Method and apparatus for truss rollout
A truss carrying dolly and system for use in manufacture of buildings.
A portion of the disclosure of this patent document contains material that is subject to copyright protection. The applicant has no objection to the facsimile reproduction by anyone of the patent document or the patent disclosure, as it appears in the Patent and Trademark Office patent file or records, but otherwise reserves all copyright rights whatsoever.
TECHNICAL FIELDThis invention relates to a novel apparatus for use in the construction of buildings wherein a pre-fabricated truss must be moved to a selected location on a structure. Such apparatus is particularly well suited to the construction of residential structures or small commercial building structures which utilize prefabricated roof trusses.
BACKGROUNDWhen buildings which require the use of roof trusses are constructed, it is presently customary for the builder to purchase the necessary quantity of pre-fabricated roof trusses, and to have a package of such trusses delivered to one end of the structure on which the trusses are to be located. Since a package of trusses arrives bound together, it becomes necessary to move trusses along the upper portion of a building structure until it is situated at a selected location at which it is secured to the then existing building structure. However, most trusses are quite heavy, and the working platform at which they need to be handled is high off of the ground, since the working platform is basically at the base elevation of the roof structure being completed. Thus, a rather dangerous working environment results, where significant loads are carried, repeatedly, while the workman maintains his or her balance along a working platform which may be quite narrow and which sometimes contains trip hazards such as uneven or ill fitting base lumber or the presence of hardware or fastener protrusions therefrom. Thus, it would be advantageous to provide an apparatus and method is designed to safely accommodate the need for truss movement, in order to avoid excess stress or strain on the workman, and which avoids or minimizes the dangers inherent in carrying a heavy load when high off of the ground.
Currently, there is a great but as yet unmet need for an apparatus and a system of moving roof truss sections that can easily meet restrictive ergonomic and/or safety regulations. In particular, it would be desirable to reduce the amount of time during which a workman is required to carry the load of, or a portion of, a roof truss. Additionally, an apparatus and method suitable for such a job could also find application for other services, to carry other heavy objects. Consequently, this disclosure provides description of a novel apparatus and method for carriage of prefabricated roof trusses along the top plate of a wall of a building under construction.
BRIEF DESCRIPTION OF THE DRAWINGIn order to enable the reader to attain a more complete appreciation of the invention, and of the novel features and the advantages thereof, attention is directed to the following detailed description when considered in connection with the accompanying figures of the drawing, wherein:
The foregoing figures, being merely exemplary, contain various elements that may be present or omitted from actual implementations and various configurations of a roof truss carriage dolly which may be used for a variety of building construction situations, depending upon the circumstances. An attempt has been made to draw the figures in a way that illustrates at least those elements that are significant for an understanding of the various embodiments and aspects of the invention. However, various other elements of the unique roof truss carriage dolly and the construction method for its use are also shown and briefly described to enable the reader to understand how various features, including optional or alternate features, may be utilized in order to provide a simple roof truss carriage system for use in building construction.
DETAILED DESCRIPTION In many construction situations it would be advantageous to provide an apparatus and method which would enable safe, quick, and labor saving placement of prefabricated roof trusses at desired and preselected installation locations above the top plate a wall of a building under construction. Such an apparatus is provided in the each of the roof truss carriage dollies 20 illustrated in
As seen in
As more easily seen in the exploded views of
The upper or base mounting flange portions 64 and 66 of first 54 and second 56 roller mounts each include a plurality of fastener through apertures 84, wherein each fastener through aperture 84 is defined by an aperture edge wall portion 86. Base 46 or 46′, in the form of a planar sheet with a thickness T46 of from about one eighth (⅛) of an inch to about three eighths (⅜) of an inch is provided. For enhanced strength, especially when smaller thicknesses are utilized for base 46, a first flanged lip 61 may be provided. Likewise, for enhanced strength, when base 46′ is provided, a second flanged lip 63 can be provided. Base 46 or 46′ has opposing first 70 and second 72 marginal portions sized and shaped, in one embodiment are provided for abutting mating engagement with the companion upper or base mounting flange portions 64 and 66 of the first and said second roller mounts 54 and 56. Each of the first and second marginal portions 70 and 72 have a plurality of base through apertures 90, wherein each base through aperture is defined by a base through aperture edge wall portion 92. As shown in
To secure the truss carriage dolly 201 or 202 along elongate beams 22 and 24, respectively, (which beams are actually top plates for wall of the building under construction), the dolly 20, or 202 includes caging features such as flanges 110 and 112 in roller mounts 54 and 56. The caging features in one embodiment include such downwardly extending integrally provided flanges 110 and 112 which at least partially engage the elongate beam and thus serve to maintain the dolly 201 or 202 over the elongate beam 22 or 24 when the dolly is moved along the elongate beam. For simplicity, the first and second roller mounts 54 and 56 each form a structural frame member having integral flanged portions 110 and 112 to thus provide a caging feature which protrudes a distance D112 as may be convenient in the circumstances; I have found a distance D112 of about one and one-quarter inches (1.25 inches) below the roller 50 or 52 is adequate in conventional wood frame construction.
Rollers 50 and 52 are rotatably secured between roller mounts 54 and 56. The rollers 50 and 52, in one embodiment, include a plastic outer beam contact surface. One suitable plastic for rollers 50 and 52 is ultra high molecular weight polyethylene which is made from recycled polyethylene, and in such cases, a solid plastic roller can be utilized. Alternately, a hollow or solid metal roller can be provided, such as a hollow steel roller. Each roller is attached to the roller mounts 54 and 56 via axle 114 and bearing 116. I have found it advantageous to utilize ball type bearings, which are supplied by Freeway Corporation of Cleveland, Ohio as model number ASF 132-1; however, any convenient combination of axle, roller and bearing can be utilized for supporting the anticipated load as will be calculable by those of ordinary skill in the art and to whom this specification is directed.
As illustrated, the truss carriage dolly 20, or 20 is provided with at least two contact points having rolling support relative to the elongate beam (22 or 24) being traversed. In one embodiment each of the at least two contact points having rolling support, in roller or wheel form. As illustrated, each of rollers 50 and 52 are of about one and one-half (1.5) inches in diameter, a size found useful for residential construction. The rollers 50 and 52 are, in some embodiments, provided in sizes from about four inches to about six and one-half inches in width. For example, for use with two-inch by four-inch (2×4) framing, rollers are nominally sized at about four and one-quarter (4.25) inches in width. For two-inch by six-inch (2×6) framing, rollers are nominally sized at about six and one quarter (6.25) inches in width. I have also found it advantageous to space the axis of rotation 120 of rollers 50 and 52 apart from reverse side 60 of base 46 by a distance D120 of about one inch (see
For ease in carriage of roof trusses, I have found it advantageous to provide a transversely oriented cargo stop 130 which is mounted on the base 46 or 46′ oriented in a direction substantially parallel to the rollers 50 and 52. As illustrated, in one embodiment a cargo stop 130 is provided as an L-shaped angular metal component one (1) inch by one (1) inch by one-eighth (⅛) inch angle aluminum. Thicker parts may also be used. To reduce overall weight, in one embodiment, use of lightweight aluminum has been found advantageous for fabrication of the cargo stop 130, as well as roller mounts 54 and 64, and base 46 or 46′.
Turning now to
As described above and as shown in various embodiments described herein, it may be useful to provide a truss carriage dolly having a rectangular base for support of one of the ends of a truss unit 30.
When a plurality of truss units 30 is provided, then the method is continued by returning the first and second truss carriage dollies to a location adjacent the plurality of trusses 140. Then, the process is repeated, where the first and second ends, sequentially or simultaneously, of a second one of a plurality of off-site factory prefabricated truss units are lifted and the weight transferred to one the first and second rolling truss carriage dollies. Then, the first and second rolling truss carriage dollies, and the second one of the prefabricated trusses 30 resting thereon, are moved to a selected position adjacent a desired location for installation of the second truss 302. The second truss is then removed from the first and second truss carriage dollies.
In one helpful embodiment, the truss carriage dolly further includes a downwardly protruding linking attachment member such as eyebolt 100. Then, a handle 204 is provided having a link member such as hook 206, complementary in size and shape for mating engagement with the linking attachment member of the truss carriage dolly, so that the towing handle 204 can be removably affixed to the truss carriage dolly. Then, the assembled combination of truss carriage dolly and said truss is manually moveable by a workman 208 with the handle.
In most applications, the truss units 30 have a generally triangular configuration with an elongated top chord 34 portions 36 and 38 arranged to extend diagonally with respect to the lower chord 32 to converge at a peak 40.
Although various aspects and elements of the invention are herein disclosed for illustrative purposes, it is to be understood that the roof truss carriage dolly, and the method of use of a pair of such roof truss carriage dollies in the construction of buildings, are important improvements in the state of the art of devices and methods for moving roof trusses or other heavy components. Although only a few exemplary aspects have been described in detail, various details are sufficiently set forth in the figures of the drawing and in the specification provided herein to enable one of ordinary skill in the art to make and use the invention(s), which need not be further described by additional writing in this detailed description. Importantly, the aspects and embodiments described and claimed herein may be modified from those shown without materially departing from the novel teachings and advantages provided as described herein, and may be embodied in other specific forms without departing from the spirit or essential characteristics thereof. It is especially pointed out that the size or rollers and the movement of rollers relative to a horizontal beam (i.e., top plate of a wall) therebelow, and the precise shape of the apparatus suitable for a specific situation, may vary widely based on the nature of the physical situation, such as the size of the beams being used for a base, and the components actually being handled. Therefore, the embodiments presented herein are to be considered in all respects as illustrative and not restrictive. As such, this disclosure is intended to cover the structures described herein and not only structural equivalents thereof, but also equivalent structures. Numerous modifications and variations are possible in light of the above teachings. It is therefore to be understood that within the scope of the appended claims, the invention(s) may be practiced otherwise than as specifically described herein. Thus, the scope of the invention(s) is as described herein and as set forth in the appended claims, and as indicated by the drawing and by the foregoing description, is intended to include variations from the embodiments provided which are nevertheless described by the broad interpretation and range properly afforded to the plain meaning of the language of the claims set forth below.
Claims
1. A method for setting trusses in building construction, comprising:
- (a) providing first and second spaced apart, substantially parallel elongated beams each having a substantially smooth upper surface;
- (b) providing first rolling truss carriage dolly for engagement with, and rolling movement on, said first elongated beam, and providing a second rolling truss carriage dolly for engagement with, and rolling movement on, said second elongated beam;
- (c) providing a plurality of off-site prefabricated truss units, each truss unit having an elongated lower chord with first and second ends, and an upper chord;
- (d) lifting said first and said second ends, sequentially or simultaneously, of one of said plurality of prefabricated truss units, and transferring said first and second ends to a resting position on one of said first and said second rolling truss carriage dollies;
- (e) moving said first and second rolling truss carriage dollies, and the prefabricated truss resting thereon, to a selected position adjacent a desired location for installation of said truss;
- (f) removing said truss from said first and said second truss carriage dollies.
2. The method as set forth in claim 1, wherein said truss carriage dolly comprises a rectangular base for support of one of said ends of said truss unit.
3. The method as set forth in claim 1, further comprising the steps of
- (a) returning said first and said second truss carriage dollies to a location adjacent said plurality of trusses;
- (b) lifting said first and said second ends, sequentially or simultaneously, of a second one of said plurality of off-site factory prefabricated truss units, and transferring said first and second ends to a resting position on one of said first and said second rolling truss carriage dollies;
- (c) moving said first and second rolling truss carriage dollies, and the second one of said prefabricated trusses resting thereon, to a selected position adjacent a desired location for installation of said second truss;
- (d) removing said second truss from said first and said second truss carriage dollies.
4. The method as set forth in claim 1 or in claim 3,
- (a) wherein said truss carriage dolly further comprises a linking attachment member; and
- (b) further comprising providing a handle, and wherein said handle with a link member complementary to said linking attachment member of said truss carriage dolly, so that said handle can be removably affixed to said truss carriage dolly; and
- (c) wherein the combination of said truss carriage dolly and said truss is manually moveable with said handle.
5. The method as set forth in claim 4, wherein said linking attachment member comprises an eyebolt and wherein said link member comprises a hook sized and shaped for complementary mating engagement with said eyebolt.
6. The method as set forth in claim 1, wherein said first and said second roller mounts are generally L-shaped structural members, and wherein at least a portion of said roller extend downwardly from and at substantially right angles from lateral edges of said base, to provide a caging feature to confine said truss carriage dolly in rolling engagement with said elongated beam.
7. The method as set forth in claim 1, wherein said first and said second roller mounts are generally C-shaped structural members, and wherein at least a portion of said roller extend downwardly from and at substantially right angles from lateral edges of said base, to provide a caging feature to confine said truss carriage dolly in rolling engagement with said elongated beam.
8. A support apparatus for traversing along an elongate beam while supporting a structure thereabove, said apparatus comprising:
- a first roller mount, and a second roller mount;
- at least one roller extending between said first roller mount and said second roller mount; and
- a base, said base having a reverse side and an obverse side and extending between said first and said second roller mounts,
- apparatus over said elongate beam when said apparatus is moved along said elongate beam.
9. The apparatus as set forth in claim 8, wherein said reverse side of said base has first and second opposing marginal portions, and wherein said first roller mount and said second roller mount are securely affixed to said first and second marginal portions, respectively.
10. The apparatus as set forth in claim 8, wherein said caging features comprise downwardly extending flanges which at least partially engage said elongate beam.
11. The apparatus as set forth in claim 8, wherein said support apparatus is utilized in fabrication of a building structure, and wherein said elongate beam comprises a top plate of a wall of said building structure.
12. The apparatus as set forth in claim 10, herein said downwardly extending flanges are integrally provided with said first and with said second roller mounts.
13. The apparatus as set forth in claim 8, wherein said apparatus comprises two rollers.
14. The apparatus as set forth in claim 13, wherein said rollers are manufactured in a plastic material.
15. The apparatus as set forth in claim 13, wherein said plastic material comprises ultra high molecular weight polyethylene.
16. The apparatus as set forth in claim 15, wherein said high molecular weight polyethylene comprises recycled polyethylene.
17. The apparatus as set forth in claim 15, wherein each roller is attached to said roller mount through a bearing.
18. The apparatus as set forth in claim 17, wherein said bearing is a ball bearing.
19. The apparatus as set forth in claim 8, wherein said apparatus comprises at least two contact points having rolling support relative to said elongate beam being traversed.
20. The apparatus as set forth in claim 19, wherein each of said at least two contact points having rolling support comprise rollers.
21. The apparatus as set forth in claim 20, wherein each of said rollers comprises an ultra high molecular weight polyethylene outer surface.
22. The apparatus as set forth in claim 20, wherein each of said rollers comprises a metal outer surface.
23. The apparatus as set forth in claim 11, wherein said first and second roller mounts each comprise a structural frame member.
24. The apparatus as set forth in claim 20, wherein each of said rollers is of about one and one-half (1.5) inches in diameter.
25. The apparatus as set forth in claim 20, wherein each of said rollers is about four and one quarter (4.25) inches in width.
26. The apparatus as set forth in claim 20, wherein each of said rollers is about six and one quarter (6.25) inches in width.
27. The apparatus as set forth in claim 20, wherein each of said rollers if from about four inches to about six and one-half inches in width.
28. The apparatus as set forth in claim 20, wherein said caging structure comprises a downwardly extending flange.
29. The apparatus as set forth in claim 28, wherein in said downwardly extending flange protrudes about one and one-quarter inches (1.25 inches) below said roller.
30. The apparatus as set forth in claim 28, wherein said downwardly protruding flange comprises a portion of said roller mount.
31. The apparatus as set forth in claim 8, further comprising:
- (a) a plurality of fasteners having shaft portions; and
- (b) wherein said first and said second roller mounts each comprise an upper flange portion, each upper flange portion comprising a plurality of fastener through apertures, wherein each fastener through aperture is defined by an aperture edge wall portion;
- (c) wherein support base comprises a planar sheet having opposing first and second marginal portions sized and shaped for abutting mating engagement with a companion upper flange portion of said first and said second roller mounts, and wherein each of said first and second marginal portions comprise a plurality of base through apertures, and wherein each base through aperture is defined by a base through aperture edge wall portion;
- (d) and wherein said shaft portions of said fasteners are sized and shaped for fitting through one of said fastener through apertures in said upper flange portion and through an axially aligned base through aperture, to secure said base and said first roller mount each toward the other, and to secure said base and said second roller mount each toward the other.
32. The apparatus as set forth in claim 31, wherein at least some of said fasteners comprise bolts and nuts sized and shaped for complementary tightenable engagement.
33. The apparatus as set forth in claim 31, wherein ten through apertures are provided in said support base.
34. The apparatus as set forth in claim 33, further comprising an cargo stop, said cargo stop mounted on said support base and oriented in a direction substantially parallel to said rollers.
35. A method for carriage of an elongated workpiece having first and second ends, comprising:
- (a) providing spaced apart, substantially parallel first and second elongated beams;
- (b) providing a first carriage dolly and a second carriage dolly for each one of said first and second elongated beams, each carriage dolly comprising a frame, a pair of rollers, and a support surface, said carriage dolly adapted for caged engagement with and rolling movement along said elongated beam;
- (c) setting a first end of said elongated workpiece on said first carriage dolly;
- (d) setting a second end of said elongated workpiece on said second carriage dolly;
- (e) moving said elongated workpiece, said first carriage dolly, and said second carriage dolly horizontally with respect to said first and said second elongated beams;
- (f) removing said first carriage dolly and said second carriage dolly from below said elongated workpiece;
- (g) tilting said elongated workpiece to a substantially vertical position.
36. The method as set forth in claim 35, further comprising providing a towing handle having, at the upper reaches thereof, a first linking member, and wherein at least one of said carriage dollies further comprises at least one downwardly protruding second linking member, and wherein said first and said second linking member are sized and shaped for complementary mating engagement, so that said at least one carriage dolly can be pulled by tugging on said towing handle.
37. The method as set forth in claim 36, wherein said first linking member comprises an eyebolt.
38. The method as set forth in claim 36, wherein said second linking member comprises a hook, said hook sized and shaped to engage said eyebolt.
39. The method as set forth in claim 35, wherein the step of loading said elongated workpiece on said first and said second carriage dollies comprises loading the elongated workpiece in an orientation normal to the direction of said elongated substantially parallel beams.
40. The method as set forth in claim 35, wherein said first and said second carriage dolly each comprises first and second flanged stops, said first and said second flanged stops on said first and said second carry dolly adapted to space said first and said second carriage dolly in an effectively centered position over said first and said second elongated beam, respectively.
41. The apparatus as set forth in claim 8, wherein said base has a thickness of from about one-eighty (⅛) inch to about three eighths (⅜) of an inch.
42. The apparatus as set forth in claim 8, wherein said first and said second roller are mounted in a spaced apart relationship from said reverse side of said base, and wherein said rollers have an axis of rotation spaced apart about one (1) inch from said reverse side of said base.
Type: Application
Filed: Nov 28, 2003
Publication Date: Jun 2, 2005
Inventor: Harv Lillegard (Montesano, WA)
Application Number: 10/724,306