particularly, after the balloon 10 is introduced into the uterus, a pressurized thermally conductive fluid 18, e.g., saline solution, may be used to inflate the balloon 10 within the uterus, followed by heating or cooling of the fluid to thermally cauterize cells in contact with the balloon 10. The balloon 10 is preferably preformed to have a specific shape, such that when the balloon is inflated, it conforms to the walls of the intra-uterine space. The balloon 10 has a base 20 that is adhered to the catheter 12 by an adhesive or by plastic welding. The body 22 of the balloon 10 extends from the base 20 and has left and right extensions 24, 26. As can be appreciated from
As an alternative to or in addition to variations in wall thickness giving rise to local variations in expansibility, the wall 28 may be treated with heat, radiation or chemicals to achieve the same effect. More particularly, the balloon 10 can be made from polyurethane with a selected area exposed to heat in a temperature range of 260° F. to 280° F. by inserting the balloon 10 into an apertured mask made from aluminum or steel and exposing the balloon 10 to a heat source which will effect only the unmasked area. Alternatively, the balloon 10 may be installed upon a stretching frame and selected surfaces subsequently branded with heated dies. Alternatively, the balloon 10 may be stretched upon a frame and subjected to chemicals such as, dimethyl sulfoxide or tetrahydrofuran, that are printed on, brushed, dabbed or sprayed on through a mask.
The balloon 10 may be blow molded from polyester or polyethylene resins; dip molded from silicones, natural latex rubber or polyisoprene, a synthetic rubber; extrusion molded from silicone; injection molded from polyurethanes or silicones; or formed by heat sealing sections (patterns) together. Currently, the preferred method of manufacture is dip molding using natural latex rubber or polyisprene. Other compounds from which the balloon 10 can be made using one or more of the foregoing processes are polyether block amides, polyolefins and co-polyesters.
As referred to above, the balloon 10 can be formed by heat sealing, viz., by cutting patterns of a sealable expandable material into specific shapes and then heat sealing the edges of the two identical shapes together. This can produce a structure, which has a volume between the top and bottom patterns. An alternate method is to place two sheets of material together, one on top of the other. A formed die is then placed on either side of the two sheets, and the die is heated to melt the sections of the sheets between the corresponding sections of the die. This area creates a seal when it cools. The shape or configuration of the die determines the shape of the balloon 10.
The balloon 10 of the present invention can be used in hot ablation procedures and in cryoablation. Materials, which are best suited for hot ablation procedures, would include polyisoprene, silicone and natural latex rubber. The material best suited for use in cold ablation procedures would be silicone.
Polyurethane, in contrast to the latex compounds that have previously been used to make surgical balloons, is highly elastic and permits the balloon 10 to conform readily to the intrauterine space, even with minimal or no variations in flexibility of the wall 28. Accordingly, the present invention is intended to include the use of polyurethane to produce a surgical balloon with either constant or varying wall thickness to insure low pressure conformation to the intrauterine shape.
As can be appreciated from
A commonly owned copending application Ser. No. 09/749,180, entitled CONFORMAL SURGICAL BALLOON and filed contemporaneously herewith by the present inventors, discloses a surgical balloon that conforms to the intra-uterine space aided by its preformed shape, such copending application being incorporated herein by reference. The present invention therefore contemplates a preformed surgical balloon (mimicking the uterine cavity shape) wherein the wall thickness and/or wall elasticity varies in accordance with the teachings of the present application, to aid in permitting the balloon to conform to the body cavity in which it is inflated. In particular, it is beneficial for the extensions 24, 26 of such a preformed balloon to have a thinner wall thickness and/or greater expansibility than the remainder of the balloon. Besides aiding the expansion of the extensions 24, 26 into the uterine cornua, the thinned extensions 24, 26 of a deflated preformed balloon can be more readily and compactly folded for storage within the cannula 30 and can be deployed more readily.
In the description to follow, a numbering convention will be used wherein elements having a similar function to a preceding embodiment shall have the same reference numerals increased by one hundred.
The selection of material for the balloon 10, 110 insures that the balloon 10, 110 will not stick to itself or the cannula 30 after prolonged storage within the cannula 30. Alternatively, the balloon 10, 110 may be coated with a conventional biocompatible, non-allergenic lubricant, such as talc, cornstarch or low viscosity silicone, preferably air cured to prevent self-adhesion. In order to promote deployment of a folded balloon 110, it is preferably folded in a manner that minimizes overlap, severity of fold angle and compression forces that exceed the elastic limit of the material at fold lines. In addition, it is preferable that the extensions 124, 126 be folded at intervals that are smaller in length than the spacing between any opposed surfaces within the uterine cavity that could trap the extensions 124, 126 in an unfolded condition, e.g., between the walls of the uterine cornua or between the body of the balloon 110 and the uterine wall.
It should be appreciated that the present invention contemplates a balloon 10,110, 210, 310, 410 with a symmetrical radial thinning or treatment such that the thinned area, if inflated outside the body, would assume a toroidal, radially symmetric shape. If the same balloon were inflated within the body, e.g., the uterus, then the thinned area would be constrained by the cavity shape such that the extensions 24, 26 (224, 226) can extend into the uterine cornua. Under such circumstances, the balloon will be radially symmetric such that there is no need to provide a means to radially align the balloon to the uterus.
Alternatively, the thinning or treatment of the balloon 10,110, 210 may be localized such that the extensions 24, 26 (124, 126 and 224, 226) project out like fingers. In that case, the alignment means referred to above in reference to
Referring now to
It has been found that a balloon of the type described above is advantageous in that the end portion, particularly when hemispherical in shape, will expand more than the intermediate portion to conform better to the inner contour of the upper portion of the uterus, to thereby better fill both uterine cornua. In this manner, contact area is increased making the treatment more effective.
Claims
1-10. (canceled)
11. A surgical balloon for insertion into a uterus, comprising:
- a substantially continuous outer wall defining an exterior surface of the balloon on a first side and an interior hollow of the balloon on a second side, the outer wall being formed from a stretchable elastic material and being stretchable by pressure within the inner hollow between a collapsed state and an expanded state;
- the substantially continuous outer wall having a base portion for coupling with shaft, an intermediate portion adjacent the base portion and an end portion at a distal end of the balloon and adjacent the intermediate portion,
- wherein, when the balloon is in the collapsed state, the base portion has a first primary wall thickness, the intermediate portion has a second primary wall thickness, and the end portion has a third primary wall thickness.
12. The surgical balloon according to claim 11, wherein the wall thickness of the end portion is about 3 to 5 mil.
13. The surgical balloon according to claim 12, wherein the wall thickness of the intermediate portion is about 4-6 mil.
14. The surgical balloon according to claim 13, wherein the wall thickness of the base portion is about 5-10 mil.
15. The surgical balloon according to claim 11, wherein the second primary wall thickness is less than the first primary wall thickness, and the third primary wall thickness is less than the first and second primary wall thicknesses.
16. The surgical balloon according to claim 11, wherein the end portion is substantially hemispherical in shape.
17. A surgical balloon for insertion into a uterus, comprising:
- a substantially continuous outer wall defining an exterior surface of the balloon on a first side and an interior hollow of the balloon on a second side, the outer wall being formed from a stretchable elastic material and being stretchable by pressure within the inner hollow between a collapsed state and an expanded state;
- the substantially continuous outer wall having a base portion for coupling with a catheter, and a substantially hemispherical shaped end portion positioned at a distal end of the balloon and adjacent the first portion,
- wherein, when the balloon is in the collapsed state, the end portion has a primary wall thickness less than a primary wall thickness of the base portion.
18. A surgical balloon for insertion into a uterus, comprising:
- a substantially continuous outer wall defining an exterior surface of the balloon on a first side and an interior hollow of the balloon on a second side, the outer wall being formed from a stretchable elastic material and being stretchable by pressure within the inner hollow between a collapsed state and an expanded state;
- the substantially continuous outer wall having a base portion for coupling with a catheter, and an end portion at a distal end of the balloon,
- wherein, when the balloon is in the collapsed state, the end portion has a primary wall thickness less than a primary wall thickness of the base portion.
19. The surgical balloon according to claim 18, wherein the end portion is at least substantially hemispherical in shape.
20. The surgical balloon according to claim 19, wherein the end portion is substantially symmetrical about a distal point of the balloon.
Type: Application
Filed: Oct 20, 2004
Publication Date: May 26, 2005
Inventors: Martin Nohilly (Murray Hill, NJ), Dorothy Dion (West Orange, NJ)
Application Number: 10/969,526