Differentially-expressed conifer cDNAs, and their use in improving somatic embryogenesis

-

The invention relates to a method for staging embryos of plants. In particular, this invention relates to a method for creating a relational database by determining transcript levels of sets of genes expressed at predetermined stages in embryo development. This approach creates a method by which embryos of unknown stage development can be determined by comparisons between expression levels of those embryos to the expression levels found in the database. This approach further allows rapid identification of transcripts in an embryo to be staged by the utilization of probes corresponding to cDNAs comprising the database. Additionally, this invention relates to a method for selecting advantageous plant clones for future propagation. Specifically, this method relates to an approach to link the biochemical condition of an embryo to current culture conditions and thus provides a method for enhancing conditions to produce embryos with a desired biochemical state.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATIONS

This patent application claims benefit of priority of provisional application U.S. Ser. No. 60/239,250, filed Oct. 11, 2000, and claims benefit of priority of provisional application U.S. Ser. No. 60/260,882, filed Jan. 12, 2001.

FIELD OF THE INVENTION

The present invention relates to a relational database of cDNA molecules, including those corresponding to Loblolly Pine Major Intrinsic Protein (MIP), which are differentially expressed during plant embryogenesis. The present invention further relates to the use of DNA arrays for evaluating gene expression in somatic and zygotic embryos. The invention encompasses related nucleic acids, proteins, antigens, and antibodies derived from these cDNAs as well as the use of such molecules for the staging, characterization, and manipulation of plant embryogenesis, in particular conifer embryogenesis. The cDNAs and related nucleic acids, proteins, antigens, and antibodies derived from these cDNAs are useful in the design, selection, and cultivation of improved crops, specifically including coniferous trees, which provide raw materials for paper and wood products.

BACKGROUND OF THE INVENTION

The world demand for paper is expected to increase nearly 50% by the year 2010 (McNutt and Rennel, Pulp Paper Intern 39: 48 (1997)). The United States' forest products industry faces a great challenge in order to keep pace with the growing demand for paper. This challenge is made greater by the decreasing availability of a forest land-base, resulting from environmental restrictions and urban growth, from which to harvest timber resources. Additionally, valuable wood resources are lost to the environmental stresses and biotic diseases. Consequently, the push to secure a renewable and sustainable source of raw material for paper and other wood related products has become an important priority for the forest products industry.

Current forestry related research and development is focused on creating sustainable fiber farms or tree plantations. Farming trees with elite germplasms will increase growth rates and yields of wood per acre. However, creating improved tree stock requires the ability to identify and generate genetically superior trees and a way to propagate such superior trees without diluting their genetic quotient.

A. Breeding and Selection

Addressing the need to propagate genetically superior trees without genetic diminution demands full research attention. Traditional methods of tree propagation relied on selected breeding programs to achieve genetic gain, i.e., the development of a strain, sub-strain, or line having any heritable and economically valuable characteristic or combination of characteristics not found in the parents. Based on the results of progeny tests, superior maternal trees are selected and used in “seed orchards” for mass production of genetically improved seed. The genetic gain in such an open-pollinated sexual propagation strategy is, however, limited by the breeder's inability to control the paternal parent. Additional gains can also be achieved by control-pollination of the maternal tree with pollen from individual trees whose progeny have demonstrated superior growth characteristics. Nevertheless, even under controlled conditions where both parents of each seed are the same, sexual propagation results in a “family” of seeds, i.e., siblings, comprised of many different genetic combinations. As not all genotype combinations are favorable, the genetic gain in any particular progeny is frequently offset and obscured by the genetic variation among sibling seeds and those seedlings retaining undesirable or previously masked pre-cross traits.

In addition to inherent genetic limitations of a traditional breeding programs, large-scale production of control pollinated seeds is also expensive. Consequently, economic and biological limitations of large-scale seed production has lead the industry to turn towards methods of asexual reproduction, such as grafting, vegetative propagation and micropropagation, as more viable alternatives.

B. Asexual (Clonal) Propagation

Asexual propagation permits the application of very high selection intensity, resulting in the propagation of only those progeny showing a high genetic gain potential. These highly desirable progeny can have unique genetic combinations that result in superior growth and performance characteristics. Thus, with asexual propagation it is possible to genetically select individuals while avoiding a concomitant reduction of genetic gain due to intra-familial variation.

Asexual propagation of trees can be accomplished currently by grafting, vegetative propagation, and micropropagation. Grafting, widely used to propagate select individuals in limited quantities for seed orchard establishment, is not applicable to large-scale production for reforestation. Vegetative propagation, achieved by the rooting of cuttings, and micropropagation by somatic embryogenesis, currently hold the most potential for reforestation of conifers. Although vegetative propagation by rooted cuttings can be achieved in many coniferous species, large-scale production via this method is extremely costly due to difficulties in automating and mechanizing the process, not to mention the need for tremendous quantities of stock tissue. This propagation method is still further limited by the fact that the rooting potential of stock plants decrease with time, making it difficult to serially propagate from select genotypes over extended periods of time.

Micropropagation is the most promising method of asexual propagation for mass plantings. This process involves the production of somatic embryos in vitro from minute pieces of plant tissue or individual cells. The embryos are referred to as somatic because they are derived from the somatic (vegetative) tissue, rather than from the sexual process. Both vegetative propagation and micropropagation have the potential to capture all genetic gain of highly desirable genotypes. However, unlike conventional vegetative propagation methods, somatic embryogenesis is amenable to automation and mechanization, making it highly desirable for large-scale production of planting stock for reforestation. Moreover, somatic embryogenesis is particularly amenable to high intensity selection of a large number of clones. These advantages are compounded by the ability to safely preserve somatic embryogenic cultures in liquid nitrogen for long-term storage. Consequently, long-term cryogenic preservation offers immense advantages over other vegetative propagation systems that attempt to maintain the juvenility of stock plants. Techniques for somatic embryogenesis in a wide variety of plant species are well known in the art; exemplary methods for performing somatic embryogenesis in conifers are taught in U.S. Pat. Nos.: 5,036,007; 5,236,841; 5,294,549; 5,413,930; 5,491,090; 5,506,136; 5,563,061; 5,677,185; 5,731,203; 5,731,204; and 5, 856,191, herein incorporated by reference in their entirety.

Thus, somatic embryogenesis has great potential for clonal production of conifer embryos to meet the increased demands of the pulp and paper industry. Assessment of embryo quality, however, needs improvement. The process of creating better tree stock begins with understanding the process of tree development from embryogenesis through full maturation.

In general, plant tissue culture is the broad science of growing plant tissues on or in a nutrient medium containing minerals, sugars, vitamins and plant hormones. By adjusting the composition of the media, cultured tissues can be induced to grow or differentiate into specific cell types or organs. “Somatic embryogenesis” is a type of plant tissue culture where a piece of a donor plant is excised, cultured and induced to form multiple embryos. An embryo is a discrete mass of cells with a well-defined structure that is capable of growing into a whole plant.

The methods generally in use for somatic embryogenesis today involve several steps. Prior to the tissue culture process, a suitable “explant” is harvested. A typical explant in conifer somatic embryogenesis is the “megagametophyte”, a haploid nutritive tissue of the conifer seed, which is extracted from the ovule of a pollinated female cone. This ovule contains single or multiple zygotic seed embryos. In the seeds of many coniferous species, one or more genetically unique embryos naturally undergo a process called cleavage polyembryony, where a zygotic embryo grows and divides to form a small clones of embryos.

The first step in somatic embryogenesis is the initiation step. The explant is placed on a suitable media. When the explant is an ovule, a process called extrusion occurs. Extrusion involves the emergence or expulsion of a zygotic embryo or multiple embryos and embryogenic tissue out of the megagametophyte. If culture conditions are suitable, initiation proceeds and the extruded embryo or embryos undergo the process of cleavage polyembryony. This results in the formation of early stage somatic embryos in a glossy, mucilaginous mass.

After embryogenic cultures are initiated, the somatic embryos are transferred to a second medium with an appropriate composition of plant hormones and other factors to induce the somatic embryos to multiply. In the multiplication stage, cultures can double up to 2-6 times in one week. Once large numbers of embryos are obtained in the multiplication stage, the embryos are moved to a development and maturation medium. Here, the correct balance of plant hormones and other factors will induce the early-stage embryos to mature into late stage embryos. Following the maturation and development stage, embryos are germinated to form small seedlings. These seedlings are then acclimated for survival outside of the culture vessel. After acclimation, the seedlings are ready for planting.

The relative ability to propagate plants by somatic embryogenesis can vary greatly between species. Among conifers, for example, spruce (Picea) species and Douglas fir are easily propagated, while Pinus species are much more difficult. Many Pinus species, including Loblolly pine (Pinus taeda), do not readily initiate embryonic cultures. Typical initiation frequencies between 1% and 12% are reported for various Pinus species (Becwar et al., For. Sci. p1-18 (1988), Jain et al., Plant Sci. 65:233-241 (1989), Becwar et al., Can. J. For. Res. 20:810 (1990), Li and Huang, J. Tissue Cult. Assoc. 32:129 (1996)). Laine and David, (Plant Sci. 69:215 (1990)), however, were able to obtain high frequencies of initiation (up to 59%) in Pinus caibaea, suggesting that not all Pinus species are recalcitrant. Also, one earlier report described initiation frequencies of 54% in White pine (Pinus strobus). Finer et al., Plant Cell Rep. 8:203 (1989). However, other workers were not able to duplicate this success. Michler et al., Plant Sci. 77:111 (1991). The results in the literature demonstrate the recalcitrance of Pinus species, especially Loblolly pine, in regeneration by somatic embryogenesis.

Nevertheless, once this process is understood from the standpoint of developmental genetics, breeders will then have the appropriate tools to monitor, intervene, and improve both the regeneration frequency and the overall quality of tree stock through genetic engineering. For example, both environmental requirements and responsiveness of a developing embryo change as the embryo passes various developmental milestones. Consequently, accurate and timely knowledge of the developmental stage of an embryonic culture would allow the skilled practitioner to beneficially adjust the growth media components and other environmental factors to achieve optimal embryo survival, growth, and maturation. In addition, an understanding of developmentally regulated genes would allow for early selection of advantageous clones and provide tools for developmentally regulated transgenic expression systems.

Currently, a reasonable determination of the precise developmental stage of an embryo requires a practiced, physical familiarity with the morphological appearance of embryos at different stages, which is further complicated by the presence of morphological variations between species. Consequently, visual determination is performed best by experts in the field. Thus, there is a need in the art for a staging method which can be reliably practiced by the ordinary practitioner. The current invention will allow one to stage embryos based on a relational database system profiling gene expression patterns instead of physical morphological differences, thereby permitting one less skilled in the art of visual staging to biologically determine the stages of embryogenesis.

The traditional morphological staging method provides only a crude indication of the underlying biochemical condition or state of an embryo. This level of information is insufficient for refining culture conditions, including media formulations, or for selecting potentially advantageous embryo clones for further development. Thus, there is a need in the art for a more sensitive staging method that precisely defines the physiological age, health, growth requirements, and potential fitness of a particular embryo. The current invention will allow definitive staging significantly beyond that currently practiced in the art, and provides a detailed analysis of the biochemical state and potential fitness of an embryo by comparison to developed relational database profiles.

Visual staging methods depend on morphological markers to assign a numerical stage of 1-9 to an embryo. Nevertheless, it is well accepted that visually undetectable developmental changes occur in an embryo after it reaches stage 9. The current invention is particularly useful in providing means for monitoring and evaluating the developmental state of these older embryos, as genetic responses occur and are detectable up to and through an adult tree's life.

There further exists in the art a need for information regarding the proteins, genes, and gene expression patterns in plant embryo development, as well as a more thorough understanding of how this information relates to the physiology, developmental potential, and genetic quotient of a plant embryo. The relational database system provides a platform for which to monitor individual gene expression levels during embryo development while directly correlating expression with, for example, environmental conditions, age, and embryo fitness, as well as the protein identification achieved by BLAST searches of publicly available databases (i.e., GenBank) for desirable genes. Accordingly, the present invention therefore provides the additional ability to correlate the direct, global gene expression response within the embryo system to a typically non-expressing gene driven by a stage-specific promoter.

SUMMARY OF THE INVENTION

The present invention addresses these needs by providing in a relational database format nucleic acid and protein sequences that are differentially expressed during various stages of plant embryogenesis. The invention encompasses a set of isolated nucleic acid molecules comprising the DNA sequence of any one of SEQ ID NOS: 1-334 and nucleic acid molecules related or complementary to any one of SEQ ID NOS: 1-334. (See Table I) As such, the invention includes both single-stranded and double-stranded RNA and DNA nucleic acids, including variants thereof. The nucleic acids of the invention can be used as an expression template in the form of DNA arrays, including for example, gene arrays, DNA chips, and dot array Southerns, for which to compare and evaluate expression in test samples. (See Table II) The nucleic acids of the invention can be further used as probes to detect the presence or level of both single-stranded and double-stranded RNA and DNA encoding variants of polypeptides or fragments of polypeptides encompassed by the invention. The nucleic acids of the invention can be further used as promoters for the expression of sense and antisense molecules at specific stages of embryo development. Data acquired through the use of the present invention can in turn be provided to the relational database for further development.

Isolated nucleic acid molecules that hybridize to a denatured, double-stranded DNA comprising the DNA sequence of any one of SEQ ID NOS: 1-334 under conditions of moderate or high stringency are also encompassed by the invention. The invention further encompasses synthetic and naturally-occurring variants of the nucleic acids described in SEQ ID NOS: 1-334, for example, isolated nucleic acid molecules derived by in vitro mutagenesis from SEQ ID NOS: 1-334. In vitro mutagenesis would include numerous techniques known in the art including, but not limited to, site-directed mutagenesis, random mutagenesis, and in vitro nucleic acid synthesis.

The invention also encompasses related molecules (variants) including isolated nucleic acid molecules degenerate from SEQ ID NOS: 1-334 as a result of the genetic code, for example, naturally-occurring or synthetic allelic variants of the genes encoding SEQ ID NOS: 1-334. Such related molecules also encompass both smaller and larger nucleic acids that contain sufficient sequence to support hybridization to any of SEQ ID NOS: 1-334 under conditions of moderate or high stringency. Consequently, recombinant vectors, including those that direct the expression of these nucleic acid molecules and host cells transformed or transfected with these vectors are herein defined as variants and are encompassed by the invention.

Another embodiment of this invention is the production of transgenic vectors and transgenic plants comprising vectors or other nucleic acids comprising any one of SEQ ID NOS: 1-334 and related molecules. Particularly preferred are those capable of expressing polypeptides or peptides encoded by any of SEQ ID NOS: 1-327. In a preferred embodiment, the transgene comprises SEQ ID NO: 327, or a variant thereof.

SEQ ID NO: 327 encodes a protein which corresponds to a novel Loblolly pine homolog of the plant Major Intrinsic Protein (MIP) family. MIPs comprise a large family of related proteins that function as membrane channels for the transport of water and possibly ions across cellular membranes. Henceforth, the encoded protein of SEQ ID NO: 327 may be referred to as Loblolly MIP. Variants, including naturally-occurring and artifactually-programmed allelic variants, vectors, and other nucleic acids which hybridize to SEQ ID NO: 327 under conditions of moderate or high stringency are encompassed by the invention. Also encompassed are plant cells, seeds, embryos and trees, transgenic for loblolly pine MIP, and variants thereof.

The invention also encompasses isolated polypeptides, or fragments thereof, encoded by any one of the nucleic acid molecules of SEQ ID NOS: 1-327, including variants thereof. The invention further encompasses the use of these peptide sequences as markers for staging, monitoring, and selecting embryos and embryo cultures. The invention also encompasses methods for the production of these polypeptides or fragments thereof including culturing a host cell under conditions promoting expression and recovering the polypeptide or peptide from the culture medium. In particular, the expression of polypeptides or peptides encoded by SEQ ID NOS: 1-327 in viral vectors, bacteria, yeast, plant, and animal cells is encompassed by the invention. Isolated polyclonal or monoclonal antibodies that bind to peptides encoded by SEQ ID NOS: 1-327 are also encompassed by the invention.

Further encompassed by this invention are methods for using the nucleic acid molecules of any one of SEQ ID NOS: 1-327 to obtain full length cDNA and genomic sequences of the corresponding genes, including cognate, homologous, or otherwise related genetic sequences, which hybridize to any of SEQ ID NOS: 1-327 under conditions of moderate or high stringency. Also provided by this invention are oligonucleotides derived from any one of SEQ ID NOS: 1-334 that can be used as probes and/or as primers in PCR, RT-PCR, and other assays to detect the presence or level of the nucleic acids of SEQ ID NOS: 1-334 and related molecules.

The primers and other probes of the invention may be used to monitor and characterize the development of plant embryos, in particular, pine tree embryos. Characterization of embryonic gene expression provides means for correlating gene expression with current and potential plant phenotypes. Consequently, the present invention encompasses means for monitoring and adjusting growth conditions (see FIG. 6), as well as means for selecting genetically superior embryonic clones for further propagation and expansion (see FIG. 8). Thus, the present invention encompasses the use of DNA or RNA probes derived from the nucleic acid molecules of SEQ ID NOS: 1-334 in any form, e.g., in DNA arrays, and antibodies raised against polypeptides or peptide fragments encoded by SEQ ID NOS: 1-327, to determine relative or absolute levels of expression of the genes or proteins encoded by SEQ ID NOS: 1-327. In addition, these nucleic acid and antibody probes may be used for staging, monitoring, characterizing, or selecting plant embryos or embryo cultures, particularly pine tree embryos.

The relational database of the present invention allows expression information pertaining to embryo stages to be viewed as sequence data generated in accordance with the present invention. The invention includes a database for storing a plurality of sequence records for which to correlate embryo stages to sequence records. The method further involves providing an interface which allows a user to select one or more expression categories contained within the database.

The relational database is designed to include separate parts or cells for information storage. One cell or part may contain a gene expression database which contains nucleic acid molecules of SEQ ID NOS: 1-327. Other cells or parts may contain descriptive information pertaining to each nucleic acid molecules of SEQ ID NOS: 1-327, additional sequence data related to the gene expression database, protein encoded by nucleic acids disclosed herein, similarity values to known proteins of other systems, and to conditions under which expression data was obtained.

The database system described in the present invention will allow identification or selection of particular genes of interest for further use with DNA arrays. Identification or selection of particular genes may include, for example, those related to patterns of expression, those identified with homology to known genes from other studies, and those sequences considered novel.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 depicts differential display of loblolly pine zygotic and somatic embryos at different stages of development.

FIG. 2 displays embryo gene expression observed by high-density array Southern hybridization.

FIG. 3 provides a general schematic for gene regulation studies arising from the cDNA cloning of genes expressed in embryos.

FIG. 4 depicts graphical representation of hybridization of ‘dehydrin’ and LPZ216 cDNA probes to total RNA isolated from zygotic embryos of loblolly pine.

FIG. 5 displays ABA concentration of loblolly pine embryos.

FIG. 6 shows schematic of gene study for improved somatic embryogenesis.

FIG. 7 shows detection of gene expression by high-density array Southern hybridization for loblolly pine genotype 333 after 12 weeks on two maturation media.

FIG. 8 depicts the application of embryogenic gene expression studies.

FIG. 9 displays slot blots and expression levels for three embryogenesis-related genes.

FIG. 10 depicts clone LPS-097 sequence (LP2-3 differential display fragment.)

FIG. 11 displays a northern blot for the LP2-3 gene during stages 1-3.

FIG. 12 displays a slot blot of total RNA from somatic embryo tissue probed with an LP2-3-specific probe.

FIG. 13 displays a slot blot of total RNA from zygotic embryo tissue probed with an LP2-3-specific probe.

FIG. 14 depicts the quantified expression of early zygotic embryos compared to early somatic embryos.

DETAILED DESCRIPTION OF THE INVENTION

The three hundred and twenty-seven differentially expressed cDNAs isolated from plant specimens of known developmental ages are disclosed in SEQ ID NOS: 1-327. The seven stage-specific promoters isolated from plant specimens are disclosed in SEQ ID NOS: 328-334. The discovery of these cDNAs and promoters enables the design, isolation, and construction of related nucleic acids, proteins, antigens, antibodies other heterologous genes. Both the cDNAs and promoters facilitate the staging, characterization, and manipulation of plant embyrogenesis, in particular, conifer embryogenesis. These molecules, and related nucleic acids, peptides, proteins, antigens, and antibodies are particularly useful when compiled into a relational database for the monitoring, design, selection, and cultivation of improved crop plants.

The cDNAs of SEQ ID NOS: 1-327, in addition to the promoters of SEQ ID NOS: 328-334, were originally derived from Pinus taeda embryos, commonly known as the Loblolly Pine. Nevertheless, it is understood that the invention is applicable to and encompasses all plants, including all dicotyledonous plants, including all conifers, including all species of Pinus, Picea, and Pseudotsuga. Exemplary conifers may include Picea abies, and Psedotsuga menziesii, and Pinus taeda.

Nucleic Acid Molecules

In a particular embodiment, the invention relates to certain isolated nucleotide sequences including those that are substantially free from contaminating endogenous material. The terms “nucleic acid” or “nucleic acid molecule” refer to a deoxyribonucleotide or ribonucleotide polymer in either single-or double-stranded form, and unless otherwise limited, would encompass known analogs of natural nucleotides that can function in a similar manner as naturally occurring nucleotides. A “nucleotide sequence” also refers to a polynucleotide molecule or oligonucleotide molecule in the form of a separate fragment or as a component of a larger nucleic acid. The nucleotide sequence or molecule may also be referred to as a “nucleotide probe.” The nucleic acid molecules of the invention are derived from DNA or RNA isolated at least once in substantially pure form and in a quantity or concentration enabling identification, manipulation, and recovery of its component nucleotide sequence by standard biochemical methods. Examples of such methods, including methods for PCR protocols that may be used herein, are disclosed in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y. (1989), Current Protocols in Molecular Biology edited by F. A. Ausubel et al., John Wiley and Sons, inc. (1987), and Innis, M. et al., eds., PCR Protocols: A Guide to Methods and Applications, Academic Press (1990), each of which are herein incorporated by reference in their entirety.

As used herein a “nucleotide probe” is defined as an oligonucleotide capable of binding to a target nucleic acid of complementary sequence through one or more types of chemical bonds, through complementary base pairing, or through hydrogen bond formation. As described above, the oligonucleotide probe may include natural (ie. A, G, C, or T) or modified bases (7-deazaguanosine, inosine, etc.). In addition, bases in a oligonucleotide probe may be joined by a linkage other than a phosphodiester bond, so long as it does not prevent hybridization. Thus, oligonucleotide probes may have constituent bases joined by peptide bonds rather than phosphodiester linkages.

A “target nucleic acid” herein refers to a nucleic acid to which the nucleotide probe or molecule can specifically hybridize. The probe is designed to determine the presence or absence of the target nucleic acid, and the amount of target nucleic acid. The target nucleic acid has a sequence that is complementary to the nucleic acid sequence of the corresponding probe directed to the target. As recognized by one of skill in the art, the probe may also contain additional nucleic acids or other moieties, such as labels, which may not specifically hybridize to the target. The term target nucleic acid may refer to the specific nucleotide sequence of a larger nucleic acid to which the probe is directed or to the overall sequence (e.g., gene or mRNA) whose expression level it is desired to detect. One skilled in the art will recognize the full utility under various conditions.

As described herein, the nucleic acid molecules of the invention include DNA in both single-stranded and double-stranded form, as well as the RNA complement thereof. DNA includes, for example, cDNA, genomic DNA, chemically synthesized DNA, DNA amplified by PCR, and combinations thereof. Genomic DNA, including translated, non-translated and control regions, may be isolated by conventional techniques, e.g., using any one of the cDNAs of SEQ ID NO: 1 through SEQ ID NO: 327, or suitable fragments thereof, as a probe, to identify a piece of genomic DNA which can then be cloned using methods commonly known in the art. In general, nucleic acid molecules within the scope of the invention include sequences that hybridize to sequences of SEQ ID NOS: 1-334 under hybridization and wash conditions of 5°, 10°, 15°, 20°, 25°, or 30° below the melting temperature of the DNA duplex of sequences of SEQ ID NOS: 1-334, including any range of conditions subsumed within these ranges.

DNA Arrays

In a further embodiment, DNA arrays are used to identify hybridizing sequences from test samples. The term “DNA array” refers to “gene arrays,” “DNA chips,” “dot array Southerns,” etc. One of skill in the art will appreciate that an enormous number of array designs are suitable for the practice of this invention. The DNA array will typically include one or a multiplicity of nucleic acid molecules derived from SEQ ID NO: 1 through SEQ ID NO: 327 that specifically hybridize to the nucleic acid expression of which is to be detected. In addition, the array may include one or more control probes to monitor the expression system. Control probes refer to known expression products present at each stage of expression, e.g., ribosomal gene products or the transcripts of other housekeeping genes. The organization of the DNA array will be known to facilitate interpretation of results. Examples in the art describing the uses and composition of DNA arrays can be found in U.S. Pat. Nos.: 5,700,637, 5,837,832, 5,843,655, 5,874,219, 6,040,138, 6,045,996, and are incorporated by reference.

Molecules That Hybridize to Identified Sequences

Thus, in a particular embodiment, this invention provides an isolated nucleic acid molecule selected from the group consisting of:

  • (1) a DNA sequence comprising any one of the sequences presented in SEQ ID NO: 1 through SEQ ID NO: 334;
  • (2) an isolated nucleic acid molecule that hybridizes to either strand of a denatured, double-stranded DNA comprising the nucleic acid sequence of (a) under conditions of moderate stringency; and
  • (3) an isolated nucleic acid molecule that hybridizes to either strand of a denatured, double-stranded DNA comprising the nucleic acid sequence of (a) under conditions of high stringency.

As used herein, stringency conditions in nucleic acid hybridizations can be readily determined by those having ordinary skill in the art based on, for example, the length and composition of the nucleic acid. In one embodiment, moderate stringency is herein defined as a nucleic acid having 10, 11, 12, 13, 14, 15, 16, or 17, contiguous nucleotides identical to any of the sequences of SEQ ID NOS: 1-334, or a complement thereof. Similarly, high stringency is hereby defined as a nucleic acid having 18, 19, 20, 21, 22, or more contiguous identical nucleotides, or a longer nucleic acid having at least 80, 85, 90, 95, or 99 percent identity with any of the sequences of SEQ ID NOS: 1-334; for sequences of at least 50, 100, 150, 200, or 250 nucleotides, high stringency may comprise an overall identity of at least 60, 65, 70 or 75 percent.

Generally, nucleic acid hybridization simply involves providing a denatured nucleotide molecule or probe and target nucleic acid under conditions where the probe and its complementary target can form stable hybrid duplexes through complementary base pairing. The nucleic acids that do not substantially form hybrid duplexes are then washed away leaving the hybridized nucleic acids to be detected, typically through detection of an attached detectable label. It is further generally recognized that nucleic acids are denatured by increasing the temperature or decreasing the salt concentration of the buffer containing the nucleic acids. Under lower stringency conditions (e.g., low temperature and/or high salt) hybrid duplexes (e.g., DNA:DNA, RNA:RNA, or RNA:DNA) will form even where the annealed sequences are not perfectly complementary. Thus specificity of hybridization is reduced at lower stringency. Conversely, at higher stringency (e.g., higher temperature or lower salt) successful hybridization requires fewer mismatches. One of skill in the art will appreciate that hybridization conditions may be selected to provide any degree of stringency.

As used herein, the percent identity between an amino acid sequence encoded by any of SEQ ID NOS: 1-334 and a potential hybridizing variant can be determined, for example, by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. (Nucl. Acids Res. 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG). The GAP program utilizes the alignment method of Needleman and Wunsch (J. Mol. Biol, 48:443, 1970), as revised by Smith and Waterman (Adv. Appl. Math 2:482, 1981). The preferred default parameters for the GAP program include: (1) a unary comparison matrix (containing a value of 1 for identities and 0 for non-identities) for nucleotides, and the weighted comparison matrix of Gribskov and Burgess (Nuci. Acids Res. 14:6745, 1986), as described by Schwartz and Dayhoff (eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 353-358, 1979); (2) a penalty of 3.0 for each gap and an additional 0.10 penalty for each symbol in each gap; and (3) no penalty for end gaps.

Alternatively, basic protocols for empirically determining hybridization stringency are set forth in section 2.10 of Current Protocols in Molecular Biology edited by F. A. Ausubel et al., John Wiley and Sons, Inc. (1987). Stringency conditions can be determined readily by the skilled artisan. An example of moderate stringency hybridization conditions would be hybridization in 5×SSC, 5× Denhardt's Solution, 50% (w/v) formamide, and 1% SDS at 42° C. with washing conditions of 0.2×SSC and 0.1% SDS at 42° C. An example of high stringency conditions can be defined as hybridization conditions as above, and with washing at approximately 68° C., in 0.1×SSC, and 0.1% SDS. The skilled artisan will recognize that the temperature and wash solution salt concentration can be adjusted as necessary according to factors such as the length of the probe.

Due to the degeneracy of the genetic code wherein more than one codon can encode the same amino acid, multiple DNA sequences can code for the same polypeptide. Such variant DNA sequences can result from genetic drift or artificial manipulation (e.g., occurring during PCR amplification or as the product of deliberate mutagenesis of a native sequence). The present invention thus encompasses any nucleic acid capable of encoding a protein derived from SEQ ID NOS: 1-327, or variants thereof.

Deliberate mutagenesis of a native sequence can be carried out using numerous techniques well known in the art. For example, oligonucleotide-directed site-specific mutagenesis procedures can be employed, particularly where it is desired to mutate a gene such that predetermined restriction nucleotides or codons are altered by substitution, deletion or insertion. Exemplary methods of making such alterations are disclosed by Walder et al. (Gene 42:133, 1986); Bauer et al. (Gene 37:73, 1985); Craik (BioTechniques, Jan. 12-19, 1985); Smith et al. (Genetic Engineering: Principles and Methods, Plenum Press, 1981); Kunkel (Proc. Natl. Acad. Sci. USA 82:488, 1985); Kunkel et al. (Methods in Enzymol. 154:367, 1987); and U.S. Pat. Nos. 4,518,584 and 4,737,462, all of which are incorporated by reference.

Thus, the invention further provides an isolated nucleic acid molecule selected from the group comprising of (1), (2), and (3) above and further consisting of:

  • (4) an isolated nucleic acid molecule degenerate from SEQ ID NOS: 1-334 as a result of the genetic code; and
  • (5) an isolated nucleic acid molecule selected from the group consisting of an allelic variants and species homologs of SEQ ID NOS: 1-334.
    Obtaining Full Length cDNAs

The cDNAs isolated and cloned through the differential display procedure will often only represent a partial sequence (generally the 3′ end) of the mRNA from which it was derived due to the nature of the arbitrary primer used in the differential display PCR reaction. Consequently, the cDNA sequences of SEQ ID NOS: 1-327 provide powerful tools for obtaining the sequences of full-length cDNAs. This can be accomplished by using a partial cDNA as a probe to identify and isolate the full length cDNA from a population of full length cDNAs or from a full length cDNA library. As is well known in the art, similar procedures can be used to identify corresponding genomic DNA sequences.

Alternatively, one can obtain the 5′ sequence of a partial cDNA by performing Rapid Amplification of cDNA Ends (RACE) procedures such as those disclosed in Frohman, Methods in Enzymology, 218:340-356 (1993) and Bertling et al., PCR Methods and Applications 3:95-99 (1993) which are hereby incorporated by reference. For example, Clonetech Laboratories, Inc. (Palo Alto, Calif.) offers a SMAR™ cDNA product line that allows one to generate high quality full length cDNAs and cDNA libraries. SMART™ technology can also be used to perform RACE. One skilled in the art will readily recognize that there are other equivalent products and procedures for obtaining full length cDNAs. Full length cDNAs may be sequenced and their sequences compared to sequences in public databases to assess their identities and/or homologies to other known sequences.

Cloned full length cDNAs can be used in the construction of expression vectors for the production and purification of pine tree polypeptides which contain the pine tree peptides encoded by the cDNAs of any one of SEQ ID NOS: 1-327.

Oligonucleotide Primers for PCR Assays

In another embodiment, the present invention encompasses oligonucleotide fragments derived from any one of SEQ ID NO: 1 through SEQ ID NO: 327 or from the reverse complement sequence of any one of SEQ ID NO: 1 through SEQ ID NO: 327. Such oligonucleotides would be useful as primers in the performance of RT-PCR assays to detect, or even quantify, pine embryo stage-specific transcripts. Such oligonucleotide primers will generally comprise from 10 to 25 nucleotides substantially complementary to the ends of the target sequence and may contain additional non-complementary nucleotides, for example, nucleotides that generate a restriction endonuclease site or cloning junction. Programs useful in selecting PCR primers may be used to design the oligonucleotides of this invention, but use of such programs is not necessary. By way of example, the Wisconsin Package™ software available from the Genetic Computer Group (Madison, Wis.) includes a program called Prime that can aid in selecting primers from a given template sequence. Protocols for the design and optimization of PCR reactions are commonly known in the art and are described in Saiki et al., Science 239:487 (1988); Recombinant DNA Methodology, Wu et al., eds., Academic Press, Inc., San Diego (1989), pp. 189-196; and PCR Protocols: A Guide to Methods and Applications, Innis et al., eds., Academic Press, Inc. (1990).

Antisense Nucleic Acid Molecules

Other useful fragments of the nucleic acids include antisense or sense oligonucleotides comprising a single-stranded nucleic acid sequence (either RNA or DNA) capable of binding to target mRNA (sense) or DNA (antisense) sequences. Antisense or sense oligonucleotides, according to the present invention, comprise a fragment of DNA from any one of SEQ ID NO: 1 through SEQ ID NO: 327. Such a fragment generally comprises at least about 14 nucleotides, preferably from about 14 To about 30 nucleotides. The ability to derive an antisense or a sense oligonucleotide, based upon a cDNA sequence encoding a given protein is described in, for example, Stein and Cohen (Cancer Res. 48:2659, 1988) and van der Krol et al. (Bio/Techniques 6:958, 1988).

Binding of antisense or sense oligonucleotides to target nucleic acid sequences results in the formation of duplexes or other nucleic acid complexes inimical to efficient production of gene products. The antisense oligonucleotides thus may be used to block expression of proteins or the function of RNA. Antisense or sense oligonucleotides further comprise oligonucleotides having modified sugar-phosphodiester backbones (or other sugar linkages, such as those described in WO91/06629) and wherein such sugar linkages are resistant to endogenous nucleases. Such oligonucleotides with resistant sugar linkages are stable in vivo (i.e., capable of resisting enzymatic degradation) but retain sufficient sequence specificity to be able to bind to target nucleotide sequences.

Other examples of sense or antisense oligonucleotides include those oligonucleotides which are covalently linked to organic moieties, such as those described in WO 90/10448, and other moieties that increases affinity of the oligonucleotide for a target nucleic acid sequence, such as poly-(L-lysine). Further still, intercalating agents, such as ellipticine, and alkylating agents or metal complexes may be attached to sense or antisense oligonucleotides. Such modifications may modify binding specificities of the antisense or sense oligonucleotide for the target nucleotide sequence.

Antisense or sense oligonucleotides may be introduced into a cell containing the target nucleic acid sequence by any gene transfer method, including, for example, lipofection, CaPO4-mediated DNA transfection, electroporation, or by using gene transfer vectors such as Epstein-Barr virus or adenovirus.

Sense or antisense oligonucleotides also may be introduced into a cell containing the target nucleotide sequence by formation of a conjugate with a ligand binding molecule, as described in WO 91/04753. Suitable ligand binding molecules include, but are not limited to, cell surface receptors, growth factors, other cytokines, or other ligands that bind to cell surface receptors. In one embodiment, conjugation of the ligand binding molecule does not substantially interfere with the ability of the ligand binding molecule to bind to its corresponding molecule or receptor, or block entry of the sense or antisense oligonucleotide or its conjugated version into the cell.

Alternatively, a sense or an antisense oligonucleotide may be introduced into a cell containing the target nucleic acid sequence by formation of an oligonucleotide-lipid complex, as described in WO 90/10448. The sense or antisense oligonucleotide-lipid complex is preferably dissociated within the cell by an endogenous lipase.

Polypeptides Encoded by Differentially-Expressed cDNAs

The cDNAs of SEQ ID NOS: 1-327 can be translated into amino acid sequences potentially corresponding to portions of developmentally-regulated plant proteins. These amino acid sequences can be identified from sequences listed in Table I, below. The cDNAs encoding these predicted polypeptides are grouped into early, middle, and late transcripts according to the staged embryo population from which they were derived.

(See Table I)

Although the term “peptide” is generally understood to reference synthetic sequences, or fragments of larger proteins, and includes short amino acid sequences of between 2 and 10 amino acids, whereas “polypeptide” refers to larger sequences and full-length proteins, the terms are used interchangeably herein to indicate that the invention applies to peptides and polypeptides of any length and variants thereof. Moreover, the discovery of presumptive open reading frames in SEQ ID NOS: 1-327, and the ability to isolate additional cDNA sequence, enables the construction of expression vectors comprising nucleic acid sequences encoding those polypeptides. The cDNAs of the invention also enable cells transfected or transformed with expression vectors driving the expression of the encoded polypeptides and antibodies reactive with the polypeptides.

In one embodiment, the invention provides for isolated polypeptides, preferably, pine tree polypeptides. As used herein, the term “polypeptides” refers to a genus of polypeptide or peptide fragments that encompass the amino acid sequences identified from Table I, as well as smaller fragments. Consequently, the invention encompasses any polypeptide fragment comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 contiguous amino acids encoded by the cDNAs of any of SEQ ID NOS: 1-327, or comprising at least 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, or 15 contiguous amino acids of any of amino acid sequence derived from Table I.

Alternatively, a polypeptide may be defined in terms of its antigenic relatedness to any peptide encoded by SEQ ID NOS:-1-327. Thus, in one embodiment a polypeptide within the scope of the invention is defined as an amino acid sequence comprising a linear or 3-dimensional epitope shared with any peptide encoded by the cDNAs of SEQ ID NOS: 1-327. Alternatively, a polypeptide within the scope of the invention is recognized by an antibody that specifically recognizes any peptide encoded by SEQ ID NOS: 1-327. Antibodies are defined to be specifically binding if they bind pine tree polypeptides with a Ka of greater than or equal to about 107 M, and preferably greater than or equal to 108 M−1.

A polypeptide “variant” as referred to herein means a polypeptide substantially homologous to a native polypeptide, but which has an amino acid sequence different from that encoded by any of SEQ ID NOS: 1-327 because of one or more deletions, insertions or substitutions. The variant amino acid sequence preferably is at least 80% identical to a native polypeptide amino acid sequence, preferably at least 90%, more preferably, at least 95% identical over at least 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21-25, or 26-30 contiguous amino acids. The percent identity between an amino acid sequence encoded by any of SEQ ID NOS: 1-327 and a potential variant can be determined manually, or, for example, by comparing sequence information using the GAP computer program, version 6.0 described by Devereux et al. (Nucl. Acids Res. 12:387, 1984) and available from the University of Wisconsin Genetics Computer Group (UWGCG). The GAP program, described above, utilizes the alignment method of Needleman and Wunsch (J. Mol. Biol. 48:443,1970), as revised by Smith and Waterman (Adv. Appl. Math 2:482, 1981).

Variants can comprise conservatively substituted sequences, meaning that a given amino acid residue is replaced by a residue having similar physiochemical characteristics. Examples of conservative substitutions include substitution of one aliphatic residue for another, such as lie, Val, Leu, or Ala for one another, or substitutions of one polar residue for another, such as between Lys and Arg; Glu and Asp; or Gin and Asn. See Zubay, Biochemistry, Addison-Wesley Pub. Co., (1983) incorporated by reference in its entirety. The effects of such substitutions can be calculated using substitution score matrices such a PAM-120, PAM-200, and PAM-250 as discussed in Altschul, (J. Mol. Biol. 219:555-65, 1991). Other such conservative substitutions, for example, substitutions of entire regions having similar hydrophobicity characteristics, are well known.

Naturally-occurring peptide variants are also encompassed by the invention. Examples of such variants are proteins that result from alternate mRNA splicing events or from proteolytic cleavage of the polypeptides of Table I. Variations attributable to proteolysis include, for example, differences in the N- or C-termini upon expression in different types of host cells, due to proteolytic removal of one or more terminal amino acids from the polypeptides encoded by the sequences of Table I (generally from 1-5 terminal amino acids).

As stated above, the invention provides recombinant and non-recombinant, isolated and purified polypeptides, preferably pine tree polypeptides. Variants and derivatives of native polypeptides can be obtained by isolating naturally-occurring variants, or the nucleotide sequence of variants, of other plant lines or species, or by artificially programming mutations of nucleotide sequences coding for native pine tree polypeptides. Alterations of the native amino acid sequence can be accomplished by any of a number of conventional methods. Mutations can be introduced at particular loci by synthesizing oligonucleotides containing a mutant sequence, flanked by restriction sites enabling ligation to fragments of the native sequence. Following ligation, the resulting reconstructed sequence encodes an analog having the desired amino acid insertion, substitution, or deletion. Alternatively, oligonucleotide-directed site-specific mutagenesis procedures can be employed to provide an altered gene wherein predetermined codons can be altered by substitution, deletion or insertion. Exemplary methods of making such alterations are discussed supra.

The following sections are examples of the various expression vectors, host cells, and protein purification methods that are known in the art. These examples are provided merely as illustrative and should not be construed as the only means to express and purify the polypeptides and polypeptide variants of the invention.

Expression Vectors and Purified proteins

Recombinant expression vectors containing a nucleic acid sequence encoding the polypeptides of the invention can be prepared using well known methods. In one embodiment, the expression vectors include a cDNA sequence encoding the polypeptide operably linked to suitable transcriptional or translational regulatory nucleotide sequences, such as those derived from a mammalian, microbial, viral, or insect gene. Examples of regulatory sequences include transcriptional promoters, operators, or enhancers, mRNA ribosomal binding sites, and appropriate sequences which control transcription and translation initiation and termination. Nucleotide sequences are “operably linked” when the regulatory sequence functionally relates to the cDNA sequence of the invention. Thus, a promoter nucleotide sequence is operably linked to a cDNA sequence if the promoter nucleotide sequence controls the transcription of the cDNA sequence. The ability to replicate in the desired host cells, usually conferred by an origin of replication, and a selection gene by which transformants are identified can additionally be incorporated into the expression vector.

In addition, sequences encoding appropriate signal peptides that are not naturally associated with the polypeptides of the invention can be incorporated into expression vectors. For example, a DNA sequence for a signal peptide (secretory leader) can be fused in-frame to the pine tree nucleotide sequence so that the polypeptides of the invention is initially translated as a fusion protein comprising the signal peptide. A signal peptide that is functional in the intended host cells enhances extracellular secretion of the expressed polypeptide. The signal peptide can be cleaved from the polypeptide upon secretion from the cell.

Fusions of additional peptide sequences at the amino and carboxyl terminal ends of the polypeptides of the invention can be used to enhance expression of the polypeptides or aid in the purification of the protein. Such peptides include, for example, poly-His or the antigenic identification peptides described in U.S. Pat. No. 5,011,912 and in Hopp et al., (Bio/Technology6:1204, 1988).

Suitable host cells for expression of polypeptides of the invention include prokaryotes, yeast or higher eukaryotic cells. Appropriate cloning and expression vectors for use with bacterial, fungal, yeast, and mammalian cellular hosts are described, for example, in Pouwels et al., Cloning Vectors: A Laboratory Manual, Elsevier, N.Y., (1985). Cell-free translation systems could also be employed to the disclosed polypeptides using RNAs derived from DNA constructs disclosed herein.

Prokaryotic Expression Systems

Prokaryotes include gram negative or gram positive organisms, for example, E. coli or Bacilli. Suitable prokaryotic host cells for transformation include, for example, E. coli, Bacillus subtilis, Salmonella typhimurium, and various other species within the genera Pseudomonas, Streptomyces, and Staphylococcus. In a prokaryotic host cell, such as E. coli, the disclosed polypeptides can include an N-terminal methionine residue to facilitate expression of the recombinant polypeptide in the prokaryotic host cell. The N-terminal methionine can be cleaved from the expressed recombinant polypeptide.

Expression vectors for use in prokaryotic host cells generally comprise one or more phenotypic selectable marker genes. A phenotypic selectable marker gene is, for example, a gene encoding a protein that confers antibiotic resistance or that supplies an autotrophic requirement. Examples of useful expression vectors for prokaryotic host cells include those derived from commercially available plasmids such as the cloning vector pBR322 (ATCC 37017). pBR322 contains genes for ampicillin and tetracycline resistance and thus provides simple means for identifying transformed cells. To construct an expression vector using pBR322, an appropriate promoter and a DNA sequence encoding one or more of the polypeptides of the invention are inserted into the pBR322 vector. Other commercially available vectors include, for example, pKK223-3 (Pharmacia Fine Chemicals, Uppsala, Sweden) and pGEM-1 (Promega Biotec, Madison, Wis., USA). Other commercially available vectors include those that are specifically designed for the expression of proteins; these would include pMAL-p2 and pMAL-c2 vectors that are used for the expression of proteins fused to maltose binding protein (New England Biolabs, Beverly, Mass., USA).

Promoter sequences commonly used for recombinant prokaryotic host cell expression vectors include P-lactamase (penicillinase), lactose promoter system (Chang et al., Nature 275:615, 1978; and Goeddel et al., Nature 281:544, 1979), tryptophan (trp) promoter system (Goeddel et al., Nucl. Acids Res. 8:4057, 1980; and EP-A-36776), and tac promoter (Maniatis, Molecular Cloning: A Laboratory Manual, Cold Spring Harbor Laboratory, p. 412, 1982). A particularly useful prokaryotic host cell expression system employs a phage λ PL promoter and a c1857ts thermolabile repressor sequence. Plasmid vectors available from the American Type Culture Collection (“ATCC”), which incorporate derivatives of the PL promoter, include plasmid pHUB2 (resident in E. Coli strain JMB9 (ATCC 37092)) and pPLc28 (resident in E. coli RR1 (ATCC 53082)).

DNA encoding one or more of the polypeptides of the invention may be cloned in-frame into the multiple cloning site of an ordinary bacterial expression vector. Ideally the vector would contain an inducible promoter upstream of the cloning site, such that addition of an inducer leads to high-level production of the recombinant protein at a time of the investigator's choosing. For some proteins, expression levels may be boosted by incorporation of codons encoding a fusion partner (such as hexahistidine) between the promoter and the gene of interest. The resulting “expression plasmid” may be propagated in a variety of strains of E. coli.

For expression of the recombinant protein, the bacterial cells are propagated in growth medium until reaching a pre-determined optical density. Expression of the recombinant protein is then induced, e.g., by addition of IPTG (isopropyl-b-D-thiogalactopyranoside), which activates expression of proteins from plasmids containing a lac operator/promoter. After induction (typically for 1-4 hours), the cells are harvested by pelleting in a centrifuge, e.g., at 5,000×G for 20 minutes at 4° C.

For recovery of the expressed protein, the pelleted cells may be resuspended in ten volumes of 50 mM Tris-HCl (pH 8)/1 M NaCl and then passed two or three times through a French press. Most highly expressed recombinant proteins forms insoluble aggregates known as inclusion bodies. Inclusion bodies can be purified away from the soluble proteins by pelleting in a centrifuge at 5,000×G for 20 minutes, 4° C. The inclusion body pellet is washed with 50 mM Tris-HCl (pH 8)/1% Triton X-100 and then dissolved in 50 mM Tris-HCl (pH 8)/8 M urea/0.1 M DTT. Any material that cannot be dissolved in 50 mM Tris-HCl (pH 8)/8 M urea/0.1 M DTT may be removed by centrifugation (10,000×G for 20 minutes, 20° C.). The protein of interest will, in most cases, be the most abundant protein in the resulting clarified supernatant. This protein may be “refolded” into the active conformation by dialysis against 50 mM Tris-HCl (pH 8)/5 mM CaCl2/5 mM Zn(OAc)2/1 mM GSSG/0.1 mM GSH. After refolding, purification can be carried out by a variety of chromatographic methods such as ion exchange or gel filtration. In some protocols, initial purification may be carried out before refolding. As an example, hexahistidine-tagged fusion proteins may be partially purified on immobilized Nickel.

While the preceding purification and refolding procedure assumes that the protein is best recovered from inclusion bodies, those skilled in the art of protein purification will appreciate that many recombinant proteins are best purified out of the soluble fraction of cell lysates. In these cases, refolding is often not required, and purification by standard chromatographic methods can be carried out directly.

Yeast Expression Systems

Polypeptides of the invention can also be expressed in yeast host cells, preferably from the Saccharomyces genus (e.g., S. cerevisiae). Other genera of yeast, such as Pichia or Kluyveromyces (e.g. K. lactis), can also be employed. Yeast vectors will often contain an origin of replication sequence from a 2μ yeast plasmid, an autonomously replicating sequence (ARS), a promoter region, sequences for polyadenylation, sequences for transcription termination, and a selectable marker gene. Suitable promoter sequences for yeast vectors include, among others, promoters for metallothionine, 3-phosphoglycerate kinase (Hitzeman et al., J. Biol. Chem. 255:2073, 1980), or other glycolytic enzymes (Hess et al., J. Adv. Enzyme Reg. 7:149, 1968; and Holland et al., Biochem. 17:4900, 1978), such as enolase, glyceraldehyde-3-phosphate dehydrogenase, hexokinase, pyruvate decarboxylase, phosphofructokinase, glucose-6-phosphate isomerase, 3-phosphoglycerate mutase, pyruvate kinase, triosephosphate isomerase, phosphoglucose isomerase, and glucokinase. Other suitable vectors and promoters for use in yeast expression are further described in Hitzeman, EPA-73,657 or in Fleer et. al., Gene, 107:285-195 (1991); and van den Berg et. al., Bio/Technology, 8:135-139 (1990). Another alternative is the glucose-repressible ADH2 promoter described by Russell et al. (J. Biol. Chem. 258:2674, 1982) and Beier et al. (Nature 300:724, 1982). Shuttle vectors replicable in both yeast and E. coli can be constructed by inserting DNA sequences from pBR322 for selection and replication in E. coli (Amp gene and origin of replication) into the above-described yeast vectors.

The yeast α-factor leader sequence can be employed to direct secretion of one or more of the disclosed polypeptides. The α-factor leader sequence is often inserted between the promoter sequence and the structural gene sequence. See, e.g., Kurjan et al., Cell 30:933, 1982; Bitter et al., Proc. Natl. Acad. Sci. USA 81:5330, 1984; U.S. Pat. No. 4,546,082; and EP 324,274. Other leader sequences suitable for facilitating secretion of recombinant polypeptides from yeast hosts are known to those of skill in the art. A leader sequence can be modified near its 3′ end to contain one or more restriction sites. This will facilitate fusion of the leader sequence to the structural gene.

Yeast transformation protocols are known to those of skill in the art. One such protocol is described by Hinnen et al., Proc. Natl. Acad. Sci. USA 75:1929, 1978. The Hinnen et al. protocol selects for Trp+transformants in a selective medium, wherein the selective medium consists of 0.67% yeast nitrogen base, 0.5% casamino acids, 2% glucose, 10 μg/ml adenine, and 20 μg/ml uracil.

Yeast host cells transformed by vectors containing ADH2 promoter sequence can be grown for inducing expression in a “rich” medium. An example of a rich medium is one consisting of 1% yeast extract, 2% peptone, and 1% glucose supplemented with 80 μg/ml adenine and 80 μg/ml uracil. Derepression of the ADH2 promoter occurs when glucose is exhausted from the medium.

Mammalian Expression Systems

Mammalian or insect host cell culture systems could also be employed to express recombinant polypeptides of the invention. Baculovirus systems for production of heterologous proteins in insect cells are reviewed by Luckow and Summers, Bio/Technology 6:47 (1988). Established cell lines of mammalian origin also can be employed. Examples of suitable mammalian host cell lines include the COS-7 line of monkey kidney cells (ATCC CRL 1651) (Gluzman et al., Cell 23:175, 1981), L cells, C127 cells, 3T3 cells (ATCC CCL 163), Chinese hamster ovary (CHO) cells, HeLa cells, and BHK (ATCC CRL 10) cell lines, and the CV-1/EBNA-1 cell line (ATCC CRL 10478) derived from the African green monkey kidney cell line CVI (ATCC CCL 70) as described by McMahan et al. (EMBO J. 10: 2821, 1991).

Established methods for introducing DNA into mammalian cells have been described (Kaufman, R. J., Large Scale Mammalian Cell Culture, 1990, pp. 15-69). Additional protocols using commercially available reagents, such as Lipofectamine (Gibco/BRL) or Lipofectamine-Plus, can be used to transfect cells (Feigner et al., Proc. Natl. Acad. Sci. USA 84:7413-7417, 1987). In addition, electroporation can be used to transfect mammalian cells using conventional procedures, such as those in Sambrook et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1-3, Cold Spring Harbor Laboratory Press, 1989). Selection of stable transformants can be performed using resistance to cytotoxic drugs as a selection method. Kaufman et al., Meth. in Enzymology 185:487-511, 1990, describes several selection schemes, such as dihydrofolate reductase (DHFR) resistance. A suitable host strain for DHFR selection can be CHO strain DX-B11, which is deficient in DHFR (Urlaub and Chasin, Proc. Natl. Acad. Sci. USA 77:4216-4220, 1980). A plasmid expressing the DHFR cDNA can be introduced into strain DX-B11, and only cells that contain the plasmid can grow in the appropriate selective media. Other examples of selectable markers that can be incorporated into an expression vector include cDNAs conferring resistance to antibiotcs, such as G418 and hygromycin B. Cells harboring the vector can be selected on the basis of resistance to these compounds.

Transcriptional and translational control sequences for mammalian host cell expression vectors can be excised from viral genomes. Commonly used promoter sequences and enhancer sequences are derived from polyoma virus, adenovirus 2, simian virus 40 (SV40), and human cytomegalovirus. DNA sequences derived from the SV40 viral genome, for example, SV40 origin, early and later promoter, enhancer, splice, and polyadenylation sites can be used to provide other genetic elements for expression of a structural gene sequence in a mammalian host cell. Viral early and late promoters are particularly useful because both are easily obtained from a viral genome as a fragment, which can also contain a viral origin of replication (Fiers et al., Nature 273:113, 1978; Kaufman, Meth. in Enzymology, 1990). Smaller or larger SV40 fragments can also be used, provided the approximately 250 bp sequence extending from the Hind III site toward the Bgl I site located in the SV40 viral origin of replication site is included.

Additional control sequences shown to improve expression of heterologous genes from mammalian expression vectors include such elements as the expression augmenting sequence element (EASE) derived from CHO cells (Morris et al., Animal Cell Technology, 1997, pp. 529-534) and the tripartite leader (TPL) and VA gene RNAs from Adenovirus 2 (Gingeras et al., J. Biol. Chem. 257:13475-13491,1982). The internal ribosome entry site (IRES) sequences of viral origin allows dicistronic mRNAs to be translated efficiently (Oh and Sarnow, Current Opinion in Genetics and Development 3:295-300, 1993; Ramesh et al., Nucleic Acids Research 24:2697-2700, 1996). Expression of a heterologous cDNA as part of a dicistronic mRNA followed by the gene for a selectable marker (eg. DHFR) has been shown to improve transfectability of the host and expression of the heterologous cDNA (Kaufman, Meth. in Enzymology, 1990). Exemplary expression vectors that employ dicistronic mRNAs are pTR-DC/GFP described by Mosser et al., Biotechniques 22:150-161, 1997, and p2A51 described by Morris et al., Animal Cell Technology, 1997, pp. 529-534.

A useful high expression vector, pCAVNOT, has been described by Mosley et al., Cell 59:335-348,1989. Other expression vectors for use in mammalian host cells can be constructed as disclosed by Okayama and Berg (Mol. Cell. Biol. 3:280, 1983). A useful system for stable high level expression of mammalian cDNAs in C127 murine mammary epithelial cells can be constructed substantially as described by Cosman et al. (Mol. Immunol. 23:935, 1986). A useful high expression vector, PMLSV N1/N4, described by Cosman et al., Nature 312:768, 1984, has been deposited as ATCC 39890. Additional useful mammalian expression vectors are described in EP-A-0367566, and in U.S. patent application Ser. No. 07/701,415, filed May 16, 1991, incorporated by reference herein. The vectors can be derived from retroviruses. In place of the native signal sequence, a heterologous signal sequence can be added, such as the signal sequence for IL-7 described in U.S. Pat. No. 4,965,195; the signal sequence for IL-2 receptor described in Cosman et al., Nature 312:768 (1984); the IL4 signal peptide described in EP 367,566; the type I IL-1 receptor signal peptide described in U.S. Pat. No. 4,968,607; and the type H IL-1 receptor signal peptide described in EP 460,846.

The polypeptides of the invention and the nucleic acid molecules encoding them can also be used as reagents to identify (a) proteins that the disclosed polypeptides or their constituent proteins regulate, and (b) other proteins with which it might interact. The disclosed polypeptides can be coupled to a recombinant protein, to an affinity matrix, or by using them as a bait in the yeast two-hybrid system. The use of the yeast two-hybrid system developed by Stanley Fields and coworkers is well known in the art and described in Golemis, E., et al Section 20.1 in: Current Protocols in Molecular Biology, ed. Ausubel, F. M., et al., John Wiley & Sons, NY, 1997 and in The Yeast Two-Hybrid System., ed. P. L. Bartel and S. Fields, Oxford University Press, 1997.

Antibodies and Peptide Binding Proteins

Purified polypeptides of the invention can be used to generate antibodies that bind to one or more epitopes of the disclosed polypeptide. Such anti-polypeptide antibodies includes polyclonal antibodies, monoclonal antibodies, fragments thereof such as F(ab′)2, and Fab fragments, as well as any recombinantly produced binding partners. Antibodies are defined to be specifically binding if they bind pine tree polypeptides with a Ka of greater than or equal to about 107 M−1. Affinities of binding partners or antibodies can be readily determined using conventional techniques, for example, those described by Scatchard et al., Ann. N.Y. Acad. Sci., 51:660 (1949).

Polyclonal antibodies can be readily generated from a variety of sources, for example, horses, cows, goats, sheep, dogs, chickens, rabbits, mice, hamsters, guinea pigs, or rats, using procedures that are well-known in the art, for example, as described for example, U.S. Pat. No. 5,585,100, incorporated by reference herein. In general, a composition comprising at least one of the polypeptides of the invention is administered to the host animal, typically through intra-peritoneal or subcutaneous injection. In the case where a peptide is used as the immunogen, it is preferable to conjugated it to a suitable carrier molecule, such as a T-dependent antigen (Bovine Serum Albumin, cholera toxin, and the like). The immunogenicity of the disclosed polypeptides can also be enhanced through the use of an adjuvant, for example, Freund's complete or incomplete adjuvant or alum. Following booster immunizations, small samples of serum are collected and tested for reactivity to the disclosed polypeptides or their constituent epitopes. Examples of various assays useful for such determination include those described in: Antibodies: A Laboratory Manual, Harlow and Lane (eds.), Cold Spring Harbor Laboratory Press, 1988; as well as procedures such as countercurrent immuno-electrophoresis (CIEP), radioimmunoassay, radio-immunoprecipitation, enzyme-linked immuno-sorbent assays (ELISA), dot blot assays, and sandwich assays, see U.S. Pat. Nos. 4,376,110 and 4,486,530, each of which is incorporated by reference in their entirety.

Monoclonal antibodies (or fragments thereof), directed against epitopes of the disclosed polypeptides can also be readily prepared using well-known procedures, such as, for example, the procedures described in U.S. Patent No. RE 32,011, U.S. Pat. Nos. 4,902,614, 4,543,439, and 4,411,993; Monoclonal Antibodies, Hybrddomas: A New Dimension in Biological Analyses, Plenum Press, Kennett, McKearn, and Bechtol (eds.), 1980, each of which is incorporated by reference. Briefly, the host animals, such as mice, are injected intraperitoneally at least once, and preferably at least twice at about 3 week intervals with isolated and purified polypeptides optionally in the presence of adjuvant. Again, if peptide fragments are used they may need to be conjugated to a suitable carrier protein. Mouse sera are then assayed by conventional dot blot technique or antibody capture (ABC) to determine which animal is best to fuse. Approximately two to three weeks later, the mice are given an intravenous boost of pine tree polypeptides. Mice are later sacrificed and spleen cells fused with commercially available myeloma cells, such as Ag8.653 (ATCC), following established protocols. Briefly, the myeloma cells are washed several times in media and fused to mouse spleen cells at a ratio of about three spleen cells to one myeloma cell. The fusing agent can be any suitable agent used in the art, for example, polyethylene glycol (PEG). Fusion is plated out into plates containing media that allows for the selective growth of the fused cells. The fused cells can then be allowed to grow for approximately eight days. Supernatants from resultant hybridomas are collected and added to a plate that is first coated with goat anti-mouse Ig. Following washes, a label, such as, 125I-pine tree polypeptides is added to each well followed by incubation. Positive wells can be subsequently detected by autoradiography. Positive clones can be grown in bulk culture and supernatants are subsequently purified over a Protein A column (Pharmacia).

Monoclonal antibodies and specific-binding fragments of the invention can be produced using alternative techniques, such as those described by Alting-Mees et al., “Monoclonal Antibody Expression Libraries: A Rapid Alternative to Hybridomas”, Strategies in Molecular Biology 3:1-9 (1990), which is incorporated herein by reference. Similarly, binding partners can be constructed using recombinant DNA techniques to incorporate the variable regions of a gene that encodes a specific binding antibody Such a technique is described in Larrick et al., Biotechnology, 7:394 (1989).

It is understood of course that many techniques could be used to generate antibodies against the polypeptides of the invention and that the above embodiments in no way limits the scope of the invention.

Nucleotides. Proteins, Antibodies, and Binding Proteins As Probes and Reagents

The disclosed nucleic acids, polypeptides, and antibodies directed against the disclosed polypeptides can be used in a variety of research protocols, such as in DNA arrays or as reagents. A sample of such research protocols are given in Sambrook et al. Molecular Cloning: A Laboratory Manual, 2 ed. Vol. 1-3, Cold Spring Harbor Laboratory Press, (1989), incorporated by reference. For example, the compiled sequences, polypeptides, etc., can serve as markers for cell specific or tissue specific expression of RNA or proteins. Similarly, this system can be used to investigate constitutive and transient expression of the genes encoding the cDNAs of SEQ ID NOS: 1-327 and the proteins encoded by these genes.

Further, the disclosed cDNA sequences can be used to determine the chromosomal location of the genomic DNA and to map genes in relation to this chromosomal location. The disclosed nucleotide sequence can be further used to identify additional genes related to the nucleotides of SEQ ID NOS: 1-334 and to establish evolutionary relatedness among species based on the comparison of sequences. The disclosed nucleotide and polypeptide sequences can be used to select for those genes or proteins that are homologous to the disclosed cDNAs or polypeptides, using well-established positive screening procedures such as Southern blotting and immunoblotting and negative screening procedures such as subtractive hybridization.

Method for Using Nucleic Acid Probes or Antibodies to Stage Embryos

Accurate staging of tree embryos is critical. It is known that different stages of tree embryos have different capacities as subjects for genetic transformation and genetic engineering. In addition, environmental requirements exhibited by embryos vary due to increasing physiologic age. Currently, the staging of tree embryogenesis is most accurately performed by an expert in the field who is very familiar with the morphological appearance of embryos at different stages. The cDNAs and related molecules of this invention can be used as markers for different stages of tree embryogenesis, thereby eliminating the need for a subjective eye to assess maturity and potentially allowing for more accurate staging of tree embryos. Moreover, by monitoring the expression of the underlying genes, it is possible to determine when an embryo has reached a certain level of development even if that level does not correspond to a visible difference in embryo morphology. The relational database of this invention aids the ability to monitor expression levels and tailor research approaches, such as the use of DNA arrays, to the specific needs of the objective, i.e., staging.

The information provided in this invention can be used in whole or in part to stage embryos. For example, one or a multiplicity of nucleic acid molecules from SEQ ID NOS: 1-327 having an expression profile consistent with a particular embryo stage can be used in this invention. A researcher may find it beneficial to use oligonucleotide probes or antibodies, for example, that specifically recognize proteins derived from genes expressed during middle embryonic stages, or that specifically monitor expression levels for embryos that have reached maturity associated with late developmental stages. A researcher can quickly determine that an embryo subset has progressed to or through an embryonic stage with the use of this invention and make appropriate changes in conditions if necessary, e.g. alter growth media or other environmental conditions.

Method for Monitoring, Enhancing, or Determining Expression of Stage-Specific Genes

Expression patterns of SEQ ID NOS: 1-327 indicate that gene activation can be classified as stage-specific, such as in the case of SEQ ID NO: 327, otherwise known as “LP2-3.” The promoter that drives such a gene can perform valuable functions. For example, a promoter from LP2-3 operatively linked to a reporter gene presented within an embryo system is expected to produce the reporter product under the conditions for expression of gene LP2-3. Thus, the system allows a rapid determination of stage specific embryos by a simple phenotypic reporter screen, perhaps by visualization of green fluorescent protein (GFP) or by loss of fluorescent protein product. Similarly, a set of promoters from known, differently staged genes operatively linked to reporter genes will be effective for monitoring developmental changes within the system as the embryos mature. The LP2-3 promoter is identified as SEQ ID NOS: 328-334 in Table I. The promoter expression pattern is that of the natively linked gene, LP2-3.

Virtually any indicator or reporter gene can be used for this approach or for other methods associated with this invention provided they are compatible with the system studied. Generally, reporter genes are genes typically not present in the recipient organism or tissue and which encode for proteins resulting in some phenotypic change or enzymatic property. Examples of such genes and assays are provided by Schenborn, E. and Groskreutz, D., Mol. Biotechnol., 13:29, 1999; Helfand, S. L. and Rogina, B., Results Probl. Cell Differ., 29:67, 2000; Kricka, L. J., Methods Enzymol., 305:333, 2000; Himes, S. R. and Shannon, M. F., Methods Mol. Biol., 130:165, 2000; and Leffel, S. M. et al., Biotechniques, 23:912, 1997, which are incorporated in their entirety by reference. In one embodiment of this invention, the reporter used is GFP, or any ariant of the fluorescent protein.

Additionally, one skilled in the art would recognize that a promoter, like that from LP2-3, has potential to stimulate production of products not ordinarily observed at a particular stage. A promoter derived from a gene that expresses during a known stage, for example an early stage, can be operatively linked to a gene that does not normally express during that stage, yielding controlled expression of any targeted gene. It may be shown that earlier or later expression, or prolonged expression of a particular gene may give a desirable genotype or phenotype in a mature plant, may result in increased vigor in culture, or may be sufficient to alter the normal maturation process of the embryo. Prolonged expression of any desired gene also may be achieved from linking a constitutively expressed promoter to the targeted gene. Further, the ability to manipulate gene expression during embryogenesis allows for a detailed study of the effects of an individual gene or multiple genes on embryogenesis, leading to a better understanding of the developmental processes involved in embryogenesis.

Method of Correlatinq Gene Expression with Improved Tree Stock or Culture Conditions

Importantly, the cDNAs and related molecules of the invention can also be used as markers to examine genetic heterogeneity and heredity through the use of techniques such as genetic fingerprinting. These markers can also be correlated with improved agronomic traits including good initiation frequency, embryonic maturation, high frequency of germination, rapid growth rates, herbicide tolerance, insect resistance, pathogen resistance, climate and environmental adaptability wood quality, and wood fiber quality and content, to name a few. Additionally, the expression of these developmentally regulated genes can be compared among genetically identical clones grown under different culture conditions to determine the best protocols and media for somatic embryogenesis.

Cryogenic storage of pine tree embryos is effective for maintaining stocks of embryos determined by this invention to have the desired fitness traits or exist at the appropriate developmental stage. With such storage, one can specifically target desirable embryos for expansion many years after they are frozen. For example, a culture of somatic embryos can be divided into at least three portions, one of which is cryogenically stored, one which is used to study gene embryonic gene (and protein) expression, and one that is used to produce seedlings for field testing. Clones producing valuable mature plants could be selected and expanded from frozen stocks. Additional clones exhibiting similar expression patterns could be selected for future expansion and cultivation.

As will be evident to the ordinary practitioner, there are numerous ways in which the nucleic acids, polypeptides and antibodies of this invention might be used to characterize the gene expression of embryos. Ideally the stage-specific gene expression of embryos of several different genotypes and at several different stages of embryogenesis are characterized. For example, sets of oligonucleotide primers designed using any one of SEQ ID NOS: 1-327 may be used in RT-PCR assays to characterize expression of a gene product. In situ hybridization assays or antibody staining protocols may also be used to characterize RNA and/or protein expression and localization.

Embryos of the same genotype in which gene expression has been characterized may also used be to generate plantlets that are used in field testing. Once the embryos have developed into mature trees, the various genotype trees can be evaluated for important traits such as growth rates, herbicide tolerance, insect resistance, pathogen resistance, climate and environmental adaptability, wood quality, and wood fiber quality and content, among others. Finally the phenotypic data collected from the field testing can be correlated with gene expression during early embryogenesis to further enhance the database of the present invention. This will allow further identification of gene products which whose expression is correlated, either positively or negatively, with commercially valuable tree characteristics.

It will be clear to those skilled in the art that identification of such gene products can have several uses. Determining the correlation between a desirable phenotype and a genotype would allow for the “pre-selection” of tree embryos for field testing. It would also be useful in evaluating experimental tissue culture conditions for somatic embryogenesis; in other words, the expression level of a gene known to correlate with the development of trees with desirable characteristics could serve as the criterion on which culture media is evaluated, as opposed to assessing the phenotype of fully matured trees. The ability to evaluate culture conditions without having to develop fully mature trees and do field testing would save a great deal of research time and expense. And of course, the knowledge of the correlation between gene expression and desirable tree phenotypes would serve to identify target genes for genetic engineering.

Genetically Engineering Trees and Other Plants

There are several methods known in the art for the creation of transgenic plants. These include, but are not limited to: electroporation of plant protoplasts, liposome-mediated transformation, polyethylene-glycol-mediated transformation, microinjection of plant cells, and transformation using viruses. Because the invention is especially concerned with the transformation of woody species, the two prevalent methods for transforming forest trees, namely Agrobacteriurm-mediated transfer and direct gene transfer by particle bombardment, will be discussed in more detail, though it is understood that the present invention encompasses generation of transgenic plants via standard methods commonly known in the art.

Agrobacterium Mediated Transfer

A. tumefaciens and A. rhizogenes are two soil microorganisms that naturally infect a wide variety of plants including dicotyledonous plants, gymnosperms and some monocotyledonous plants. Infection by these organisms results in the growth of crown gall tumors or in hairy root disease, respectively. Each of these organisms carries a large plasmid, the tumor inducing (Ti) plasmid, in the case of A. tumefaciens and the root-inducing (Ri) plasmid in the case of A. rhizogenes. These plasmids have two critical features, a set of virulence genes and a segment of DNA called T-DNA that is delimited by conserved regions of approximately 25 base pairs known as the left and right borders. During infection, the T-DNA is transferred to the plant cell where it is able to stably integrate in single copy in the plant genome. Transfer of T-DNA requires the function of the virulence genes.

In its natural state, T-DNA contains genes that mediate progression of disease such as growth hormones or genes controlling root morphogenesis. Using recombinant DNA technology, however, T-DNA may be modified to contain an expression cassette encoding a foreign gene of interest. There are several T-DNA vector systems commonly in use for the transformation of plants. Several of these vector systems are reviewed in Hansen et al., Current Topics in Microbiology and Immunology 240: 21-57 (1999) which is hereby incorporated by reference. T-DNA vectors must include the left and right borders. In addition they must either be capable of replication in Agrobacterium or be designed so as to recombine with a plasmid that does so. The latter type of vector is known as a co-integrate vector. For transformation to proceed, there must also be a source of virulence (vir) genes. The vir genes may be on the same plasmid with the T-DNA or more likely supplied by a helper plasmid. For example, binary T-DNA vector systems are comprised of two plasmids, one containing the vir genes and the other containing T-DNA. Some plants known to be recalcitrant to Agrobacterium-mediated transformation may be transformed if additional copies of some or all virulence genes are provided. Extra copies of VirG and VirE can be particularly useful.

Additionally, it is convenient to include in the T-DNA a selectable marker that will allow identification and selection of transformed plant cells. The selectable marker should be one that works in both Agrobacterium and the target plant. For example, the genes encoding chloramphenicol acetyltransferase and neomycin phosphotransferase are suitable marker genes that confer resistance to chloramphenicol and kanamycin, respectively. Additionally, a selectable marker may be provided on a separate T-DNA from the T-DNA encoding the gene of interest. Co-transformed T-DNAs can integrate at separate sites in the plant genome. This can be useful because it will later allow segregation of the marker gene in progeny enabling the generation of transgenic trees expressing the gene of interest but not the marker gene.

The gene of interest and the selectable marker genes must also be under the control of promoters that function in the transformed plant cell. Examples of suitable promoters include, but are not limited to: the abscisic acid (ABA)-inducible promoter from the early methionine (Em) gene from wheat (Marcotte et al., Plant Cell 1:976-979 (1989); the cauliflower mosaic virus (CaMV) 35S promoter (Odell et al., Nature 313:810-812 (1985); and the nopaline synthase (nos) promoter (Sanders et al., Nucl. Acids Res. 15(4):1543-58 (1987). Tissue-specific plant promoters or plant promoters responsive to chemical, hormone, heat or light treatments may be used. Additionally, the gene of interest may be expressed under the control of its endogenous promoter to ensure proper regulation.

The process of transformation requires plant cells that are competent and that are either embryogenic or organogenic. The plant cells to be transformed are then co-cultivated with Agrobacterium containing an engineered T-DNA vector system for 1-5 days. Following the co-cultivation period, the cells are incubated with the antibiotic against which the selectable marker confers resistance, and transformed lines are selected for further cultivation. The use of Agrobacterium mediated transfer in woody trees is described in Loopstra et al., Plant Molecular Biology 15:1-9 (1990), Gallardo et al., Planta 210:19-26 (1999) and Wenck et al., Plant Molecular Biology 39:407-419 (1999), each of which is hereby incorporated by reference.

Direct Gene Transfer by Particle Bombardment

Direct gene transfer by particle bombardment provides another method for transforming plant tissue. This method can be especially useful when plant species are recalcitrant to transformation by other means. In this technique a particle, or microprojectile, coated with DNA is shot through the physical barriers of the cell. Particle bombardment can be used to introduce DNA into any target tissue that is penetrable by DNA coated particles, but for stable transformation, it is imperative that regenerable cells be used. Typically, the particles are made of gold or tungsten. The particles are coated with DNA using either CaCl2 or ethanol precipitation methods which are commonly known in the art.

DNA coated particles are shot out of a particle gun. A suitable particle gun can be purchased from Bio-Rad Laboratories (Hercules, Calif.). Particle penetration is controlled by varying parameters such as the intensity of the explosive burst, the size of the particles, or the distance particles must travel to reach the target tissue.

The DNA used for coating the particles should comprise an expression cassette suitable for driving the expression of the gene of interest. Minimally this will comprise a promoter operably linked to the gene of interest. As with Agrobacterium mediated transformation. Suitable promoters include, but are not limted to, the the abscisic acid (ABA)-inducible Em promoter from wheat (Marcotte et al., Plant Cell 1:976-979 (1989), the CaMV35S promoter (Odell, et al., Nature 313:810-812 (1985), and the NOS:promoter (Sanders et., Nucl. Acids Res. 15(4):1543-58 (1987).

Methods for performing direct gene transfer by particle bombardment are disclosed in U.S. Pat. No. 5,990,387 to Tomes et al. Additionally, Ellis et al. describe the successful use of direct gene transfer to white spruce and larch trees in Bio/Technology 11, 84-89 (1993).

Researchers skilled in the area of DNA or gene transformation will recognize that additional procedures, or combination of procedures, may be useful for the successful tranformation of genetic stock.

Antisense Expression

The cDNAs of the invention may be expressed in such a way as to produce either sense or antisense RNA. Antisense RNA is RNA that has a sequence which is the reverse complement of the mRNA (sense RNA) encoded by a gene. A vector that will drive the expression of antisense RNA is one in which the cDNA is placed in “reverse orientation” with respect to the promoter such that the non-coding strand (rather than the coding strand) is transcribed. The expression of antisense RNA can be used to down-modulate the expression of the protein encoded by the mRNA to which the antisense RNA is complementary. This phenomenon is also known as “antisense suppression.” It is believed that down-regulation of protein expression following antisense RNA is caused by the binding of the antisense RNA to the endogenous mRNA molecule to which it is complementary, thereby, inhibiting or preventing translation of the endogenous mRNA.

The antisense RNA expressed need not be the full-length cDNA and need not be exactly homologous to the target mRNA. Generally, however, where the introduced sequence is of shorter length, a higher degree of homology to the endogenous mRNA will be needed for effective antisense suppression. Preferably, the introduced antisense sequence in the vector will be at least 30 nucleotides in length, and improved antisense suppression will typically be observed as the length of the antisense sequence increases. The length of the antisense sequence in the vector may be greater than 100 nucleotides. Vectors producing antisense RNA's could be used to make transgenic plants, as described above, in situations when desirable tree characteristics are produced when the expression of a particular gene is reduced or inhibited.

METHODS

Tissue Samples

The cDNAs of the current invention can be derived from any sets of plant tissue. The cDNAs of SEQ ID NOS: 1-334, for example, were originally derived from embryonic tissues of pine tree embryos staged 1-9.9 as classified in Pullman and Webb TAPPI R&D Division 1994 Biological Sciences Symposium, pages 31-34, which is hereby incorporated by reference. LPS and LPZ clones are derived from somatic and zygotic embryos, respectively. As noted, embryos may be of either somatic or zygotic derivation, and the embryos may be grown in either semi-solid or liquid tissue culture systems. Applicable methods for growing embryos in semi-solid or liquid tissue culture systems are disclosed in U.S. Pat. Nos.: 5,036,007; 5,236,841; 5,294,549; 5,413,930; 5,491,090; 5,506,136; 5,563,061; 5,677,185; 5,731,203; 5,731,204; and U.S. Patent Application 60/212,651 filed Jun. 19, 2000, which are hereby incorporated by reference.

RNA Isolation

In one embodiment, RNA isolated from staged cell populations provides the starting material for reverse transcription, differential display, and cloning of amplified cDNA. Methods and kits for isolating total RNA from cellular populations, or for generating poly(A)+ RNA, are commonly known in the art. For example, several procedures for isolating RNA are disclosed in Chapter 4 of Current Protocols in Molecular Biology edited by F. A. Ausubel et al., John Wiley and Sons, Inc. (1987) (incorporated herein by reference). As an example, the TRI Reagent7 available from Molecular Research Center, Inc. (Cincinnati, Ohio) is a suitable reagent (used according to the manufacturer's instructions) for isolation of RNA from plant tissues.

Differential Display

Differential display provides a method to identify individual messenger RNAs that are differentially expressed among two or more cell populations. In the practice of the present invention, these cell populations may be provided by pine tree or other plant embryos of different developmental stages. The differential display procedure is taught in Liang et al., Science, 257:967-71 (1992) and in U.S. Pat. No. 5,262,311, which are hereby incorporated by reference. Briefly, mRNA sequences are PCR-amplified using two types of oligonucleotide primers known as “anchor” and “arbitrary” primers. Anchor primers are designed to recognize the polyadenylate tail of messenger RNAs. Arbitrary primers are short and arbitrary in sequence ard anneal to complementary sequences in various mRNAs. Products amplified with these primers will vary in size and can be differentiated on an agarose or sequencing gel based on their size. If different cell populations are amplified with the same anchor and arbitrary primers, one can compare the amplification products to identify differentially expressed RNA sequences.

Cloning

PCR-amplified bands representing differentially expressed RNA samples are excised from the gel, transferred to tubes and reamplified using the same primer pairs and PCR conditions as used in the differential display procedure. Methods for the cloning of PCR products are commonly known in the art and there are several commercially available reagents and kits for cloning PCR products. For instance, the pCR-Scipt™ Cloning kit from Stratagene, La Jolla, Calif.) is suitable for this purpose. Using this kit, E. coli transformants containing plasmids with PCR fragment inserts can rapidly be identified using blue/white color selection followed by plasmid purification and restriction digests. The pCR-Script vector contains T3 and T7 polymerase recognition sites allowing for in vitro transcription of the inserted fragment.

Sequence Determination

Methods for sequencing DNA, including cloned PCR products, are commonly known in the art. The selection of cloning vectors having M13, T7 or T3 primer annealing sites flanking the PCR-amplified insert can be used in sequencing reactions directly. Most sequencing procedures in use today are modifications of Sanger's dideoxy chain termination sequencing reaction as disclosed in and Sanger et al., Proceedings of the National Academy of Sciences, 74:5463-5467 (1977); which is hereby incorporated by reference.

Homology Searching and Identification of Protein Coding Sequences

As understood by one of ordinary skill in the art, the sequence of a cloned cDNA insert obtained, may be compared against public databases such as Genbank to discern any identity or homology to known sequences. Programs, such BLAST, for performing such a search are available on the National Center for Biotechnology Information's web page located at hftp://www.ncbi.nim.nih.qov. The results from Genbank search may reveal the potential function of a polypeptide or RNA molecule encoded by the cDNA. In addition to searching gene sequence database, the use of commercially available analysis software is well known in the art. For example, software packages such as the Wisconsin Package™ (Genetic Computer Group, Madison, Wis.) include programs such as FRAMES and CodonPreference that help to identify protein coding sequences in a query nucleotide sequence. FRAMES displays open reading frames for the six DNA translation frames, allowing one to quickly assess the presence or absence of stretches of open-reading frames that are likely to be protein encoding regions. CodonPreference is a more sophisticated program that identifies and displays possible protein coding regions based on similarity of the codon usage in the sequence to a codon frequency table (Gribskov et al., 1984).

EXAMPLE 1 Differential Gene Expression Analysis in Pine Tree Embryo enesis

cDNA libraries were prepared from staged pine tree embryos, as described above. The differential display technique was used to identify 327 novel cDNAs that were preferentially-expressed during early, middle, or late stages of pine tree embryogenesis, as set forth below. Clone nomenclature is divided into subsets based on tissue type; a clone is designated LPS to indicate somatic origins and LPZ for zygotic origins.

Plant Materials

Somatic embryos were collected at different stages of development. Cultures of somatic embryos of were initiated from Loblolly pine immature zygotic embryos as described by Becwar et al., Forestry Science 44:287-301 (1994) (incorporated by reference) or with minor modifications in media mineral composition. Somatic embryos were grown in cell suspension culture medium 16 (Pullman and Webb, Tappi R&D Division 1994 Biological Sciences Symposium) and a maturation medium similar to that of a standard maturation media. Resulting somatic embryos were selected and classified as stages 1-9 according to morphological development following the teachings of Pullman and Webb, Tappi R&D Division 1994 Biological Sciences Symposium pp.31-34. Somatic embryos were sorted into tubes containing the same stages and stored at −70° C.

RNA Isolation

Total RNA was isolated from all stages of somatic embryos of loblolly pine and grouped into early, middle, and late phases of development. The early phase is represented by a liquid suspension culture containing embryos of stages 1 through stage 3. Middle phase contains embryos of stages 4 through stage 6, while stages 7 through 9 formed the late phase. 60-100 mg aliquots of staged frozen embryos were ground in 1.0 ml of TRI Reagent® Isolation Reagent (Molecular Research Center, Inc.), a commercial product that includes phenol and guideline thiocyanate in a monophase solution and extracted according to the manufacturer's instructions.

Reverse Transcription of mRNA (RT-PCR)

The total RNA was used as a template to synthesize single stranded DNA mediated by MMLV reverse transcriptase (100 U/μl). The method involves the reverse transcription by PCR of the mRNA with an oligo-dT primer (H-T11G: 5′ B AAGCTTTTTTTTTTTG 3′) anchored to the beginning of the poly(A) tail, followed by a PCR reaction in the presence of a second short (13-mer) primer which is arbitrary in sequence [AP1 (5′ B AAGCTTGATTGCC-3′) or AP2 (5′ B AAGCTTCGACTGT-3′)]. Reverse transcription and Differential Display were conducted using the GenHunter RNAimage Kit 1.

A 19 μl reverse transcription reaction (10 μl sterile water, 2.0 μl 5×RT buffer, 1.6 μl dNTP (250 μM), 2.0 μl anchored primer (2.0 μM), 2.0 μl RNA template at 100 ng/μl) was prepared for each embryo phase sample. The reaction mixture was heated to 65° C. for 5 minutes in a thermocycler, cooled to 37° C. and paused after 10 minutes while 1.0 μl MMLV was added. The program was allowed to resume at 37° C. for 50 minutes. The reaction was then heated to 75° C. for 5 minutes, cooled to 4° C. and stored at −20° C.

Incorporation of Radiolabeled Nucleotides by PCR

Differential Display PCR was performed in a 20 μl reaction containing 2 μl of the reverse-transcribed cDNA template; 10 μl sterile water 2.0 μl 10×PCR buffer, 1.6 μl dNTP (25 μM), 2.0 μl anchored primer H-T 11G, (2.0 μM), 2.0 μl 13 mer arbitrary primer (AP1 or AP2 (2.0 μM), 0.2 μl Taq DNA polymerase, and 0.2 μl α32P-dATP (2000 Ci/mmole). The cDNA was amplified by PCR: 94° C. for 3 minutes, 40 cycles of 94° C. for 30 seconds, 40° C. for 2 minutes, and 72° C. for 30 seconds, followed by 72° C. for 5 minutes. The reaction was cooled to 4° C. and stored at −20° C.

Differential Display

The PCR products were separated on a Stratagene (La Jolla, Calif.) pre-cast 6% polyacrylamide sequencing gel at 30 watts constant power for approximately 2.5 to 3 hours. 3.5 μl of sample was mixed with 2.0 μl, of loading dye and incubated at 80° C. for 2 minutes immediately before loading onto the gel. The gel was rinsed in water and dried. Dilute 35P-dATP with loading dye was spotted at the corners as alignment markers and the gels were exposed to Kodak BioMaX™ autoradiography film. An exemplary gel is shown in FIG. 1.

Bands that appeared to be possible markers for phase specific gene expression were marked on the film and aligned over the gel. The bands were excised by cutting through the film. The gel pieces were scraped from the gel and transferred to tubes and re-amplified using the same primer pairs and PCR conditions as used for incorporation of radiolabeled nucleotides.

Cloning of DNA Fragments from Differential Display

The PCR products from the gel fragments were purified, polished, ligated and cloned into XL 10-Gold Kan ultracompetent cells by heat shock with the Stratagene pCR-Script Amp SK(+) Supercompetent Cell Cloning Kit according to manufacturer's instructions. The transformed cells were spread on LB agar plates containing ampicillin, IPTG, and X-Gal each at 50 μg/ml. The plates were incubated overnight at 37° C. Plasmids containing PCR inserts were identified using blue-white colony screening. The presence of inserts was confirmed by digesting the clones with restriction endonucleases, Msc I and Nla ll, followed by standard DNA gel electrophoresis. Transformants representing early, middle, and late phase embryos were sequenced using standard dideoxy protocols known in the art with the T3 primer.

Sequence Analysis

All sequences were analyzed using a program-database pair search of the NCBI BLAST 2.0 server, blastn-nr, blastn-others ests, and blastx-nr. In each case, the query sequence was filtered for low complexity regions by default and entered in FASTA format. Other formatting options were set by default; alignment view-pairwise, descriptions-100, and alignments-50. Using these parameter settings, significant similarity to known DNA, RNA, or protein sequences was found for several of the nucleic acid molecules of SEQ ID NOS: 1-334, for example, those described herein. (Alignment data not shown).

EXAMPLE 2 Characterization of Full Length LP2-3 cDNA Sequence

SEQ ID NO: 327, designated LP2-3, was first identified through differential display with T12MG and AP1 primers (GeneHunter). The differential display band appeared to be present only in liquid suspension cultures of Loblolly Pine somatic embryos. The conditions for mRNA isolation, reverse-transcription, differential display-PCR, and gel separation/visualization for producing this band were all as described in Example 1. Likewise, the band containing the original LP2-3 fragment was excised from the differential display gel, amplified, and cloned into pCR-Script AMP SK(+) according to standard protocols known in the art.

Northern Hybridizations Demonstrating Early-Specific Expression

Northern analysis demonstrated that the LP2-3 differential display clone hybridized to an approximately 1.2 Kb mRNA from liquid suspension culture embryos but was undetectable in late (6-9) stage embryo RNA. (FIG. 11) In general, LP2-3 is most highly expressed in early stage embryos in liquid culture. LP2-3 mRNA is found most abundantly in early stage somatic embryos, especially for embryos grown in liquid multiplication medium. (FIG. 12) Further, transcription decreases rapidly as embryos are transferred to maturation medium (stage 3 and stage 4) and begin to mature. LP2-3 transcripts are virtually undetectable at stage 6-9 somatic embryos grown on maturation medium. (See FIG. 12) Additional studies indicate that LP23 mRNA is expressed zygotically, particularly in early stage zygotic embryos, but is undetectable in mature vegetative tissues. (FIGS. 13 and 14) Specifically, the signal intensity from liquid suspension somatic embryo RNA was about 3 times greater than the signal from the analogous stage 1 zygotic embryo RNA. (FIGS. 13 and 14) LP2-3 transcripts were not detectable in total RNA from needles, stems, or roots of one year old seedlings, including those exposed to cold, ozone, wound stresses, or the hormone jasmonic acid (not shown).

LP2-3 Differential Display and ‘Full-Length’ cDNA Sequences

A ‘full-length’ cDNA was captured from SMART™ cDNA made from somatic embryo liquid suspension by using a biotinylated LP2-3 differential display fragment as a capture probe. The “full-length” cDNA was cloned and sequenced according to standard protocols known in the art. This sequence was designated at LP2-3+.

GenBank blastx searches conducted with the above sequence translated in all 6 reading frames indicated that LP2-3+likely encodes a member of the major intrinsic protein family. This family of proteins encodes membrane channels for the transport of water and/or ions across cell membranes. They may play a significant role in osmoregulation and may play a role in the cellular responses to water and salt stresses. As is known in the art, the MIPs are induced by dessication, flooding, and high levels of the plant hormone ABA. In contrast, the LP2-3 sequence was not detected in desiccated late-stage embryos which have high levels of ABA and, thus, appears to be regulated by some embryo-specific signal.

EXAMPLE 3: Hypothesis Development for Improved Protocols

Currently the improvement of tissue culture practices arises via hypothesis, evaluation and adoption. Hypotheses arise from observation of size, shape, weight, etc. and physiological measurement of ion or sugar content (FIG. 6, box 1). These observations are limited in scope and this limits the improvements that can be made to the tissue culture process. Gene expression is closely linked to metabolic condition, thus the observation of which genes are induced or repressed under a given growth condition, naturally, on the tree, or in a culture vessel, provides insight into the metabolic state of the embryo. This information can be used to create new hypotheses that can be evaluated by modifying tissue culture.

To this end, mRNA levels of two cDNAs (LPZ-202 and LPZ-216), similar to “Late Embryogenesis Abundant” (LEA) proteins, identified in other plants, were monitored. These genes are induced by the plant hormone ABA. Two peaks of mRNA were observed in these clones rather than the typical single peak in most plants. (See FIG. 4 for clone LPZ-216; clone LPZ-202 is similar but data is not shown.) It was subsequently confirmed that two peaks in ABA activity are observed during development and that these correspond in timing to the elevation in mRNA for LPZ-202 and LPZ-216. Thus mRNA abundance profiles are providing insight into embryo physiology. (See FIG. 7) The effect of giving two pulses of ABA to our somatic embryos is assessed; a tissue culture modification that we might not have considered as important had the gene expression data been unavailable. Internal data shows fluctuations in the abundance of mRNA for cDNAs listed in this collection (data not shown.)

Zygotic and Somatic Loblolly Pine Embryos

Loblolly pine cones were collected weekly from a breeding orchard near Lake Charles, La., and shipped on ice for experimentation. Embryos were excised and evaluated for developmental stage (Pullman et al. 1994). Stage 9 embryos were separated by the week they were collected-9.1 (week 1), 9.2 (week 2), etc. Staged zygotic embryos were sorted into vials partially immersed in liquid nitrogen and stored at −70° C. Somatic embryos for loblolly pine were initiated as described by Becwar et al. (1995) or with minor modifications. Somatic embryos were grown, selected, and staged as described by Pullman et al. (1994) and stored at −70° C.

cDNA Probe Preparation and Hybridization

30 ng of purified Lea protein cDNA fragments was labeled with 32P dCTP using the Ready-To-Go cDNA Random Labeling kit (Pharmacia). The labeled cDNAs were purified using NICK Column (Pharmacia) and heat denatured for hybridization. The RNA slot blot was pre-hybridized in hybridization buffer (0.5 M sodium-phosphate, pH 7.2, 5% SDS, and 10 mM EDTA) at 65° C. for 2 hours in a hybridization oven (Model 400, Robbins Scientific, Sunnyvale, Calif.) and the hybridized in the same conditions with the cDNA probes. After hybridization, the membranes were washed at 65° C. in 0.2×SSC and 0.1% SDS. Each wash was 15 min. The membranes were then exposed to Image Plate.

The probes can be stripped from the RNA slot blot by pouring boiling 0.5% SDS onto the membrane twice and incubating without heating for 30 min. The stripped blot was then exposed to Image Plate for overnight to check the completeness of the de-probing before next round of hybridization.

To ensure the equal loading of the each RNA sample, the same membranes were stripped and hybridized with a 32P-dCTP labeled 26S ribosomal rDNA fragment. These results were used as controls to normalize the Lea protein gene expression levels.

As a means of evaluating the usefulness of these arrays, we followed the expression of three cDNAs that have strong sequence similarity to late embryo-abundant proteins, (Lea) proteins from cotton (Baker et al 1988). Lea proteins and mRNAs appear in embryos at a stage when ABA is high and the genes can be induced in vegetative tissue by application of ABA. The transcript level of Lea genes LPZ-202 and LPZ-216 showed two peaks, rising from stage 5 and returning to a base line about stage 9.2 then rising again around stage 9.5. (See FIG. 4 for clone LPZ-216).

To confirm the fluctuation in lea transcript levels by Northern analysis. RNA was extracted from zygotic embryos at different stages of development A in ‘dehydrin’ cDNA from the North Carolina State University cDNA collection (hftp://www.cbc.med.umn.edu/ResearchProiects/Pine/DOE.pine/index.html) was used as probe for some experiments. Dehydrins are a class of lea protein, originally identified as water deficit inducible proteins. Since the expression of this class of protein is well characterized, in contrast to our lea genes, the dehydrin expression profile could act as a reference point. After probing with dehydrin, blots were stripped and probed with a 26S rDNA probe from Arabidopsis to check the loading of the original gel. The normalized expression pattern of dehydrin in the zygotic embryogenesis is illustrated in the top panel of FIG. 4. The expression of the dehydrin gene was induced at stage 5 and reached a peak at stage 6. It declined at stage 7-8, just prior to the onset of the desiccation. Then the mRNAs level remained low from stage 9.1 through 9.5. The dehydrin mRNA levels rose again late in development, from stage 9.6 on, apparently dropping in very late development. A similar pattern of expression was observed in a parallel experiment when our lea-like clone, LPZ-216, was used as a probe.

This pattern reveals two significant peaks at the early development of the embryos and high expression levels for the stage 9.6 and beyond. The expression pattern of these two lea genes in loblolly pine embryos is consistent with the changes in ABA concentration observed in pine during embryogenesis. (See FIG. 5)

EXAMPLE 4 Evaluation of Metabolic State of Somatic

Embryos as Compared to Zygotic Embryos for Fitness Determination

The model and goal for somatic embryogenesis is to produce an embryo that in vigor, germinatability, etc., resembles a zygotic embryo. Standard measurements reveal relatively little about the embryos; thus the metabolic state of somatic and zygotic embryos is unknown. The metabolic state of zygotic (natural) embryos can be evaluated by DNA arrays containing the cDNA clones described in this application. A database of mRNA levels for the genes represented on the DNA arrays can then be established. Embryos growing under a new tissue culture protocol (FIG. 6, box #2) can be evaluated by DNA array southerns (FIG. 6, box #3). The array elucidates patterns of gene activity and reveals whether those patterns are similar to the natural state (FIG. 6, box #4). The germination, or further development can be checked (FIG. 6, box #5) to confirm the conclusion. Where a link between specific gene activity and embryo performance has been demonstrated, protocols can be modified with efficiency as seen in FIG. 6, box 6.

To illustrate this process, elevation of plant hormone ABA in maturation medium was evaluated as a protocol modification, as described below. This modification proved beneficial, elevating the number and quality of the embryos produced. The mRNA abundance for cDNAs was assessed by DNA array using RNA isolated from control and elevated ABA conditions; several differences were observed in the mRNA levels of specific genes. Further, abundance of mRNA in the elevated ABA condition, more closely resembled the mRNA abundance observed for the these same genes in zygotic embryos. Thus a protocol which produces higher quality embryos produces, in these embryos, a mRNA profile that more closely resembles that observed in natural embryos.

Zygotic and Somatic Loblolly Pine Embryos

Loblolly pine cones were collected weekly from a breeding orchard near Lake Charles, La., and shipped on ice for experimentation. Embryos were excised and evaluated for developmental stage (Pullman et al. 1994). Stage 9 embryos were separated by the week they were collected-9.1 (week 1), 9.2 (week 2), etc. Staged zygotic embryos were sorted into vials partially immersed in liquid nitrogen and stored at −70° C. Somatic embryos for loblolly pine were initiated as described by Becwar et al. (1995) or with minor modifications. Somatic embryos were grown, selected, and staged as described by Pullman et al. (1994) and stored at −70° C.

Mass Isolation of Genes Differentially Expressed in Loblolly Pine Zygotic Embryos

The following RNA differential display method is sensitive enough to produce banding patterns from one mid- to late-stage embryo or 10-20 early stage embryos. This technique, which extracts mRNA directly from tissue using oligo(dt) beads, avoids losses inherent in conventional RNA extraction methods, is fast, reliable, and inexpensive. Differences in gene expression during development, as well as between somatic and zygotic embryos, can be easily detected.

To achieve these results, 50-100 μl lysis buffer containing 100 mM Tris-HCl, pH 8.0, 500 mM LiCl, 10 mM EDTA, 1% SDS and 5 mM DTT was added to 10-100 mg of staged embryos in a 1.5 ml tube. The mixture was ground thoroughly with an electric drill containing a plastic pestle bit (VWR, Cat# KT95050-99) that had been sterilized by autoclaving. An additional 50-100 μl lysis buffer was added and ground briefly. The grinder and vortex was washed with 100 μl lysis buffer. If multiple samples were processed, each is stored on ice until ready for the next step. The grinding tip was washed with sterile water and dried for the next sample.

After all the samples were ground, they were spun at 4° C. for 15 minutes in a bench top centrifuge at 14,000 rpm. 8 μl oligo(dT) coated Dynal beads (mRNA DIRECT Kit, Dynal, N.Y.) was placed in a 1.5 ml tube. The Dynal beads were washed twice with a 100 μl of the above mentioned lysis buffer and suspended in an equal volume of the lysis buffer used in tissue grinding. If more than one sample is handled, the beads for all the samples can be washed together and dispensed in several 1.5-ml tubes. The cleared embryo lysate (after centrifugation) was added to the beads and mixed well.

The mixture was then incubated on ice for 5 min., placed on a magnetic stand (Promega) for 5 min., and partially dried by careful removal of the liquid. To this, 100 μl of washing buffer with LiDS containing 100 mM Tris-HCl, pH 8.0, 0.15 mM LiCl, 1.0 mM EDTA, and 0.1% SDS was added, (mRNA DIRECT kit.) The mix was transferred to a 200 μl PCR tube. The beads were washed once with 100 μl washing buffer with LIDS and once with 50 μl washing buffer containing 100 mM Tris-HCl, pH 8.0, 0.15 mM LiCl, and 1.0 mM EDTA. (mRNA DIRECT kit.) The beads were then washed quickly with 20 μl 1×RT Buffer (25 mM Tris-HCl, pH 8.3, 37.6 mM KCl, 2.5 mM MgCl2, and 5 mM DTT) and 20 μl RT Mix containing 1×RT Buffer and 20 μM dNTP was added. The tube was heated at 65° C. for 5 min. and cooled to 37° C. 1 μl MMLV reverse transcriptase (Promega) was added and the mixture was incubated at 37° C. for 1 h. with occasional shaking. Next, 20 μl of water was added to the RT reaction, mixed and a 1.0 μl to 20 μl aliquot of the PCR mix containing 1×Perkin-Elmer PCR buffer, 2.0 μM dNTP, 1.0 μM T12VN, 0.2 μM arbitrary 10-mer, 1 unit AmpliTaq (Perkin-Elmer), 50 μCi α35S-dATP (Amersham) was taken. PCR using temperature settings of 94° C. 30″, 40° C. 1′, 72° C. 2′, 40 cycles, and 72° C. 10′ extension was performed with the Perkin Elmer 9600 Thermal Cycler. All PCR product was run on appropriate gels for band visualization.

cDNA cloning of Differential Display Bands

All dried gels were marked with radioactive ink prior to film exposure for proper alignment between the X-ray film and the dried gel plate. Appropriate bands were marked by puncturing. A scalpel blade was used to score the gel around each band to be excised. The excised gel pieces were placed into a PCR tube containing 2 μl water. PCR was performed using a 50 μl PCR mix (same as for differential display with the following modifications: the primer concentration was 1 μM, and the dNTP concentration was 200 μM; no α35S-dATP is added.) The cycle settings were the same as above.

A portion of the PCR products was run on a gel to determine amount and size of PCR products; DNA that did not correspond to the size of the original differential display band was discarded. The remaining PCR fractions were purified using CHROMA SPIN-100 columns (Clontech, Palo Alto, Calif.) according to the manufacturer's instructions. The purified PCR fragments were cloned into the pCR2.1 TA cloning vector (Invitrogen) according to Invitrogen cloning protocols supplied with the vector. The only variation from the standard protocol was an increase in the molar concentration of PCR product to vector (over 100-fold); multiple insertions were not found to be a problem. All ligations were performed at 16° C. overnight, transformed into E. coli strain DH5α, and plated onto LB with X-gal/IPTG.

Five colonies were chosen for PCR verification; PCR products of expected size were selected. About 10 μl of the 30 μl PCR reaction was simultaneously digested with Nla III and Mse I overnight at 37° C. (a 5 h digestion was used as well.) cDNA clones were selected according to the colony PCR and the restriction enzyme digestion pattern.

The differential display protocol for finely staged zygotic embryos of loblolly pine as described above, has produced more than 600 differential display patterns and more than 60,000 bands. Within that set of bands, we have identified bands that increased and/or decreased during embryo development. From those bands cDNA clones of this invention were isolated and sequenced.

Detection of Gene Expression by Micro-Array Assay

In order to verify expression patterns of the cloned DNA in loblolly pine embryos a micro-array assay was developed. The cloned cDNAs were amplified by PCR and adjusted to equal concentrations (0.1 μg/μl). The cDNAs were then dispensed in the wells of a 384-well plate, denatured in 0.3 M NaOH at 65° C. for 30 min. and neutralized with 2 volumes of 20×SSPE mixed with 0.00125% bromophenol blue and 0.0125% xylene cyanol FF (5% gel loading dye). The denatured DNAs were then blotted on to Hybond N+membranes (Amersham) as arrays using a VP 386 pin blotter (V&P Scientific, Inc., San Diego, Calif.). Each DNA was dot-blotted four times as a quartet on the membrane. An example of quartet spotting is seen in FIG. 7. Each dot is about 1.2 mm in diameter and contains about 3 ng of DNA. DNA was then cross-linked to the membrane at 120,000 mJ/cm2 in a CL-1000 UV-linker. (Strategene, Inc., Upland, Calif.) The dot image of each membrane was scanned, numbered and saved in computer for later use in data digitizing.

The cDNA array membranes were pre-hybridized in hybridization buffer (0.5 M Na-phosphate, pH 7.2, 5% SDS, and 10 mM EDTA) at 65° C. for 30′ in a hybridization oven (Model 400, Robbins Scientific, Sunnyvale, Calif.) and then hybridized under the same conditions with total cDNA probes made from mRNA. The membranes were washed twice at room temperature in 2×SSPE and 0.1% SDS, twice in 0.5×SSPE and 0.1% SDS, and twice in 0.1× hybridization buffer. Each wash was roughly 20 min. Each membrane was then exposed to Kodak Biomax MR films.

The total cDNA probes referred to above were made by initially creating the first strand cDNA. This was accomplished by mixing loblolly pine embryos (0.05-0.1 gm fresh weight) with 100 μl lysis buffer (containing 100 mM Tris-HCl, pH 8.0, 500 mM LiCl, 10 mM EDTA, 1% SDS and 5 mM DTT) in a 1.5 ml Eppendorf tube. The mix was then ground with an electric drill as described above. Another 100 μl lysis buffer was added and the lysate was ground again briefly. The drill pestle was washed with 100 μl lysis buffer that was pooled with the lysate. After centrifugation at 14K at 4° C. for 15 min. in a Beckman bench top centrifuge, the clear embryo lysate was mixed with 10 μl Dynal beads washed twice with lysis buffer. The suspension was incubated on ice for 5 min., with occasional mixing to allow binding of Poly (A) RNA to the oligo (dT) on the beads, and then left on a magnetic stand at room temperature for another 5 min. The liquid was removed and the beads were moved to a 0.2 ml PCR tube by suspending in 100 μl lysis buffer.

The beads were washed twice with 100 μl of washing buffer with LiDS and once with 50 μl of washing buffer. The mRNA was eluted from the beads in 6 μl water at 65° C. for 2′. One μl T21VN primer (10 μM) and 1 μl SCSP oligo (cap switch primer, 5′-ctcttaattaagtacgcggg-3′, 10 μM) were added to the mRNA eluate. The mixture was incubated at 70° C. for 2′ and cooled on ice. Three μl 5×First Strand Buffer, 1.5 μl DTT (20 mM), 1.5 μl dNTP (10 mM each) and 1 μl MMLV Superscript II (Gibco BRL) were added to the mRNA-primer mixture followed by incubation at 42° C. for 1 h to synthesis first strand cDNAs. The cDNA was heated to 72° C. for 1 min. to degrade RNA and then diluted to 100 μl with water. The lysis buffer, washing buffer and Dynal beads are components of the mRNA DIRECT kit (Dynal, N.Y.). The first strand buffer (5×), 20 mM DTT and 10 mM dNTP are components of the SMART PCR cDNA synthesis kit (Clontech, Palo Alto, Calif.).

The first strand cDNAs synthesized as described above contains a T21VN sequence at their 5′ ends and the SCSP sequence (see “SMARTTM cDNA, Clontech, Palo Alto, Calif.) at their 3′ terminals. Total cDNA probes were made by PCR amplifying the first strand cDNAs using SMART cDNA PCR (Clontech, Palo Alto, Calif.) in the presence of labeling agent. Five 5 μl first strand cDNA solution was mixed with 5 μl 10×KlenTaq PCR buffer (Clonetech), 5 μl dATP+dGTP+dUTP (5 μM each), 1 μl T21VN primer, 1 μl SCSP oligo, 1 μl KlenTaq Mix, 5 μl 32P-dCTP (10 mCi/ml, Amersham) and 27 μl water. The PCR was performed using the setting of 94° C. 2′, 15 cycles of 95° C. 15″, 52° C. 30″, 68° C. 6′. The PCR products were purified using NICK column (Pharmacia) according to the manufacture's instructions.

Currently, high-density array Southerns for both somatic and zygotic embryos at all the developmental stages have been performed. The dot array Southern data indicate that gene expression of late stage somatic embryos resembles middle stage zygotic embryos; many transcripts present during late zygotic embryogenesis (ZE) are absent in somatic embryos and late stage somatic embryo gene expression patterns resemble the patterns of middle stage zygotic embryos.

Cairney et al. (In Vitro Cell. & Devel. Biol.-Plant. 36:155-162 (2000); Appl. Biochem. Biotech. 77-79:5-17 (1999)) have discussed how this gene expression information may be used to improve the process of somatic embryogenesis; the rare incorporated in their entirety. As shown in FIG. 2, the high-density array Southerns allows rapid evaluation of embryos subjected to protocol changes. Following the expression of a known gene permits inferences about metabolism and is very valuable in developing media-improvement hypotheses. Further, detailed gene expression studies may help by providing an understanding of the timing and location of gene expression (e.g., in situ hybridization). The isolation of key genes also provides the ability to monitor the expression of these genes as stage specific markers and allows protocol variations to be quickly evaluated.

EXAMPLE 5 Identification of Markers for Superior Performance in Tissue Culture”

The evaluation of tissue culture modifications for pine somatic embryogenesis, depicted in FIG. 8, is typically a lengthy process. However, where molecular tools are available, potentially improved media or genotypes can be discerned more rapidly, thereby avoiding the months of costly evaluation. (See FIG. 8) Table 5 illustrates this proposition.

Table 4 describes several publicly available clones. Lec. Fie, and Pkl, used to provide a representative model for this example. Any clone within Table 1, SEQ ID NOS: 1-327, can be substituted for those in Table 4 to assay increased performance in tissue culture. Any promoter within Table 1, SEQ ID NOS: 328-334, can be incorporated with those in Table 4 or SEQ ID NOS: 1-327 to assay increased performance in tissue culture. In this scenario, Table 5, a representation of the information contained in FIG. 9, shows performance of selected genotypes (260, 480, 499, and 500) in various media (1133 or 16) determined by the total number of embryos produced per medium as described by Pullman and Webb (1994), incorporated herein. Embryo maturation was determined by the presence of recognized morphology according to methods previously mentioned above. (Pullman and Webb, (1994)) Genotypes that produced high, medium, and low numbers of embryos were selected for RNA extraction. Gene expression assays, such as DNA arrays, Northern blots, slot blots, etc., were used in attempt to correlate embryo performance with mRNA abundance for selected genes. In the example shown in FIG. 9 and Table 5, expression of loblolly pine genes, designated as Lec, Fie, and Pkl, obtained from the Pine Gene Discovery Project, was evaluated. The preliminary correlation appears to be that the high levels of the Lec gene's mRNA correlates with greater number of pine embryos. (See table 5.) These experiments can be further expanded to incorporate additional or alternative genotypes with the prospect of identifying a large collection of gene indicators of good or poor performance in tissue culture based on high or low mRNA levels. It is clear from the above that this approach, using the sequences disclosed in this application, can evaluate a genotype entering tissue culture, saving both time and expense.

Somatic Embryos

Immature zygotic seeds were collected from loblolly pine genotype 260 (mother tree BC-3, Boise Cascade). Somatic embryos were initiated as described by Becwar et al. (1990) or with modifications in media mineral composition. The early stage somatic embryos were grown in cell suspension culture medium 16 and sub-cultured every week (Pullman and Webb, 1994). The embryos collected from the suspension, which include stage 1 and stage 2 somatic embryos, are referred to as stage S embryos. At the end of the subculture week, the somatic embryos in the suspension were settled in a cylinder and transferred to maturation medium 240 (Pullman and Webb, 1994). Resulting somatic embryos were selected, staged, sorted into vials containing the same stage, and stored at −70° C. until analyses were performed.

Probes

For the following example analysis RNA was isolated from embryos at different stages in development, early stage somatic embryos and late-stage somatic embryos. The cDNA probes used in this example are not contained in the SEQ ID NOS: 1-327, but rather, are generic, publicly available pine sequences obtained from the Pine Gene Discovery project located at (http://www.cbc.med.umn.edu/ResearchProiects/Pine/DOE.pine/index.html). These clones are homologs to the well-studied Arabidopsis genes that have been shown to have significant influence on embryo development in this plant. The pine clone names (first column) and corresponding references for the Arabidopsis homologs are shown in Table 4. The three clones listed, Lec, Lie, and Pkl, are for representative purposes within this example and it will be clear to one skilled in the art that any of the SEQ ID NOS: 1-327 could be substituted for those here as all will help identify conditions for improved performance in culture.

Probes were made by preparation of DNA using Wizard Minipreps (Promega, Madison, Wis.) and cDNA inserts isolated by restriction enzyme digestion. For the cDNA probes, 50 ng of the isolated cDNA insert DNA was used to make 32P-labeled probes with Ready-To-Go DNA labeling beads (Amersham Pharmacia Biotech) according to manufacturer's instructions. Blots were prehybridized (7% SDS, 1% BSA, 0.25 M NaPO4 (pH 7.2), 1.0 mM EDTA) for 3 hours at 65° C. and hybridized in fresh buffer at 65° C. for 12 to 18 hours (4). Each blot was washed 6 times with the following conditions: 1) RT, 2×SSC, 0.1% SDS, 15 min; 2) RT, 2×SSC, 0.1% SDS, 30 min; 3) 42° C., 0.2×SSC, 0.1% SDS, 15 min; 4) 42° C., 0.2×SSC, 0.1% SDS, 30 min; 5) 60° C., 0.2×SSC, 0.1% SDS, 30 min; 6) 60° C., 0.2×SSC, 0.1% SDS, 30 min. Blots were exposed to a phosphorimaging plate for 10 minutes. Screens were read with a BAS1800 (software v1.0) and images were manipulated with ImageGauge (v2.54) (Fuji Photo Film Co., Ltd., Kanagawa, Japan).

The hypothesis tested within this example is that genotypes that produce large numbers of embryos have high Lec expression and low Pkl expression, poor genotypes have the opposite pattern, and that Lec and Pkl expression act as indicators of embryogenic potential. FIG. 9 shows that Lec is not expressed in late stages of embryogenesis in somatic embryos. The Lec gene is expressed throughout embryogenesis in Arabidopsis. The blot reveals that the Lec gene is a useful early expression marker for embryogenesis. One interpretation of these results is that the somatic embryos do not express Lec in the manner that Lec is expressed in zygotic embryos, i.e. the use of Lec expression has highlighted a defect in gene expression in somatic embryos. This defect could be used to identify desirable genotypes, i.e. those likely to progress through development and produce a large number of healthy plantlets compared to undesirable genotypes that will cease development prematurely or produce low numbers of plantlets. This is an example of the principle described pictorially in FIG. 8.

The results described in the previous section of Example 5 reveal ways in which gene expression analyses can be used to improve somatic embryogenesis based on several genes. However, this principle applies as well when the assay is expanded to determine the expression of hundreds or thousands of genes simultaneously (e.g. by DNA arrays). We can create hypotheses which state that expression of a single specific gene can be used to determine the potential of a culture, or hypotheses that state that the expression of a group of genes (e.g., hypothetical genes A, B, C, D, E, F) acts as an indicator of high embryogenic potential. For example, all these genes may be expressed at a high level in cell lines that produce large numbers of embryos, thus we would select cell lines which exhibited this characteristic. Alternatively specific levels of expression for genes A, B, C, D, E and F may be required and a combination of high and low expression of particular genes will identify desirable cultures. Alternatively, experience will determine that certain exceptions can be tolerated.

While the previous paragraphs discuss numbers of embryos produced, the principle applies to ANY desired characteristic: by establishing a correlation of gene expression with e.g., germination potential, embryo size, growth of plantlets in their first year, disease resistance of mature plants, environmental hardiness or wood quality. Any trait where could be evaluated by these gene expression assays and correlations with gene expression established, resulting in a molecular tool which could be used to predict desirable characteristics. Explicitly, we could use these gene expression tools to select cell lines which will produce high quality plantlets months before they grow into plantlets, or cell lines or juvenile plantlets which will produce hardy trees with desirable wood quality, years before these traits are expressed.

TABLE I Embryo cDNA Phase Clone Nucleotide Sequence SEQ ID NO:1 Late LPS-001 GGTACTCCACCGTAATAACCCTTGGGAAATAGCCTATGATCCAGGGGAGGCAACC ACCTATATCATTGACAACAGCGAAAAATGTGGCGCAAGAAGTTTCACATACAATTCA TGGTTACAAAGATCACATACCAGGTGTTGGAGCAGATTCGATAGATATTGAAGATAT GAAGCCAAGGAGTGGAGCAGTTATTGAAAAGGGCACAAAAAAATTTGCCATTTACA AAGATGAAAATGGGCTGATTCACAAATACTCGGCAATATGCCCACACATGAACTGT ATTGTGAAATGGAATCCTATAGACTCAACTTTCGATTGCCCCTGCCATGGTTCAATG TTTGATAATCTGGGTCGATGCATCAATGGACCTGCCAAGGCGGACCTATTTCCCGA AGATTAACGATAGTTGTTTGTACATGTAATTATCTTGATATTGTATATATATGTATTTA AATTATACAGTACAATAAATCCATGTTGCAGGCTATTTCTGCTTGATAATTTAGCTC CAGATTATACATAACCAGTTATTGGCTGTTTTCCCCTGGCAAAAAAAAAAAA SEQ ID NO:2 Late LPS-003 003GGTACTCCACAGAAAGAAATGATTTGACAGAAAAAGAGAGCTGTAGGATTGGG AAACCCTGCAGTGGATATATACAATGTATATGTACTCTGTCTGTTTTTCTGTTATTTG ACGGAAATAAAAACGCCATAGCGACGGATGACTGTAAATCCTTAGGGACGGATGAC TGTAAATCCTTAGGTTGGAAGATTACAAACGACATATGGGTCTTTCAATTTTCAGAT TTCTGTAAGACTTACATTTCAAAGACTGTTTGGATGGGCAAAAAAAAAAAA SEQ ID NO:3 Middle LPS-004 GGTACTCCACCAGAATGCCGCAGTTTAGTTCTCTAAAGCAAGCAGTAAATTAATTTT GTCAAAATCTAAAGAGTGTATAGTATCAGTGGGTTTGTATTTCCTAGTTTGCCTACA ATAACGATGGGGATTCACCAGTTTTTGTAGAATTTGCAATCATCGGATGACAATTTC AAAGTTTTCTCTAAGTCACCCGCATTGATATCGAGAAGCCTTCCATTTTCAATTATTT AATATCAGAAAATCTTTTCAGTTGGCAAAAAAAAAAAA SEQ ID NO:4 Middle LPS-006 AGCCCAGCTGCGAAGGGGATGTGCTGCAAGCGATAAGTGGTAACGCCAGGTTTCC AGTCAGACGTGTAAACGACGCCAGTGATGTATACGAATCACTATAGGCGATGGCCT TCTAGATGCATGCTCGAGCGCCGCAGTGTGATGAATTGCAGAATCGGCTGGTACT CACGGGCTAGAGAAAGGCACAAGCACTTTTTGTCATTTTAGGATCAGAGGCATTCA GGTATAGGAAGGGTGGCTCAGATAGGCAGATGGATCGGCATTTTGCCCAGTCATG AAACATTTTATGCATGTTATTGCCTCCCAAGGACGAAATCAGTTCTTTGTGCCTTCT GGTGATATCACTTCAAACAAAAGGCAACAGTTCTGTGATTTCATATGGTTTGTCACT GAATATTTTGTTGCAGATGTTCTCTACTATTTTTTATCTGCTTTCAAGTGATTATTTG TTGATTCCCCATGGATAGTTATGCTAATCAGTTGCATTTCTCTTGTACCAGTCAACA AACAAAAATGCTTGTAGGAATCCATTACTATTTATTTTCAGACAGGTAAACGTGTAG CTAATTGTTCTGGCAAAAAAAAAAAA SEQ ID NO:5 Middle LPS-007 TCCAAAATACAAAGGCTTTATTTGCATCATGATATAATACAAAGTAAGAAATTTACCC AACTGTTTAACCTAATAATAATACAAAGGAAGCATTTTACCCAACTCTTTAACGTAAT AATACCAAAGAGTGGAATGCTTTATTGACCAGCAAGACCTTGAAATTTTTATAACCA ATGCCCATCAACAGAGCCTTTCTTAAAAAACGCAAAGCCCAGCTCTGTCACCTTATT AGTTAGTATAAACTGACATTCTTCCAAGCTTGTGTGCGCAGAAACAATAAAGAACT CACCTTGGTTTAAAGAACGTGCCATGAAGAAAACGTCCCAAGAAAAATGAAATGGC TCCTTCGACCATTCAGTCCTCCCTAGAAAAATCAAAAGACTCCTTCGACCATTAGGT CCTCCAATTGGGCATCTAACTACAAGCGGTC SEQ ID NO:6 Middle LPS-008 GGTACTCCACGGGCTAGAGAAAAGGCACAAGCACTTCTTCGTCATTTTAGGGATCA GAGGCATTCAGGTATAGGAAGGGGTGGCTCAGATAGGCAGATGGATCGGCATTTT GCCCAGTCATGAAACATTTTATGCATGTTATTGCCTCCCAAGGACGAAATCAGTTCT TTGTGCCTTCTGGTGATATCACTTCAAACAAAGGCAACAGTTCTGTGATTTCATAT GGTTTGTCACTGAATATTTTGTTGCAGATGTTCTCTACTATTTTTTATCTGCTTTCAA GTGATTATTTGTTGATTCCCCATGGATAGTTATGCTAATCAGTTGCATTTCTCTTGTA CCAGTCAACAAACAAAAATGCTTGTAGGAATCCATTACTATTTATTTTCAGACAGGT AAACGTGTAGCTAATTGTCTGGCAAAAAAAAAAAA SEQ ID NO:7 Middle LPS-010 ACGACGTGTAAACGACGGCCAGTGATTGTATACGACTCACTATAGGGCGATTGGC CTTCTAGATGCATGCTCGAGCGGCCGCAGGTGATGGATATCTGCAGAATTCGCTT GGTACTCCACGGCTAGAGAAAAGGCACAAGCACTTCTTCGTCATTTTAGGATCAGA GGCATTCAGGTATAGGAAGGGTGGTCAGATAGGCAGATGGATCGGCATTTTGCCC AGTCATGAAACATTTTATGCATGTTATTGCCTCCCAAGGACGAAATCAGTTCTTTGT GCCTTCTGGTGATATCACTTCAAACAAAAGGCAACAGTTCTGTGATTTCATATGGTT TGTCACTGAATATTTTGTTGCAGATGTTCTCTACTATTTTTTATCTGCTTTCAAGTGA TTATTTGTTGATTCCCCATGGATAGTTATGCTAATCAGTTGCATTTCTCTTGTACCAG TCAACAAACAAAAATGCTTGTAGGAATCCATTACTATTTATTTTCAGACAGGTAAAC GTGTAGCTAATTGTTCTGGCAAAAAAAAAAA SEQ ID NO:8 Middle LPS-011 GGTACTCCACGAAGCAAAAAGAGTCAGGGGAATGAAGATGGGGGGCTCCGACAAG AAGCGGATCAGAGAAGAGCAGGAAATGAGTCCACCTGAGGAATCCTGGAGACAGA AACAGGGGCGTTTTAATGGAGTTTGAGGCAGGGATGGCCTATGATAAACCTGAAAAT GCCGGTGCAGGTAATGAGAATTTGCCAGAGTTTTGCTCTCTTTCAAATGAGTACTC GATGTTATTGAAAGATCCATGGAGTTGGGAGGATAGCACTGGTTTCGGAATCCGAA GCTTAGCTGCTGTCAGGAAGCAGTCTTGTATATTGGACTATCTCCATGATTCTGCT GTAGATAATCGCTGTGAAAAGGATTTTGCCGAGCAGCACAAGGTACAGGAAGAGG AGGATTGTTTGAGAAGGTCTCTTTTTGAAGCCACAGATGATCAGCTCTGGAGGCTT CAGAGTCTTTGCAGGATACAGAAGGTCTGTTTCCTCTGGATTCCGTGGGTAGCCAT GATTGCACGACCTTGTTGCAGGATGAGAGCATTGTTCAGGGCGCTGCTCTTACTT CAGAATTTGGGAACAGGATGATGGTCACAAGGATGCCAAAATTCATGAAGATGGCA TTGGTTTTGTGTATGGGAGTGGGATCTCGGATTGGATTCGGAGGGCTCCCTCGAA TCAATCTGAGTTTTCTGAATCTGTTGAATTTGAAAGCTCTATGTTTTCACTGTAATTT GGGTCTTTTTAATTTCTTCCTATGTAATTTGGGTGTTTCTAATTTCTTCCTTCAGCAA AAAAAAAAAA SEQ ID NO:9 Middle LPS-012 GGTACTCCACCATATCCAGGTAACAAGGGAAAACAGAGTCAGCTTCTAGTATGTT GTATGCCTTGCTCTGTCTGTTTTCTTTGATCTTTGATGCCAAGCAAGTTGAATGTGA TCACTAAATGTTGCTGGCAGTAGAGCTGGAGATGTGCTGTCTCTTTGGTGTCATTA GCACAGAAGCTATTGGAGAAATGATTATTATCTGTTTGATAACTTCTAGAGCATTTT TCTGCTTCCAATTCCACAAGGTGGAAAGTGCAAGGATGTTTACTTTCTTAAACTGTA CTTGCCTTGTATTTGATGATGTAAGGTTGTGTGGCAAAAAAAAAAAA SEQ ID NO:10 Middle LPS-013 GGTACTCACCATATCCGGTAACAAGGGAACAAGTCAGTTTTAGAAAGTGGACCCCC GGTTCCGTCGTTTTCTTGATCTCGGAGCCAAGCAAGTGGATGTGATCACTAAATGT TGCTGGCAGTAGAGGTGGAGATGTGCTGTCTCTTTGGGTCATTAGCACAGAAGCTA TTGGAGAAATGATTATGGTATTCCACCATATCCAGGTAAACAAGGGAAAACAGAGC TCAGCTTCTAGTATGTTGTATGCCCTGCTCTGTCTGTTTTCTTTGATCTTTGATGCC AAGCAAGTTGAATGTGATCACTAAATGTTGCTGGCAGTAGAGCTGGAGATGTGCTG TCTCTTTGGTGTCATTAGCACAGAAGCTATTGGAGAAATGATTATTATCTGTTTGAT AACTTCTAGAGCATTTTTCTGCTTCCAATCCACAAGGTGGAAAGTGCAAGGATGTT TACTTTCTTAAACTGTACTTGCCTTGTATTTGATGATGTAAGGTGTGTGGCAAAAA AAAAAAA SEQ ID NO:11 Middle LPS-014 GGTACTCCACCATATCCATGTAAACAAGGGAAAACAGAGCTCAGCTTCTAGTATGT AGTATGCCCTGCTCTGTCTGTTTTCTTGATCTTTGATGCCAAGCAAGTTGAATGTG ATCACTAAATGTTGCTGGCAGTAGAGCTGGAGATGTGCTGTCTCTTTGGTGTCATT AGCACAGAAGCTATTGGAGAAATGATTATTATCTGTTACATAACTTATAGAGCATTTT TCTGCTTCCAATTCCACAAGGTGGAAAGTGCAAGGATGTTACTTTCTTAAACTGTA CTTGCCTTGTATTTGATGATGTAAGGTTGTGTGGCAAAAAAAAAAAA SEQ ID NO:12 Late LPS-015 GGTACTCCACTAGACCGGGTAGGGTCTCTCCATGGTTTTGCGACTAGGTTAGGTG TCCTGTTCTGTTAATGATTTTGAGGTTTTGTTAATTGTGAGTATGTTTCCAGGGTTTT GAACCTGGGTACTCGGCCTTTGTTGGAATGTAGTCTGGTTAATTTATATGTATATGT AACCTTGGGGTTTCGAGCCCAGTTCTCTGTTCTTCTTGAAATGAAATGCGATTTGTT CTAAAAAAAAAAAA SEQ ID NO:13 Late LPS-019 ATATATACGTATGGTATTCCACAGCATGAACTCTCGACATTATATGCTTGTTATAGT TTTTAAGAGAGGAGACTTACCTCACACATGTACAGCTTTTTATTGTCGTGCTTTCAG TTGATGGATGATTGTTGTAGTCCTGTCATTGGTTGGACAATTTCATCATCCTAAAG ATCCAAGAATTCATGTGGCAAGAAACTTTAATAAAGTCAAATATAATCCGATGACGT AACCCTAAAAAAAAAAAA SEQ ID NO:14 Late LPS-020 GGTACTCCACTAGTGATCGATTCTCTGTATGTGACGCTGCGCGGCGGCTATAGC GCTTCACTGAGAATGTACGGTATATTATGATTGATGTGATGGATTTGCTCCGCAGC TTCGGCTGTTGTATCTGCTCACTTCGGCGTATATATGTAATATGTTGCTTCTTCAGA GAGATGAACTTCCCCCTAAAAAAAAAAAA SEQ ID NO:15 Middle LPS-023 ATAGATCATTTTAAAGTTTCAGTGATTTGAATCTAATTCCACTGCATTTCCTCGCAAA CTGGCAGTCAAATAGTATTCCCTCTTTCAGTGACAGGCTGGCAGGTGTTCATTCT TATACAAACATGATTATCATAATTCCATTAATTCATGGCGTTTTCTTTGCCAAAAAAA AAAAA SEQ ID NO:16 Late LPS-024 TTTTTTTTTTTTAGGGAGAAAGGTAACTTCAGCCAGCTTTCAAAGGCAACACCTACA AAAGGGGTGACTGAGAACTCAGACACAGACGACAAGTGATCATTCGGGCCAGATT TTTGTTGAGAGAGTTGTAGTGTGTAATTGATTCATTTCATACATTTGATATGCAAGC CTGTACAATAGCCTGTGACTGTTAAGGGCATTCTTTTGTCTCCCTGTTGCTATTTGG GTTTCCGGTGTGTTCATTTTCACTTATTTTTGTGTTTTAGCTGGAAGAATTTGAGAG GGTAGAATTGTGTCATCGCTATGGCTTGTGCATGACTCATGAGCCAGCAGTTGAAA CTTTTATTTATTAAGTTATAATACTATGTCTTGTCAATTCTCAATAAAAGATATTTTAT GCTGTTGGGCAGCATCTAAAATGTTTTGTATGTTAGCATAAAATCCCATTTTCTATA AGTTTTTGCCAAAAAAAAAA SEQ ID NO:17 All LPS-025 AGCAGGTTCAGTCAGACGTGTAAACGACGCCATGATGTATACGAACTCATATAGGG CGATTGGCCTTTAGATGCATGTTGACGGCCCGCAGTGTGATATTCGCAGATCGCT TTTTTTTTTTTTAGGCATGGTGCGCGATGAGCTGATAGCGATGATGAAGACCAAGA CCACCAAAGGAAGATTCTTCAGAGCAAAAGCTACGGAGACAGAACCAGAGGACTC AAAGCCGGAATCCATTGGTGAGGTACCTGCAAATGTGTGATGGACTAACTAAGAAG GCTCCTTGAGAGGACCCATTAAGCACAGTGTTTTAGTCCCAAATTCTGTGCAAT TCCGTTGAAAATCATTTTTACGATTTTAGGTATGATGTGTGCAATTTAAAGTTGGAA TTATTGTGGGCAAAGGCTATAAGTGATTGTCTAATCCATTTAATTTATTATCTTTTGA CTAAGAGCATATCTAGGCTGGAAGAAATTAGGGCACATATGTTTTGTGAATTT GAACATTCTGGGTTTTGCAATGCAAAACACCACAAATATTTTATAATGTAGAGGTG TACTTTTTCTGGCCAAAAAAAAAAAA SEQ ID NO:18 Middle LPS-026 GGTACTCCACCAATAATACTGTCTGTTCTGCTCCCTGCTGATCCACTAAGCAGA TTATTTCTGTCCACCCCACTTTAGAGTCTCAGTTTGTAAAGCACTCCCTAGGAGCTA AACTCATTTCCAATGGATTAAAGCACTCCATAGGAGCTAAACTCATTTCCAAGGGAT TTTTGTCCATTTCTCTGTGCTAAAAAAAAAAAA SEQ ID NO:19 Early LPS-027 ATGTATACATATATGTGGTACTCCACACACTCAATAACAGCATCACAATCAAAACA AGAAGGCGGCCAGAAAGCTTTAAAATGCTAAGCCTACAGGTAATATTCACAACTGC ATTAAGCACCCCGCTCCTAGTTCTGAAGAAGCCAGAAAGCTTTAAAATGCTAAGC CTACAGGTAATATTCACAACTGCATTAAGCACCCCGCTTCCTAGTAGGCTAGTACTA GGACTAGGACCGCATTACCAGTTCCCTTATCTTCTACTCATCCTCTACAGGAAAAC TATGACTAAAACTGCATTACCAGTTCCCTTATCTTCTCAACTCGTCCTCTACAAAAAA AAAAAA SEQ ID NO:20 Early LPS-028 GGTAATTTCCACCCACCACGGGCTTTTTCAATTAACCCATTTCTACCACTCCACAT AGGGTTCTAAGTTTTGTGACTCACCCCCAATTTCGCTGATATTTTGCATTGCAGCT GTTTATCTACAGGAAATGGCTAATCAGTACTTTCAGAATTGGTTGCTTCTGTACAG GAAATGGATAATCAATCAGTACTTCTATACTAAGTTGCTTACGCGGGGATCAGAG CCTTACTTCAGAAAATTGAATACATTTTCTTCTTTGTGTATGTATCAGGCATGGAAT ATATGTAGCATGCCATGGAATGCGTATTTACTAGATTATCTTTTAATTTAATACATAT GTTGCTTACTAATTTGTCCACAAAAAAAAAAAA SEQ ID NO:21 Early LPS-029 GGTACTCCACACACTCAAACAACAGCATCACAATCAAAACAAGAAGGCGGCCAGAA AGCTTTAAAATGCTAAGCCTACAGGTAATATTCACAACTGCATTAAGCACCCCGCTT CCTAGTTCTGAAGAAGGCCAGAAAGCTTAAAATGCTAAGCCTACAGGTAATATTCA CAACTGCATTAAGCACCCCGCTTCCTAGTAGGCTAGTACTAGGACTAGGACCGCAT TACCAGTTCCCTTATCTTCTACTCATCCTCTACAGGAAAAACTAGGACTAAAACTGC ATTACCAGTTCCCTTATCTCTCAACTCGTCCTCTACAAAAAAAAAAAA SEQ ID NO:22 Middle LPS-030 GGTACTCCACTATTAGATTGATGCAAGACCAACTGATCATGGCTAGGGTGTATCA AGCATTTCCCAGGCTAGGAATAATCTTGATTTATACCATGAATGATGCTTCGTATT AAAGAATGTCAACGTACATGGGTGAGACTAATGCCGATCTGATCTACCTCAAG GTAATAATTTTTGCATTAGCTGCTTCTAATCAAGAGTAGTAAGTGCTTCCATTTGC AAAAAAAAAAAA SEQ ID NO:23 Middle LPS-031 GGTACTCCACAAGGCATATATGGGCAATTGATTTTGCCTAGCCCAAATCCTATCA AGCTTGCGTATTTCTAAAAGATGCACTATTTTTTGTCCGAGTGTAGGTTTTGAATTC ATTGTAACATTCAGCAATATTAATTCAGGGGTAGCATTTCTGGCAAAAAAAAAAAA SEQ ID NO:24 Middle LPS-032 TTTTTTTTTTTTAGGGTAGAAAACCATGCTTCACTAACAAGGTATTAAAATTACAATAT AATTCTGGGTGTAAACGACCTGATAGATGATCTGCAAGTGCCAGGAGGCAATATCT AGCAGAATACGTACAAATAAATTGCCAAAAAAAAAAA SEQ ID NO:25 Late LPS-036 GGTACTCCACCAATGATCACCCATGTCCATTTGGTTAATTCAATGTCAAGATTTAGT AGTTCCGTATTCCCTTGGGTAAGCTGTAATGGTCCATTTGGGAACAGTCCATGTTT GGGACACAAGTTCAATAGAGATGTCATCCATAAATATCCATAAATATGGGTATGAATCTCTTCCTC CCTCTCCGCCCAATAATAAAAAAAAAA SEQ ID NO:26 Late LPS-037 TTTTTTTTTTTTAGTAGCAATAGCAATCCATTTTAGGGATCTGCAGATCAGTGACTAA GTGACCCCTACCCCCAAAGGATTAATTGTACTTTGGCTTAACCACAAAACCTGATC AATGTGAAGTTTTTACCCATATTAATTCCCAAAAGTAACTACAAATTCCAG AGTACATTTTTACCCAAAAAAAAAAA SEQ ID NO:27 Middle LPS-038 GGTACTCCACTATACAATATCAAGGCATATCTGCCGGTGTGAATCATTCGGATC TCAAGCACTCTCCGTGCCGCAACTTCTGGCCAGGCTTTCCCTCAATGTGTGTTTGA CCACTGGGATATGATGGGATCTGATCCATGGAACCTGGTCCCAAGCTGGGCAG CTTGTGACTGATATCCGTAAGAGGAAGGGTCTTAAGGAGAGTATGACTCCCTGTC AGAGTTCGAAGACAAGCTGTAGAGCTTTGCTATGTTTGCATGTCGGATGCTGTCAA GATTGAGGAACCTCCGAGTATTAACACAGTTTTGTGTGCTAGGACTAAATT TATGCTATTCACGTATTTTTGTGATCTGTATTTATGTTATCACGTATTTTTGATTG GAAAATACTTTTTACAAGTCATCCATTAATCTTTTAAATGTTACATAATTCTCTCTGT C SEQ ID NO:28 Late LPS-040 AAGCTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATC GGCTTGGTACTCCACTATACAACATCAAGGCATATCTG SEQ ID NO:29 M,L LPS-041 CTTTTCTTCGTGCTTTCGTGGAGTACC SEQ ID NO:30 Middle LPS-042 GGTACTCCACAAAGTGAGATGAGTGATATGAGGTCAAACACGTAAATGACAATAGC TATTATTTCCCCACTTGTTTGTGGCTGTGTATATTATACTTCATTGTCAGGACTTTTG TATGGTTGAAGTTGCAAGGTTTTGGCAAAAAAAAAAAAAAAA SEQ ID NO:31 Middle LPS-043 GGTACTCCACCTCCAGCTGCTTATCCAAGTACTACGGATAGTTCATACTCCTATTAT GCTTCTGCCAAGTGAACCAGAAGGCTTCTGTTCTACACTAGCAAACTGATAGCTC GAGCATCTCATTTACTAAGGATGATAATTCAAAATTGTAACATTGCAAACATCAGC AAACATCAGCATCAACTCTGTTACTATACAAGCAATGGATGCGTCGCTGATGCTG CGGGAGAGTAAATTTTTAGTTTACTGCGGTTGGTAATTGAGTAGGTTGACTTACATT TCTGTTGTAAAGCCGTTGTCGGGCATTGTTTATCTGGCCGAGTTAGCGCCAGGAAG CTAAATGTACCAAATATTTATTATTTTTATTAAGAATATAAAATTTAGTCGTCTTCT GCTGCCCAAAAAAAAAAAAAAAA SEQ ID NO:32 Late LPS-044 ATGGCCATGGACTTATGACTTTCAAAACCCTAAAACCTATCTACAACTTTCCACGCT GAGATTTTCCGAGGAAGGCATTCTAAGCCATTCCCACCGTACTTTAATAAAATAAAA ACAAGAAGATAGTAAAGCTAAGCTACAACCTTCCGCCAAAAAAAAAAAA SEQ ID NO:33 Late LPS-045 GACCGCTGTAGGAACACTAGCAGATTCCGGAACATAGGTACTTTGAACATCTTTC ACTCCTCACCATATGAATAGTGAGTCGATGGCGGCCTTAACAGTCGAGCATGCTTT GATTTCGTCTCTCTCTCTAGTGACCGGAAATCAATCTCATTATATATGTCATTATGCAT TCATTCCCACTTCCTAACTTTCATTATTGTTCAAAACTCGCCTTCCTGAAAATGCTA TAATAGTAGGGGAATATTGAAAAACTTCCGCCAAGCTAAAAAGGCACTTAAAGCAC CTGGATTTGAACGAGGATTTCCCACCCCGATGAGGGGGGGTGTCTTTCCATTGAG ACGATGCCTTACTCGGCAGACCCTGTGGGGGTCTTTATAGGTGACTTAATACTTAA GTATAGGACTAAGAGAGAGGAAGCGACCGCCTCTCTGATCAAGCCTTTACGTGC GACGTGCCCAGGTAAAGGCTGATCTCACCAAATAATTCAGAGAAAGAAGATGACTC CACAGTAGCGAAACTCCTACATTGTCTTACATATCGTAACAAGCGGTC SEQ ID NO:34 Middle LPS-046 GACCGCTTGTGCGTGGTGTCCAAACTAGGACGCCTTAGTTTTCCTAAGAAGGAAAC CCAGGCGTTGACTTGAGGCAGACTTGTGCTTCTGGGTACTCTCATCACTGCGTGA CCTTGAGAAAGGGACTTTACCTCCAGGATCCTCAAACTTCTTCTCTGTAAAATGAGC ATTGTAATAATTATATCCCAGGCTTATGTTGGGAATATTCAATAAATGCTCCCTTCAT TCTTTAAAAAATAAGTAAAGACAGCCTGAATGGGAGCCACGTTCTCATTCTTCTTTC TCTTTAAAAAATAAGTAAAGACAGCCTGAATGGGAGCCACGTTCTCATCTTCTTTC TCTATGCAAAATGTATTGTGTAATGTTTGTGTACTAGTAGTTCAAGAGCAAATAAGT AGTTGGTTAATGGCTAACATATTTCTTAAATTTGTAACTGTTAAGATAAACATTGAAC AAGGAAAAAGATTCGTAACTGAAATGTAAAGTCATTTGACCCTGGATAGTCAATGAC AATCTTATTCACAGTGTAATAAGTAATTCATAACGAGATGATTATTATGAAATTATCA ATAGCCTGCTATATCACTTTATGTTTATGATCCACAAGCGGTC SEQ ID NO:35 All LPS-047 GACCGCTTGTGGAAGAAAAGAAAGAATCTCTTTCGGATTCAATAGGCGGTATGGGA GAGTCTGCTACTGCCTCTTGGATTCCAGGAATCCTAGAGCTGGGAGTATGAGTTGG AGATGATGAAGGTGTCTCTTACCTATTTCTTGAAGTGGATGGAGTTGTGAAAATCG ACTTCTAGCTTCAGCTAAAAACCTTCCCCTAGAATCTCTTGCTCTATGCATATCATTT TTATTTTTTCTTTCAAGATAGGGTAATAATTCTCTTTCTGATCTTCCAGGTCACTCTA GGTGCAAGAAGAGAGCATAGTCAAGGAACTATTAAACCAATAACTTTCTCTTTTCTG ATCCTCCAGTTCACTCTAGGTACAAGCGGTC SEQ ID NO:36 All LPS-050 GACCGCTTGTGCAAAGTAGATACCGTCCTGTTCCGGTGAATTGAAGTACATTTTCA AAATGCGCTACTATGACATTTTATAGGATGTCTGAGTGTAAAATAATGGTACTGGTT GTTGCAAAGAATCTGATGTTTGGATGTATGGAACTATAAATAGATGTTATTTTCTGA TCCAGAAGGCTTTCCTTACCAACTGATTTCATCTCAGAAACTAAAAGCTCTTGAAC TTGTGTAGATGGGGCTTGGTCATTGTAGTTTAAATGCATTATGTAGTGGCAAAAAAA AAAAGTTATAGCCTACGTTCAAATGGATTTGCTCGACAATCAAATGAATTACAATT GAATATTCATGTATACCCAAATTTTAAATGTAGAATGACATCATCAATGTAGACAAAC ACCACTGTGCTTGTCCTTGATATCCTCTTTCACCATATAATTGGTGGCTACTCAAA GTCACTATCTGATGCAACTACAAGCGGTC SEQ ID NO:37 Late LPS-051 GACCGCTTGTTCAATGCAGAATCTCGAAGAGATGTCTTGGACAAATACTGAACTGG CACGATTGGTGTAGTGCGGTTCAAAAGGCGCTCCAGATTCGTCTGGAACGAATCTT CATACGCTGAACAATTAGACATCTTGTACGCAAGAGAATTACGATCGGCCATATAAA AACCCCAAAGAGAAGAAAGTGTTTCGAAATTCTCCCAGAAAACAGTCTTATGCCAC CGATTTGTCTTTTCAACATGCATTTGCAATGAAGTCTTTGGATTCTTACTGTGAGTG CTGATCAGCAACGGATTTTCGATCTGTATAGCTCTGCCGATTCCTGGTTAAAGCAG CTAAGAGTTAGGCATCCAGATTTGAGTTTTTTGCATCTCACAATGTTTGAATACAT TCAAATCCATTGTTGGAGTAACCTAACAACAACTGTACTCTTCTTCCTATTTCTGAA GCCCTCTGCCAGTTTAAGGCAGAGAACTGAGTATCTACAAGCGGTC SEQ ID NO:38 Late LPS-052 GACCGCTTGTATAATAAAGTGGTACCGCGTCCTGCAAACAGGGTTCTCTTGCCATC CTGCTACAACCCTGCAGTGGTCGCAGTAGAGAGAATCGGAGCAACGAACGTTTTC CCGAATATATGGAGCGGGAGGAAGAGTTTTCTTGCTGATGATCCAATCGGAGTCGA ACTGCCACCGCTGGATGAAGGGCGGCGAGGAAATCTTGGGGGGCAGAGGCCCGT CGGCGTAGGAAATAAGAAACGATTTGATATGGAACGAAAGGGCCCGTCCAGGGTT CGATCCCCGGCAGGGCAGCCAGCCCCGAACTAAACAAAACAATAAGAACAAACAG CAAAGTAAAAGAAAGCACCAGAAGAAACAGCAGCAGACGAAGAGTAAGGAGCTGC CCACAAGCGGTC SEQ ID NO:39 All LPS-053 GACCGCTTGTAATCCACAGCATTTTCAATAACTTCCTGAGGTGACATCCACCTCCAC TCAGAAAACTCGGCTGCATCTGTCCCATCACCAGCTAGATTGATCTCACTCTCGTC TCCTCTAAATTTTAGGAGGAACCATTTCTGTGCTTGACCTTTCCATTCGCCTCCCCA CAAGCGGTC SEQ ID NO:40 Middle LPS-054 GACCGCTTGTATATAATGTGAAGACACAATAAAATTTTGTCCAACAAAGCAACCAAA CGACCAAAAATTTAGCTGTGACATCAAAAAGCTCAACCCCTACAATGAATGTAACCT TAATCTAGAAAATTGATCCATGATCTCCACTGAATTTCTCGTCATCCTGAAGAAT GAGAAACTTAAATGTACCCGATTCCCTCAACCAAGCCCCCACAAGCGGTC SEQ ID NO:41 Early LPS-055 GACCGCTTGTAATCCACAGCATTTTCAATAACTTCCTGAGGTGACATCCACCTCCAC TCAGAAAACTCGGCTGCATCTGTCCCATCACCAGCTAGATTGATCTCACTCTCGTC TCCTCTAAATTTTAGGAGGAACCTGTGATTGGTAGGGGCTTGTCATAAATGATCAAG ACGACCCGCATCGTGATGCCAAGCTTAGTCTTTCTACTTACTGTCTATGTAATGGTC ACGGGCCCTTCTTATGTTTATGTCTCTTTGAAATGGACGATTTTTTTGTTTTAGGTAT ACGGGCCCTTCTTATGTTTATGTCTCTTTGAAATGGACGATTTTTTTGTTAGGTAT TCAGTTTCTGAAGCTGTTTTGGTAGTAAACTGGGCTCAATCATTTCTGTTGCTGAA CTTTCCATTCGCCTCCCCCACAAGCGTCAGCCGAATTCTGCAGATATCCATCACCT GGGGGGGCCGCTCGAACATGCATCTAGAAGGCCAATCCCCTATATGAATTCTATTA AATCCCTGGCCTCGTTTTA SEQ ID NO:42 Early LPS-056 GGTGCGATCCAGAACTATCATCTCTCACTGCTCGTGAACAAAATGCTGGTCAT AGCCATCACTAAGGCTAAGGTACTATCCAGCCAAACTGATCTCAAATAATAATTTCA TAAGCTTAAATAAATAGTCCAGCCAGTAGATGGAGCCAAAAAGCCATAGAAGCTC AAATACTTGTGGTATCAATCTCTCCTCTGTTAAGGGAGGTATCAGATCAGAAGCACT AATCAAATGCATACATAAATGCAGTAGACTGCAATAAAACAAAATCTGCAGATAGCA ACAGAGCGCTTAACGAACGGAAAAGAGTTTAACTTGATCTATCACAGGATCGCACC SEQ ID NO:43 All LPS-057 GGTGCGATCCACAATAGTTCGTACGAGCGACGTCTATCTGGTTAATCAGAACACAT ATCTAATTTGGAAATTTGTGGGCATAAAGCTCCACAGTGTAGGTGGGCTAATCCCA TGAAACATTACTCTTCAAACATCATACAACTGAGGTGGAAATGCAAAAGATTATT ACTGGATGCTGATCTGGGACTAAGGTGGTGGCCATTGGTAATGTGTGTTTCAGAA ATATATCTTCATGATGATCAGTAGTTGCATCTGGTTGGAAGAATGATAAATTCTGGT AATTTGTCTTGGGATCGCACC SEQ ID NO:44 Late LPS-058 GGTGCGATCCAACTAGAAGAATATAAAGAAAAATTACGGACTACCAGAAAACATCA CATCACAGTGTATGCATTCTCAATAATCAGAACTGTACTGGCTAATATCGCTGTGC CTGTCGTTTCATTTTCCTGTCATCCGCATAGGGCCCCTCATTTTCCCTATCTTGCAG AAATCCAAGAAATGCAAGAAAACCAAAAAGGAAGAAACCCCCAGAGGAAGAGTCCG AAGAGGATATGGGTGTCAGTCTTTTTGACTAGATTGGAGGATCGCACC SEQ ID NO:45 Early LPS-059 GGTGCGATCCCAGAACATTTCAGACAGATTAAAACAAGATCTAGTCAATCCTACAA GGGAAACTTTTGTCAAGATCCGGATCCAGATTTTCCTCAAGTAAAACTAATCTCATT AAATCCAAGCCAATCTCTAGCAAAATTCAAACACTTTTTATTAAATCCAAGCCATATA TCTGGCAAATTCACCGAAATATGTACAATCGCAGCGCATTGCTTGGCTTGCGACAG AAACCATATTCGCACGTCTTCATAAGGCTTTGGATCGCACC SEQ ID NO:46 All LPS-060 GGTGCGATCCAACAACACAGCTTCACACTTACTCCATCCTCTGGAACTCTCATCAG ATTGTGTTCTTCGTAGACCAAGTTCCTGTGAGAGTCCACAGGCACACTGAGGCTAC AAGCGATGTGTTCCCTAAAGAACAGGGGATGTACATGTTTTCCAGCATTTGGAATG CAGACGACTGGGCAACCAGGGGTGGGCTTGGGAAGACAAACTGGACTGCCGCTC CATTCAGCGGATCGCACC SEQ ID NO:47 All LPS-061 GGTGCGATCCCAACACCAAGTGAGAATGAAGCAATATAAATCAGCAGACTCACTAA AGCCAAAACAGTGAAAAATGTTTCATATTGGGAATCTGCTCCAGAATGAGCCTTCAA GTAAAATGACAAACTAACGAGGAAGAGACATACGGCCATGCCCCCAGATGAGACC ATGAGGAGGAGACGTCGTCCGGCTTTATCCATGAGCCATACAGCAACTGCAGTCAT GATGACCTGGATCGCACC SEQ ID NO:48 Late LPS-062 GGTGCGATCCAGGAAATCATCAAAGGGGAGCACATCCAATGTGCAAAATAAGATCA TCATGCAGCAAGATCTCTGAAATATAAGCTCTGTAAGACCAATCTGAAGTGCTGATG ATCAATATGAACTGAAACATCATGCCACAATGGGCTGGTACTTGTGCAAAATTCTCT GGCATGTGATGAGAATCACATGGTTACCTCTTTGGATCGCACC SEQ ID NO:49 Early LPS-063 GGTGCGATCCAAAGAGCCTTCTTGCAGACAATCCGTGAAAACATGGCTATACAATA AATTCCCAGTTTGGAATTCTAAATAAAACTGTTCAATATTTGAAGGCCTCTGATATCA CAGAGACTGATATTAGAATGGAAGCATGTAGCAACCCTAGAAGCTTTCGCATAAAG ATACCAGATTAATTCATAAGAAGGATCTCTCGTTCACCAGTCACATATCACAGTCGG ATCGCACC SEQ ID NO:50 Late LPS-064 GGTGCGATCCGTTAGATGAGCTGCCAAGTATGGAATTATTGACATTTTTGGACGGG TTATGGGCAGAGGGATGTGCCAAGCTGAAGAAGATACCGGGGTTGGAGCAAGCCA CAAAACTTCGAGAGTTAGATGTTAGTGGGTGCCCTCAGTTAGATGAGCTGCCAAGT ATGGAATTATTGACATCTTTGGACGGCTTGTGGGCAAAGGGATCGCACC SEQ ID NO:51 Middle LPS-065 GGTGCGATCCACATAGTTTGAATGCAAGGAAATTGCACATACTTCGTGGGGAATTT CGATGGCAAATCAGTCCAGGTAAATGACTTCTCAACATAGGTCCAAAACTCTTTCAT AGACCAGATCTTGACCGTGTTGTCCATGCCACAGCTGCAATACGATATACATCTG AAGGATGAAAATCTACACTGAGAACTTCATTGCGATGTCCCCCAGCTCCAGCAAAT ATCAAAATGCATATTCCAGTTTGAACATTCCAGAGTCGTACAGATTCATCTTTGCTA GCAGATAAAATAAGGGAAGGTTTCAGTTGCTTGGGTCCTTATTTCATTCACAGAACT CCATGGCCAACGAAACTCTTATGGACTTTTCATTTGCACATCCATTCTCGAATTATA CATTGTGACCGCAGCCACTAATAATGGGGAACATCACTCGCCTGCCGACTTATGTG TTAAAGAATC SEQ ID NO:52 Late LPS-066 GGTGCGATCCCCTCCATTTACCATGGTATACTGTTCCAAAGGTTCCAGAGCCTAGC TCTTTCAATTCTTCAAGGTCAGCATTCTTTATATCTGGAAACTTCGCTAGCTGTGT CTATAATCACGAAACCCAGACGGGGAACTAATAGGCGATGAAGTTCTCTTATCCA TAACCGTTGCAAAGATCTTACACGGAGTTTTCTCTTCTTCTGCGTGGCTTTtCTTTC CCGTATTCTCGGATCGCACC SEQ ID NO:53 Late LPS-067 GGTGCGATCCATACATGCGAGGGCGCATGAGAGACTACCACAAATCCTACATACCT CCATTCACCCCTGGATCGGTTATACAAGGATTTGGGGTGGCTAAAGTGATACTCTC AAATCACCCAGACTTCAGAGAGGGTGACTTGTATCTGGTACTATAGGATGGGAAG AGTACAGCATAATACCAAAAGGGAGTAACTTAAGAAAGATCAAATATACGGACGTAC CACTTTCATATTTTGTGGGTGTTTTAAGAATGCCCGGGTTTACTGCTTATGCTGGAT TCTTTGAAGTTTGCTCTCCTAAAAAGGGGGAGCATGTTTTTGTCTCTGCCGCTTCA GGAGCTGTTGGCCAGCTTGTTGGGCACTTTGCAAAGTTGATGGGTTGCTATGTTTGT TAGGGAGCGCGGGTAACAAACAGAAGGCTGATCTGCTGAAACATAAAATGGGCTTT GATGATGATCTCCACCATAACGAGGAGCATGACTTCGATGTGGCTTTAAAAAGGCA TTTTCCAGATGGGATTGCACC SEQ ID NO:54 Late LPS-069 GGTGCGATCGAACTGAATGAATGAOGTTGCCAAGCTATGTTTGGGAATTAAAACTT GAATGCCGTTATTCTCTCCTTTTTCCAAAAGGGCCTTTTCTGCCAGAAAACCTTAAA TTTCTGACTGGTTTCCAAGTCCAATTTTTCCAAATATGGATTGGTTTACCATTGAAGG CACCACCATGCTCTGAAAGTTATGGACTGCACTTGCCCCAGTGCTATATTTAGTCC AGATAGCGCTTGTGTCTCTAAATGCATCTCCCTGCTCGGATATCACC SEQ ID NO:55 Late LPS-070 GGTGCGATCCGAACAGAGGGAGCAGATTTTGCCCTGCAAGTATTCACAACATTAG AGAAGCCCTGCCAGAGATATGGGAGGAAGAAGATGCAGAGAACACCAAAAATGTT GTGGGATCAAGAGGAGCGGATGCAACTATAGAAACTGTTGTCACGGCATAAGCCA TCGCCTCATTGAATGAGGGAATGGAGGACTAGACAAATCCCTTTGGATCGCACC SEQ ID NO:56 Middle LPS-071 GGTGCGATCCGATTGGGCAGCTGCAGCCTTGGGAAGCTTTAGAATCAAATTGCAC TCATCCTCCAGGAGGTATTGAGAAGTCAATTTCTCAAGGTCTACAGTGACAGAAGG AACCATCTTGACAATCTTATCAGGTTTCCTGCTCTGGTTAAACACTTCAACTTTGAC AGGACGAGAGTATGTGACTAATTCATCTTCTTCATCAGACTCTACATCTCCTGTTT CAAGAAACAAAGATACTGATCATCACTAGGGCAAGAATTGATGATTTTGATATCTCT GGAGAAGCCAGTGTTTACATTGGTTTGCTTCATGGCCACCAGTCTATGGCATAAAG CTTTCCCGAAAGGGTACTTGGCAGATTTAACAGAGCCCAACGTTATATTTAAGGCC CATCTCTTTGCTCTCAAAATTTTTCTTGCATCCTCTGGAGAATATAAAACCCCTTGG TGTCTCTTTCCACAAACACCTTCTCATTGATC SEQ ID NO:57 Late LPS-072 GGTGCGATCCAACTGAGAGGGTGTTGGTGGAAAGATGACACCAAGTGGGTTCT ATATTCTCCAGAGGATGCAAGAAAAATTTTGAGAGAAAGAAGATGGGCCCTTAAAT TAACGTGGGGTTCTGTTAAATCTGCCAAGTACCCTTCAGGAAAGTTTATGCCATAG ACTTGGTGGCCATGAAGCAAACCAATGTAAACACTGGTTCTCCAGAGATATCAAAA TCATCAATTCTTGCCCTAGTGATGATCAGGAAGATGTAGAGTCTGATGAAGAAGAT GAATTAGTCACATTCTCTCGTCCTGTCAAAGTTGAAGTGCTTAACCAGAGCAGGAA ACCTGATAAGATTGTCAAGATGGTtCCTTCTGTCACTGTAGACCTTGAGAAATGAC TTCTCAATACCTCCTGGAGGATGAGTGCAATTTGATTCTAAAGCTTCCCAAGGCTG CAGCTGCCCAATCGGATCGCACC SEQ ID NO:58 Late LPS-073 GGTGCGATCCATGTAGTGCCAACTTACGAGATCACTAACTTTAAAACTATCATGCAA TTGGCCAATAGAAGCGACACTTGCTGTGCCAAAGTATCGATAGGCTACTCCCGATG GCTCAATCATATATAGTTGGGGCCCATCTCTATCATAACCTCCAAGGATAACTCCAG ATCCAAAAGGCCTTAACCACCAATATAGTGTGCACAAATGCACATAACTGGCAACA CGTTCACAAAGTTCCTTAAT SEQ ID NO:59 All LPS-074 GGTGCGATCCCATGGGATAGTTGCAAGACACACAAATTTGTTGTGAAAGAAGAGAG ACACGCACAGACAACCATATGATCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TTAGCAAAATTCAAACACTTTTTATTAAATCCAAGCCATATATCTGGCAAATTCACCG AAATATGTACAATCGCAGCGCATTGCTTGGCTTGCGACAGAAACCATATTCGCACG TCTTCATAAGGCTTTGGATCGCACC SEQ ID NO:60 Early LPS-075 GGTGCGATCCCACTGTAGTGTCCTTGTTGAGCATAGTTCAAGCTGTTCTGATTCC ACCAGTTAGTGGCCCAACACTGCGAGGTGCTGCCATTTCCATTCCATTCACAGACG TCAGTGTTGAAATTCATATAGGAAGCCACAAAGGGTGAGGAAGACCAATCTATTTT ACTCGCCCCCCTTGAGTTGCCCACTGGTCTCCGCTCCATATGCTAGAGAATACTCT CATTGCCTGCTCATTCGGATAGGGAACGCCTATGTTTTCATTGTTTGCAAATACTCT GATTGGCAAACCATCAACGAAAATCGCAATTTGCTGGGGGTTCCAGAGAATAGAGT AATTGTGGAAATCTGCTGTAGGATCGCACC SEQ ID NO:61 Early LPS-076 GGTGCGATCCCACACTCCTAACCCTATTATATGTCTCCCGTCCATGGAGTCATAGA AGGAGTACGATAATATGCCCTTCAGCCAAGCGAAGTATGACTTTAGTATGGCCAGG CAGCAGTATGAAAGCACATCTTGTTTCTTCCAGGTCGGCATGTATAGTCTCCGGAG GCTAACAATGTCACCCAAAGCTAATTGCGCAAACGGAACTCCTCTGCTGATCTCCC GGGAACTTAGGCGGAACCACCCTGAATCCACTATTCTCACCGCGCATTTCATCCCT TTGGTGAACGCCGCTGCCTCTGGTAGATACAGAGCTGGCTTGTCTCCACTGGAAC CCCCTTTCCGGATCGCACC SEQ ID NO:62 All LPS-077 GGTGCGATCCAAACTGTGGTTATCGGTGGAGAGATTAAGCAATTTATTGGAGTAGC AAGTACGCTGAATTAAGGGGGTCCATCTTCAAGCAAAGGTTCCTTTGGATGACTAT GTGTTCTGGAAGTGTTTATGGATCAATCATCTCATAAATTTTGGTAATATATAACAGA AGATTATGGCATCCAGTTAGGATGGTAGTTTCATTGAGGTATAGTAAAAACTACACT AGTCTTGTGTTGCCACCCACTTTTCAGAGAAGTCAGGAGGTCTCTTTGTGAATCATT GATAACTTTATGAGTGGGTACCTAAATGAAATATTTGCATCTTGAGTATATACTCAAT TGATCTTACTTGTGGATCGCAC SEQ ID NO:63 Middle LPS-078 CTTGGTACCGAGCTCGGATCCACTAGTAACGGCCGCCAGTGTGCTGGAATTTACG GCTGCGAGAAGACGACAGAACACCTATCATAACTTGAATTCTGATGCAAATCGGAA TTTGCCAAAAACTTGGACGGAAATATAATAGGCAATATCATCCCCGCAAGTAACAAA AAAATTGCATGAAAGCTCAAATCCTATGTGCTTTACACCTTGACTGCATACTTTCTC ATTGGAAAATACATCTCTTTCTTTTTCTGTCTCTCAGTCTTCAATGACGGCTGATGC TGGTAAGGCGTCGCCTGATAGCACGAGTCTTCTTGGGACGCAAATCAAGAGGCAG GTACTTCTTTTTTTTGTATGCTTCTCTTAATGCGGATCGCACC SEQ ID NO:64 Late LPS-079 GGTGCGATCCAAGATTGTACGGCACAGGCAAATGCTGTTCTTTTTCTTAATCACGA TGTGCTTGAAGAATATGAGCGCCGATGTGAACAGATCCACAACCTGGAGTTAAAAT TGGAGGAAGACAGAGCAGTGCTGAATAGGAGCTTGGCAGAAATAAATAGTCTTTAAG GAATCCTGGCTTCCCACATTGAGGAGTTTGGTTACCAGAATTAATGAAACTTTCAGC CACAACTTTCAAGGGATGGCTGTTGCTGGAGAAGTTACACTAGATGAACATGGCAT GGATTTTGACAAGTTATGGTATTCTAATAAAAGTCAAGTCAGGCAAACTGGACAGT TGCAGGTATTGAATTGCTCATCATCAGTCTGGAGGGATCGCACC SEQ ID NO:65 All LPS-080 GGTGCGATCCGAGGGAAGCGATGTAGTCTTGCCCCAAGCGACGACCATGATCCCT TATTCTTGGGCAATATGTGCAAGACGTGGACAAATGAAGCGGTTAAAGGGAAGCTT ATGGACTATGGAATAGAGGGTCTTGAAGAGCTAACTCTAGTGGGTGATACTCAAAA TGAAGGAATAAGCCGTGGTTTTGCATTTATAGCATTTCTACGCACATGGATGCGAT GAATGCATACAAACGCCTTCAGAGGCCAGATGTTATTTTTGGTGCTGATCGAACTG CGAATGTGGCATTTGCAGAGCCACTGCGTGAGCCTGACGAAGAGATCATGGCCCA GGTTAAGTCAGTGTTGTTGATGGGATCGCACC SEQ ID NO:66 Late LPS-081 GGTGCGATCCAGTCCTGAAAATGTACTTTACCATTTGTATAATGATGTAAAAATCTT GGCCATAGTCTGGTCAAACCAGACTGTATTGTTGCTAAAGTATGGAAATTCTGGC CATATTTTTGTCTAACCAGACTGTATTGTTGCCAAAGTTATGGGAATTCCGGCTATA TTTTTGTCTTCGAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAGATCATAGGG TTGTCTGTGCGTGTCTCTCTTCTTACACAACAAATTTGTGTGTTTTGCAACTATCCC ATGGGATCGCACC SEQ ID NO:67 Early LPS-083 GGTGCGATCCGCTGGAAGGTGGGCAGCTGGACATCTGGGAATTATAAGTCGAATG TCAATTGCTGGGCCATCTGGGGGATGAGCAATAGCATCGGAGGCCAAGTTCTTCT GCAGCCGGGCACCAAATGCCATGTGGAGGTCTGAATCTTAGTTTGGAGGTCGAAG TTTCAATCCCCTTGTGTTTACTCTGTTTCTGGTTTTATTTGAATAATTTGAGCAATTT AATGTGGGTCCTTAGTGCTTCTGTGGATCAGATTCTAGGGAACGCCATCCTGATAA GTAAAGATCCGAGTTTTAATGGAGATTCAATCTATCAGAATTCCATGGTGGTTTAA ATTCCCTTGTACTGTTGATCTACGTCGCTTTGTATATCAGTGTGTGTTAAGATTTTCT CAGAATCCACAGCTTTGTTATGGATCGCACC SEQ ID NO:68 Middle LPS-084 GGTGCGATCCAAGCACTTACGACTCCCAACAAGGACGGGAAACTCTAAAATCGG AAATATCATATACTGAGGCATCAACTTTGTTGATAAAACTTTAAACAAGAACAATATT TGCAGCATATTAGCCCACATGCCATAATGACAAACAAATATGAGAACACTGCCTACA GGTTTGCCAAAAGCATGGCCCTCACTTTTGCCCTGAGGTCATCAGGAGCTTCTGAG GCTCGAGAAGGAGAAAAAGATTGTGTCACTTCAGGAGCTGAGGCCTCCACATCTTT SEQ ID NO:69 Early LPS-086 GGTGCGATCCAAGGTACGAGCGAACAAGTTTCTTCAGCAAGCCACCTGGAACTTTC CATGAGTCCAAAACAAGTTGAAGAAGGCTTCTTTGGCTACTTTTAAGATGCTGAAGT GATTGTGCTCGCCTCTTGCACAGTTCAACCGCAATAACATTGGGTTTTACAAAACC GATTACCTGTTTAACCTGCTGTGCACTCTTTTTCGAAACATGACAAGTTCCAACAAG ATAAACTTCGGCCCCATTCTCGCCATTCCGCAAATAAACCACGCTCTCATCTTCTGT TATCGAACTCGAGTGCATGCCACGACGCTCAATTGCAGGATTCCAACCCCGGACTT GCGAATGGTGCAAAGCGATGCCCGTTTCGTCTCAGCGATACTGCTAAAGATCGGCA GACCCGAACCAGTTTGATGCTTCCATTGCCTTAAACATCCAGAGTTTTCCTTCGACC TTAAACCCTAACAAGATTACTGATTTCTGGTCCGGATGTTCACTGTCTGTTATACTT CTCACAAATCTGTCACACTCCTGATAATCTTCGGTATTGAACTTCATTGAATTGAATT TTCCTTCTCATTGGAATTCAATTGTACCTTGTAAATGTCTGGATCCTACACTATACCA ATATTTACAGGTCTGAGTATTTTGCCTGTAGTATAATTATCTTTCCTTCGGTCTCGT GTTTCCGTATTATTCGTGTAGGATCGCACC SEQ ID NO:70 Late LPS-087 GGTGCGATCCCGGGGGGAGGTTGATGTTCTGAGAGAATCAATGAAGGGATTTCAG CTGAGCTTGCCTTTTTGAAGACGGAATGCGAACAACCAGTCATTTGCAATAGCGAG AATTCTCTTAAGCCACTGCCTGCTGGGGAGGCGAGTTCTGATTCCGGTGATTGCAT CACTCAACGGCAGCAGCAGCGGCAGAACCTTTAGTTTCCCATGACAGGTCTCTCTG TACAAGTATCTTCCTGTATGATCTAATCCGGGTTGTTCGATTATCGTGATGTCTC CTGTATTGACATATTAGCAGAATATTACCATGATACGATGTTAAGTGGCATGGTTTA TGCCCTGCATGTTATGTTATGGAGGAGGTGAGGCATGTGGCGCTCATGGGAGGGC CCACATGGTCCATGGACGTCTTATTAAACGCATAGTCGTGAATGAAAATAGTTCAAT ACATTCAAAATTCCAACACAATTTCATTACAATGGAAGTGACTTCGACTTGAATGTT CATTGAAGCATTTGCATGCACAAACAAAGTATACTAGATTAGAAGAAAATTGCAAAA AAGGACATTGTGCCCTTCTTAGTGAATATATAAAGATGTTCTTCATGCTGGATCGCA CC SEQ ID NO:71 Middle LPS-088 GGTGCGATCCCAATAGCCAATATTGCCTCCAAGATAGCCTAGACTGCCTTTGCAT AGTTCTAGAAGCCAGTCACCCAACCTCCCAAAAGAAATTGCGCAATCTTTCCCATC AGTTTCCCGGGTATGTGTTCTGTCATTCCCCGAATTTTCTTTGGTTTCACTAATAG ATTTCTTTCCATGCACATTGCTTGTCTCCAGATCTTTTAGGTGTTCATCCATCTCTTA GTAGTACTAGATCGATGGCTTCCAAGAGAACAGGATCATATGACACTGTTGGAAAT GTAGCTGGAGCAGCAGTTGAGCAAGTGTCCTCTAGTCTATCTATCTATGAAAGATA CACATTGTTTCTAGACATGGATATCAAATTGAAATTGCCAGAAGTCCATGAAACATT TGCCGCCTTTTGAAGAAAGGCTCCAAACTGTCAGGGTTCGTGAACATCACATGTT CTCGCTGTCTGATCCCCCC SEQ ID NO:72 Middle LPS-089 GGTGCGATCCTCAGGGTAATGGCCTGGCTGAATCAAGTAACAAGAATCTTATAACC ATTATCTAAGAAGATAGTAGGAGATAACAAGCGGTCTTGGGACAACAAAATCAAGT GCGCTTTGTGGGCAGATAGGATAACTAAAAAGAAAGCCACTGGTAAAAGTCCCTTT GAACTTGTCTATGGCATGGATTTGACATTACATGCCCATCTTAAATTACTAGCTTAC CAACTCCTTCAACATTTTTCTAGTGATAAAGGTGTTGTCCAAAACATGGTTGATCAA ATTGTGCAGTTGGATGAAATCCGCAGGAAAGATTTTGATAGTGCAAAAATCAGTCT CCATTAAGAAAATCTTTGACAAATCTTCTCGGTCTAGATATTTACAGGTTGGAGATA TGGTTTTACTATGGATTCCACC SEQ ID NO:73 Late LPS-090 GGTGCGATCCTGCAGGCTTAGATAGTTTCGGCGCTCCTCTGAAAGAAGCACGAGT AGGTGTCTCCACATTAGGTGGCCTGATCCCTTGCCTGCACTTGCAGCTTGTCTTA CAACATCTCCTATGCTTTGATCCAGGCTTTTCACTGACATAACTTCAGGGGCTTCCT TCTCCCAGGGCCGTGCTGCCATCCAGCGTTCTAGCCAGCTCCATCCCCAATTTGG CTTGTTTGGGTCAATTTCCATCAGCATAGGATGAGCTGCTCCTCGTGTGCTTTTCAA TGACTGATGAGAATATGCGTTATGCCAATGCCCTTTCTCGCTTCATGGCTGCTTCTT GCTTGCTTTGCAAACTAGCCTCAATTTCCTCTTTGGATTGCAACTGTCATCCAATCC TTTGCTTCCATACTGGATCCAC SEQ ID NO:74 Late LPS-091 GGTGCGATCCCAAATGAACATTCAACATTCGATCATGTCAAGCGCTAAATGCCTTG GCAGCTTAAAAGCTAGACTCCGCAAGTGACCCTTCTGACTTAGTACACATATTAAG CTCATCAAGGGTCCAATTCCATGAAAAGAAATTTTAAAACGGTTACATATTCACAAG AACAGCACGAGATTTCCCAGATAGTCAACCACCAACTTGCCCTATCAGCCCAAATA TTACTCATTCCATGTTAAAAATAGCAAATTTCCAGATAGAATGTCGAAAGAGATCTT CATGCACCATATATGGACTCTTAAAACCAGCCAAAATCTATACTGCCATGCTTGGAT CGCACC SEQ ID NO:75 Late LPS-092 GGTGCGATCCTGGAGAGAGAAGCAAAAAGCCTACCATCTAAATCTACATCTAAAT CAGATATCTTTACTGTGAAAGGAATTGAATGCTGCTTCAGATATCCTACAAGAATA AGAAGAAAAGAATGATCAACTCCAAATCAGGCAGATGGCTCAGAATTTCCCGCAGC TTCATTTTCGACGGCCTCCACAACACCAACCTCGGCAGGACGTATTACTCTGCCAT GAAGTGTATAGCCAGGCTTCAAAACCACAGCCACACTGCCAGGCTGCTTACTAGCA TCTTGAACTTGAGATACTGCCATGTTGCATATGAGGATCAAACTCTTCATTTATTGG ATCGCACC SEQ ID NO:76 Late LPS-093 GGTGCGATCCCCAGAGGTTATTTGGGTTCAAAGTATTCTACACCAGTTGACATGT GGTCATTTGCTTGCATAATTTGAACTGGCTACAGGTGATATGTTATTTGATCCTC AGAGTGCAGAAGGTTATGACCGCGATGAGGACCACCTTGCCCTGATGATGGAGCT TCTTGGAAAAATACCTCGTAAGATCGCCTTAGGTGGGAGCTATTCACGGGAACTTT TTGACAGGCATGGGGATTTAAAGCACATTAGACGGCTTCGGTATTGGCCCTTGGAT CGCACC SEQ ID NO:77 Late LPS-094 GGTGCGATCCTAAACTGTATGTCTCCACAATTGTCTTCAATATAGAAGCAGCTACG CCCCTCCTAAGTCATCATAAGTTAAAAACTTCATCTTTCCAATACAATTAAACTATCT AGCTTATCAGTTTGGAATAGAGATACAAAATTACAGATAGATTAGCGAAACTGTGCC ACAAAACCTCTTCAAAATTAGAAGCATGATTGTCTACAACTCCACTTCAAAAAGGAG CTGAACCAGTCCTTCGAAGGGTGTGCTTTGGTTGTGGTGGAGGTACAGAAGGCAG CTAATTTCTCCAAGAACTGCTGTTTTTTTAGCCTCTCATTCTCCTCTTTAAGCTGCATC ACTTCATTCTCTAGCTCATTTGTGTATGCCTGCTTTCTTGCCCTGGATCGCACC SEQ ID NO:78 Middle LPS-095 GGTGCGATCCGAGTGATGGCACAAAGAAAAGCAATGATAGAAAACAAAGAACAGGT AGCTCAGAAGGTTCAGCAACTAGAGAGTCAACTTCGAGTTAAGGAGGGCGGGAG CAATTGGCAGATTCTTCCAAATTTGTCAAGATCTCTTGGCATGAGATGACCTTATAG GATGTTAAGGAGCAAGAGGATTCTAGGAATAATGCCAAGGATAATAAGACTAAAAG GATGCTTCAAGACCAGGTGGCAAGGAAGGCTTCTAATTCAAAGGGAGTTAGCAAC GGCAACAGATGCAATTCTAGGATCGCACC SEQ ID NO:79 Middle LPS-096 GGTGCGATCCTAGAATTGCATCTGTTGCCGTTGCTACTCCCTTTGAATTAGAAGCC TTCCTTGCCACCTGGTCTTGAAGCATCCTTTTAGTCTTATTATCCTTGGCATTATTC CTAGAATCCTCTTGCTCCTTAACATCCTATAAGGTCATCTCATGCCAAGAGATCTTG ACAAATTTGGAAGAATCTGCCAATTGCTCCCGCCCTCCTTAACTCGAAGTTGACTCT CTAAGTTGCTGAACCTTCTGAGCTACCTGTTCTTTGTTTTCTATCATTGCTTTTCTTT GTGCCATCACTCGGATCGCACC SEQ ID NO:80 Middle LPZ-001 ATCTAGATCATCGATCTTGTCCAAATTTTAACTAGTGAATAGTTTAAAAAAAAGCAA CTAGCAGAAGAGAACCTAACCACTGACAAATTGCAAATACTCTAGAACACTATTCAT CATTTTTTGCGATTCACGCTGGACCCACAAGAACCCCTTGAGCTGAACTTTCTTTTC GTTCTCCCTCCTTTTGGATCGCACCATCTAGACCATCGATCTTGTCCAAATTTTAAC TAGTGAATAGTTTTAAAAAAAAGCAACTAGCAGAAGAGAACTAACCACTGACAAATT GCAAATACTCTAGAACACTATTCATCATTTTTTGCGATTCACGCTGGACCACAAGAA CTCTTGAGCTGAATTTCTTTTCGTCTCCTCCTTTTGGATTGGACATCNAATCCTGCA GCCGGGGATTCATATTCTTAACGGCGCNCGCGNGGACTCCATNCCCCATATGATC TTTTCATCCTGGCGCNTTTAACTCTGAAGGGAAACCGGNTTNCCCTTATCCCTGGA NATCCCTTCC SEQ ID NO:81 Middle LPZ-002 GTGGAGTGTAAAGGTCAACGTGCCATCCGGGTACAAACTATTGTAGAAAAAATGGC AAAGTTAGGTCTGAAAATATCCATTTGGCCTGCTCTAGTTGTACAGTACATGATTTT GCACTCGCACAACAATGGACTATAATTATTTTCCTGGCAAAAAAAAAAAA SEQ ID NO:82 Late LPZ-003 GGTGCGATCCAGGACATGAGGCCGAGTTTGCCATTGTGATATGATTGAGGAAGTC CAGTCCTAAAATAGGTTTATCTTGATGTTTGACAAGAGATATAGAGGGGCATGATG ATTCATTGATCTGTTTGCAGATCTGTAACTGCAACCATTCTAATGACATAATAGCGC TATTGTTGGGTTCGTGTGATGACATAATAAATTGATTTAATTTAATAACATCTGTTA ATGCAATGGCTGTAGCTGCATCATCACCGTATCCATCGAATGTTCCATTTTTCCAAA TGTTTGTTTCCAAAACCAGAACACCAAAATGTCCCCTGCGTTTGTNTTGAAAAATAT TGGGCCCNTACTATACTATAATNTTTNGGCATACTATACTATAATGTTTCTCCCATTC CCCCCAAATGANTCCTATACAATCCTGGCCGNCTTTACACTCCTGACNGGAAACCC GGCTTNCCACTAATCCCTGGNCNANCCCTTC SEQ ID NO:83 Late LPZ-004 GGTGCGATCCGACTGTGATATGTGACTGGTGAACGAGAGATCCTTCTTATGAATTA ATCTGGTATCTTTATGCGAAAGCTTTTAGGGTTGCTACATGCTCTCCTCTTTTGTAT GAATTTCCATTCTAATATCAGTCTCTGTGAT SEQ ID NO:84 M,L LPZ-005 GGGGAGTGTCAAGGGATAAGTGGTAAGCCAGGTTTCCAGTCAGAAGTGTAAAGGC GGCCAGTGATGTAATAGATTCATATAGGGGAATGGAGTCACCGGGGTGCGCCGTT TTAGAATAGTGGATCCCCGGCTGCAGGATTTGATGGTGCGATCCTGCCCCTGATAA TTTGGTTGCAATGGAAAATGCAGTATTAGGTGCGAGATGTAAAGCCCGCCCGGAG CGGTGCATGAAGTACTGCAATATTTGTTGTAGTAAATGTGCTGGTTGTGTTCCCAG CGGTCACTATGGCAACAAGGACGAGTGCCCCTGCTACAGAGATATGAAGTCCGCA GCCGGCAAGCCCAAGTGTCCCTGATCTAGCACTCAGTCCAGTCGCTCACTTCTT TTATTCTTTTTTTTTATAAAAGTGACGAGGCCGTTTTTCTTGTACTTGGTGGCCATAT GTAGAGCGGTGGCTACTTCTCCTGTGTTAGGAAATGTTGCAGTACTAATAATAAGA ACTTCTTTGGCAAAAAAAAAAAA SEQ ID NO:85 M,L LPZ-006 GGGTTTCCTTAAGAGTTAAAGGCGCATGATGTATAGAATCATATAGGGGATGGATT CCCCCCGGGGGGCCTTTCAGAATAGGGATTCCCGGCTGCAGGATTGATAGTGCGA TCCAAGACACAGTGGAGTACCACAATGGGGATCTGGCCAGTGCTTTGTGGCTATTC ACTGCAGCTGTATTAAAACAGGAAGCCGCAAATGGCCAGAAGGCCATTGAACTTGC TGAGAGCAGACTATCTAAGGATGGCTGGCCTGAATATTATGATGGGAAGCTTGGAC GATATATGGAAAGCAGTCTCGAAAGTGGCAAACCTGGTCAGTTGCTGGATATCTT GTAGCCAAGATGATGCTTGAAGATCCATCCCATTTAGGTATGATAGCATTGGAAGA GGACAAAAAGATGAAGCCGTCCCTCACTCGATCAGCTTCTTGGATAATGTAAAATG GGGAAATCCTAAACTTTCAGGCCACTCTTGAATGTTTTGTCACTTCTGTATGACAAA TGAGGCAATTCATAGTACATGTTGTGCAAAAAAAAAAAA SEQ ID NO:86 M,L LPZ-007 GGTGCGATCCCAGAGAATATTAGTTCATGTGTTGCTCTCATTTTCTTCAATATGCAG GGCAACCATTTGAATGAAATTATTCCTTTCGAATTTCAAAAACTTAATAGGCTAACTT ATCTATCTGGAGCCGATTTTCATTGACGAGTAACCTGTAAGCTGGCCAGCAAAAGC CAACAGATGTTCAGCTCGTTGGAACCAGTTGAAGATGTAATAGAGATGGTGAATA ATCGCGGACGGCTCGGCCAATGGAATATTTGTTGCATCATCATCAAGGGGGTATGA ATTCCAAAGAACTTGTTGATTGAAATTCCCAAGCAAAATTCTGTGAAATGAAAAATTT ATTGAGACCATTGGGCAAAAAAAAAAAAA SEQ ID NO:87 Late LPZ-008 GGTGCGATCCAAAGAACACAAGATGGAGTTACCACAATGGAGGATCTTGGCCAGT GCTTTTGTGGCTATTCACTGCAGCCTGTATTAAAACAGGAAGGCCGCAAATGGCCA GAAGGGCCATTGAACTTGCTGAGAGCAGACTATCTAAGGATGGCTGGCCTGAATAT TATGATGGGAAGCTTGGACGATATATTGGAAAGCAGTCTCGAAAGTGGCAAACCTG GTCAGTTGCTGGAT SEQ ID NO:88 Late LPZ-009 GGTGCGATCTGTGTGGCTCTGAAACATCCCGGCTCCCCTCTGCACTATAATAATCC CAAAATTAAGTGAACCCAACAGAATTTGCTCATATCTCTACAGTTATTGCAGACTGA GCAAAACCCTCAAACTCATGTGACCTCTCAATAGGAGCCCACGCCCAAGATTTGTC CAGCATGTAACACACCTGATCGCCGCCACTGCAAGCACAACCGCTCACAAATATCT TGTCACACCACACTGTTGCGCAAGTTAACAATATTCATGTCTCCAGGAAAGAAATGC CACACTTCCCAACATTCTCTTTACTATTATAGAACTTCCTTGTTGCTATGGAAAAAAT ACATTCCCAACGCAGAACCCCAACGGGGGTTCCCAATANCCCATTTCCCCCCTNTC CAANCCNNTNTGAATGCNCCCCATNCCCTATTGNATNNTTTAAATCCNGGCGCNTT ANCTGGAAGGNAACCCGNTTCCCN SEQ ID NO:89 M,L LPZ-010 GTTTCCCAGTCAGGACGTGTAAAACGACGGCCAGGGATTGTAATACGATTCACTA TAGGCGAATTGGAGGTCGATCCGTATAGGTAGTTGGATGATGAACGGGCAAAGAA GGCAAAGGAGTACAGTGATGGATCCTGTAATTCCTGTTTCAGAAAACAGAAAATCT GCAATATAAGGATGGCTAAGCTTTTCAGCTATGAAAATATATGGTGCAGTGGCACT CATATCAGTTGCAGAGTTGTCAATATAACTTTTGTGAATAGGAAAGTTGTCCTCTTT TAGAGTGCAGAAATCCTGCAATATAAGGATGGCTAAGTTTTTCAGCTATATGAAAAT ATATGGTGCAGTGGCAAAAAAAAAAAA SEQ ID NO:90 All LPZ-011 GGTGCGATCCTACAGAGAGCAGCTTGACGAGGGCCAAAAGGTTAAGGATGAAGAA TGACCTCAGCTAGTAAGGTTTACAGAAGCAGCAGAGGCATCTTAACTGTTTTTATGT TTTGGCAAAAGTTGTTGCGTCGGTTGTTTAATCCAGGATTTCAGATGTATTTTGTAG A SEQ ID NO:91 Late LPZ-012 ATTGTAATACGACTCACTATAGGGCGAATTGGAGGGTCCGATCCTGCGAGACCGA GGGTTCATTTTCCTTTAGACAACGACGTTCAGTGGCGACCAGAGTTTCCCAATCAC TTCAGCGATTCTATTCCTTCGTTGTAATAAAGCTTAAGGAATCCATGCAAATTCCT GGAAGGTTTGAATATTTATATTTATTGGCAAAAAAAAAAAA SEQ ID NO:92 Late LPZ-013 AGGTGACCGTCAAAATGATTGCAGAGGACTTAGAGAGGGAAAACCGTTCCGATCT GGTGAAGCAATTGGATGAAGCAGCTCTGGAATTGATTCCCGTTCTGATGATATCG TACGGCTAAGCTCAGCTCTTCAGGCAATTGGCAGAGAATACGATTCTTCAAATGAG ATGACAGATTTTAAGAAACTTATAGATGAACATATTTCCAAGCTTGAAGCGGATTCC CCTACGGTCACCT SEQ ID NO:93 Late LPZ-015 AGGTGACCGTAAAATACTATGAGAAATGCTTTCATCAGGCACCGCTGGTAGGTTTT CTTCAAGCTTTTCATTAGGCAAAAGAGGCTCCGTGAGTTGATCGTAATCTCTCCT TGAATGGCCATATTGACCAGACACTCTGATTAGAAACTGGAATACAACTGCACATAT AGTCATTCTTATATGATCATCCTTCTGCACTTCAGCATCCTGCGGCAACTCTCAT CCCGCCATACTGCAGAAAAATTATTTGACTCTTGATCATGTTGTAGATGAATCTTCA TGAATCTTCTCATCTTGCATTCTTGTCTTTATATCTTTAGGAAATTGCATCTGGTAAA AGTATAAATGCATCTTCACTGGTTGCTTCAGTTTTGCATGCTCCTGTCTTCTTGTT TACATGTGATCTACCAAATCATCTAATGTATTCTCTCAATGTCTTGTGGACATCTCC TTCATTCCGAGATTACCAATCATCTACCCGAATAAATGTGCCCCGTCAGCAATGCC GTTTTGGTCC SEQ ID NO:94 Late LPZ-016 AGGTGACCGTAGTAGGCGTCCAGAGGCTGACAAAATCCCAGGCCTGTGCAAATCT GGAAGCCGCATGCAGGGCCGTGGCACCTACACTTGCGGCCTTAACAAAGTGGCC CGCGGCACCCACTTCTACCAGTGTGTTTATATTCTTGTGCAGCCAACACCAGAGGT TATGCAGGCGAATGTGCTGGCCAAGCGTTGTTTCGGCTGTCCGCAAACCCTCTC GAGTCTTACATGCCGCATATGAGTCTTGTGTATGGCGATTTGCCTGACGACGAGAA AGAGAAGGCCAAGGTTAAGGCGCAGCTAAATTCGATGAACTTATCCGCAACACGG ATTCCAAGTCTCCAGCTTGTGCTTGTACTCGACAGATCTGAAAATAATCCTCACTCA TGCATAAGTGCAAAATGTGATCTTAACCTGCTCTGAAAATTACATAA SEQ ID NO:95 Late LPZ-017 AGGTGACCGTCCACGAGAATTTGGCTTCAAAACCCTAGGAGAGGGATATGAACTTG CCAAGGCACAACTGACGCATGAACAAGACGTAAAATGACTCATTAGACACTGACAT GATAATGAAAAACCTATGAATGATGATAGACTCAGCTACTTGATGACATCGCCCGC CATTTGGACATCTTTATAAGGAGTTTAAGCAAACCCTAGACCTACTGCCTAGTGACC AACTTTTGCTTGACGACTCACTGAAATGACAATATTTGACCTTGACACTTCAAAATC ACTTTGTAGGAACTCATTTGATCACTGGAGGACGGCTGGAAAGACTGACACTAACA GGACTTTATATATGCACCTCGTCTATCCGAACTT SEQ ID NO:96 Late LPZ-018 AGGTGACCGTAAGCACAAGTCGTCAAAATTATCTCTATTCCGGCAGTAAAAACCTAT AGCTAATGATGGATCAATAGCACTAAGTGGCAGCTGGCGTACATCACTGCAATGAT AAGAACCAGTATCAACCCCCATATTATCAGGAGATATCTCCACCACCTGCTGCACT ACATGTGGATCTAAGTACAGAGCCTGATCATCCTGAACACCAACAATATACGTTG GCTCCAGGCTTTCCACCAGCAATACCAAGACTTTGGGGAAATGTGAACGTTTCACG AAGTGATGGTACATACCTGGGTTGATCTCTCTACACCAAGAACAAGCGGCACCA AAATCAGGATAGGCACTTGGTCTTCCCCTTCTCCATTGGACCACTCTGAACACAGC CTCGCAGCATCATCAATGCAGATAACTGGAGTCCCTCCACGGTCACCT SEQ ID NO:97 Middle LPZ-019 AGGTGACCGTGAATATGGTGGGTATTTGCAGGGCAAGATTCAGGATGCTGCTCCC GGAGCTTAAGTAAGGTCTTGGACCCTAATAAATTCAGGGTATATGCATTATGTATAT GCTCTCATTTAGCTGCTCATCTGATTTCCATTGGGTGAATCAGTTGTTTTGCAGTAC GTGGGGGTCTGTTATTTTGTGAGTTATGGTGGAGTCATTTTGTTGTTGTTGTT TTTCTTATCTAGGGTTTAGGGTTTTGCCCTGTAATCGGTCTTCCCCTCTCTCCTGCG CTTGAATTTGACCTGAAACCTCTTGAAGTAGGCCCTGGTTTTCTGGGCTTTGACGA AAACCATGGTTGTGGATCTCCTCTCTCCTGCTACGGTCACCT SEQ ID NO:98 Late LPZ-020 AGGTGACCGTCCTACTTCACCGCAGTGACTTCCATCTGGTTTTAGGAAACTATCCC TAAATCCTTCACTAGTTGACGAATTGATTGACTCAAATCAACTGTCGGTCAAACCCA CTCTCTCTGAAAGTGAATTCTATGAGTCTATACCCAACCCAAATCAATAGGTTGAGG TAACAGTTGACCCGATTTCACCTTCAACAAATCATACCTTTCCCGAAGAGAGTGAAC ATGATTCAACACAAGTTCTTTTTGGTTCACCAGATTCAAATGAGCTTGGGGGTAATC CTCCTGTTCCATCAAGACAAGAAGAAAATCCTCCCACTCTCGTAACTCAAGGGTTAA TCCTCCCATTTCTACGGTCACCT SEQ ID NO:99 Late LPZ-022 AGGTGACCGTCNCGGGATAGNTGGAGCCNAACAAAGTACNGAANAAANTGAANCG CNCTGGGAAGCGNGCNGAAANNTGGNCANACNTGCCCTNCNACTCGGTTACCCAG CCNTTCTCTACCNANAATTATNACNNNANAGCNCCATGCTGGGTTTGTNANAAAAN AACNGCTNTTGATAAAATTACATAGANTNNNGAACACGTTAAGAGGAATATGGTCC ANATNCATTNTNAATNANNANTTAAAAACTNNNTATGTNCTAGNGTCNCCT SEQ ID NO:100 Late LPZ-023 AGGTGACCGTACAGCACAGGTATACAAATCATAGAAATGGGCTTCTGTCCAACTGT CAGCAGAAGCGATATGAAACCCAGAAGCATCAACTCTGCTTTCAATTTTTCAAGCG CTTCATATAGAGCCTTTTTATTTCTCTGGAGAGCCAATTGCTAGCATAATGAATAC CATGTTCAAGAAGTAAAGAGATGACCACAAATGCCAAACAAACAACTGCTACTGCC CAAGTTAGGAGTTTGCTCTAGAGAACGGTCATTGCCACGGTCACCT SEQ ID NO:101 M,L LPZ-024 AGGTGACCGTGGATATGGGAGCAGAGCCGTCCGCAGTGGATGCTGCAATTCAACT TGAAGTGGCAGAAGCTGTGAAGACTCTCCAAATGGACAAGGCACGAAGACAAAAC CAAGACAAGGATGAGGGCAAGAGTGGCAACGCTGATTCAGATGACTTGAATGAAAT GGAAGTCAAAGCTAAAGCAGCCGAACAACTGCTTGCTGTGCATGGGGCAGCATTA CTACAGAATGCTCTGAAAGAAAATTGTCGAGTCATGAAATGCGGGTTGGTTCAAA TACAAGGGAGGAAGGTGAAGTTAGAAAGAACAGAAAGGGCATCAACGCAGACCCC TCACTGATATCGGCAACACTACGGTCACCTAAGCCAATTCTGCAAATTTCCATCACT GGCGGGGCCCGCTCCAACTTCCTCTAAAAGGCCAATTCCCCTATATGATTCTTATT ACAATCCCTGGCCCTCCTTTTCCACTTCT SEQ ID NO:102 M,L LPZ-025 AGGTGACCGTAGCAGGAGAGAGGAGATCCACAACCATGGTTTTCGTCAAAGCCCA GAAAACCAGGGCCTACTTCAAGAGGTTTCAGGTCAAATTCAAGCGCAGGAGAGAG GGGAAGACCGATTACAGGGCAAGGATCCGCCTGATTAACCAAGATAAGAACAAGT CAACACACCCTTGCCAAAAAAAAAAAAAAAA SEQ ID NO:103 Middle LPZ-026 AGGTGACCGTATGAGCAAGGAGGGAACAGTATGACAGGCAGTCAAAGCCCACGAG GGGTGCCCCACTGCCTGCAGCAGCGCACTTACTTGGACTAACAAACTTGTATCGTG ATTAAAACGATGAACATCGTATTGTGGAGTGGAGCCACTCGTGACCTGATTCTGTC CTAAGTACTTGGTCCTGGAATACAATATTGCACGGTCACCT SEQ ID NO:104 All LPZ-028 AGGTGACCGTCAAAGTACAATGGAGTCATATATCCACTTGAATTGAAACCTCTAATT TAAAAGTTCTCAAAAAATATTTTATTTACAAAACAGGGAAAATAAAAAATGACTCTAT CAACTATACAATCCTAACATCCATCTCCCGACAGACCTCCAGTATATGTACAAGGC GCTGAAAGAAGGCTGATTATTTTCTATTCCAGCTCGCATAACGTGGTCTTCTGAG GCTTTGCCTATTCCTTTCTTTAAAATCTTTCGCACGAAAGATTGGCATTGACCTTCG GCTAAATCTCAGACTCCAGGGAACCTTGGACTCCCTTTAAAACCTAGAGCTACTTTT TACGAACCCCTGCTTCTCTTGAACACTTAGGGAACTTATACTTACAAAACTTCGGGA ACTCCACCCCCTAGCTTTGCAGGACTCCAGCAGATTCCCCAAACTGCCAGAAGGC TATTTCCATGCACTGTTAGGGGTGAATTCCTACTATCAAAACCCCCAAAACATCATA SEQ ID NO:105 Late LPZ-029 AGGTGACCGTATGGGAACAAGTATGGGAACAAGAACGTATTACATAAAAGATGGA GATGCAACACAGCATAAATTGATGCTAAGTTGTTACAATGATGCATACAGCTTAAC CAAGCTTGGAATGACATCATTAAGTGCGGTCACAGCCTCTGCATAGTATTTCTCT GCCTTGGGTGTATCCTTGCTCCTTGCAGCGTAGTCCAGGTTGTCAAGGGTTGTCAA AAAGCTTGGTGGTGAAGGTTTTGAGGGGCTTCTTCTGGTCCTTGGGCTTTGAGGA GATAACGGTGTTTGAAGTCCTTAGCGAAAGTAAGAAACCTTTGGAACCGAAGTCCG TTCTTGACGTTACCGCACGCCTTCCTTATCTATCACTTTTTCACCTCCAGAAATTGC TTCCCGAATCCCTTGCTCTCCCACCCCCTGTCCCCC SEQ ID NO:106 Late LPZ-030 AGGTGACCGTAGTGTTGCCGATATCAGTGAGGGGTCTGCGTTGATGCCCTTTCTG TTCTTCTACTTCACCCTCCTCTCTTGTATTTGAACCAACCCGCATTTCATGACTCGA CAAATTTTCTTTCAGAGCATTCTGTAGTAATGCTGCCCCATGCACAGCAAGCAGTTG TTCGGCTGCTTTAGCTTTGACTTCCATTTCATTCAAGTCATCTGAATCAGCGTTGCC ACTCTTGCCCTCATCCTTGTCTTGGTTTTGTCTTCCGTGCCTTGTCCATTTGGAGAG TCTTCACAGCTTCTGCCACTTCAATTGAATTGCAGCATCCACTTGCGGAACGGTCT GCTCCCCATATCACGGCACCTT SEQ ID NO:107 Late LPZ-031 AGGTGACCGTAGTGTTGCCGATATCAGTGAGGGGTCTGCGTTGATGCCCTTTCTG TTCTTCTACTTCACCCTCCTCTCTTGTATTTGAACCAACCCGCATTTCATGACTCGA CAAATTTTCTTTCAGAGCATTCTGTAGTAATGCTGCCCCATGCACAGCAAGCAGTTG TTCGGCTGCTTTAGCTTTGACTTCCATTTCATTCTAAGTCATCTGAATCAGTGTTGCC ACTCTTGCCCTCATCCTTGTCTTGGTTTTGTCTTCGTGCCTTGTCCATTTGGAGAGT CTTCACAGCTTCTGCCACTTCAATTTGAATTGCAGCATCCACTGCGGACGGCTCTG CTCCCATATCCACGGTCACCT SEQ ID NO:108 Late LPZ-032 AGGTGACCGTCGTGAAATAGCGAGAACGGCGTGGAACATCGCAACGGCGGGGAG GCTGGCGGACGTTGCACGTTTCTGGAAGGTATGCGGCTCTCTCCTCCGCCTCAGT TTCCATGAAGAGGTCCTCCCTGGTGAATCATACGATTGCGATTGATCGAGTACTT GCTGTATGGCTCGGCATCGGCATTGTGGAGACATTCTTTCCTATTCCTCGCAGCAT CTCTCCGATGGTTGCTCTCTCCGGAGCTCCATGTTATCCCCGGCACTGAGACAGTC GCTGCCGAATCGCAAGAGCTTCTTTGTTTTTTGCAGGCTTCTCCAAACATAATGCCT CCGGGCCCCTCAACCGAATTCTGCCAAATCCACCCC SEQ ID NO:109 E,L LPZ-033 AGGTGACCGTGGACGACAGTGAGTGCAGTCATCATGCTCTCCAGTGGACTTTAAG CAATCTGCATCTTTATGGAAGTGATGTATCTCTTGTGGTTTTTCATGCTCAACCATT GGCAGTCTTCAACAGTGCTGCAACAATGGGCATAACGTCTCCCGAATTAATTGAAA CTATTGTGAATCAACAGATAGGTTTCTGGTCACATCTAGCAATACAAACACAAATAA CTGTGGAACAGAGCCACAAAACTATGCTTCAGAGCATCTAATTACACATATCTCTC TAAAACCCTTGCATAAAAAATAAACTGAATCTCGACCTTAGCACTATTGCCACCATC ATCTCAAGCAAACATTCTCTAGAATACCATCTTCACAATGCACTAAAGTTACATAAG CACTGAACTTAAAACATTTCTGTGACGAATGAAGGACCAATTCATCATACTCAGCCT TTGCATCCAATCTGTTGAATGTGCTGAAAAATGCCCAATAAACCTCCATCCAACACT GTCTTCCTCTCTGAGGTGCACACTGATTTCTGCTGCTGAACCAGTCGGGATTCCCT GCTCAACGTCCC SEQ ID NO:110 Middle LPZ-034 AGGTGCCCGTGGAACTACTGTTAAATCTGGAATCCCTTGTCTAGCTGTTAAAAACTC GACAAGTGCATGTTGGTATAGTAGGGTAACAGAAGGGTTCTTACCCAGATTTAC CCCTTTGGCGGAGATATTTAAAAAAAAAGAATTGTCATTATGGTAAATAGGTGTGAC AGGTTATCAATAGAATAACTGACGAGAGTAAACTGATAATTATTAAGGTTAAAGTGT TCGTAAAGGAGACTTGGACTCTAGGTTGGATGCCTACACTTAGAGCCGTCCCGCA CTTGGACGGTCACCT SEQ ID NO:111 Middle LPZ-035 AGGTGACCGTCCAGTGCGGGAACGGCTCTAAGTGTAGGCATCCACCTAGAGTCCA AGTCTCCTTTACGAACACTTTAACCTTAATAATTATCAGTTTACTCTCGTCAGTTATT CTATTGATAACCTGTCACACCTATTTACCATAATGACAATTCTTTTTTTTTAAATATCT CCGCCAAAGGGGTAAATCTGGGTAAGAACCCTTCTGTTAACCCTACTAATACCAAC ATGCACTTGTCGAGTTTTTACAGCTAGACAAGGGATTCCAGATTTAACAGTAGTTCC ACGGTCACCT SEQ ID NO:112 Late LPZ-037 AGGTGACCGTATGGGAACAAGAACGTTATTACATAAAAGATGGAGATGCAACACAG CATAAATTGATGCTAAGTTTGTTACAATGATGCATACAGCTTAACCAAGCTTGGAAA TGACATCATTAAGTGCGGTCACAGCCTCTGCATAGTATTTCTCTGCCTTGGGTGTA TCCTTGCTCCTTGCAGCGTAGTCCAAGTTGTCAAGGGTGTCAAAAAACTTGGTGGT GAAGGTTTTGAAGGGCTTCTTCTGGTCCTTGGGCTTTGAAGAAATAACGGTGTTGA AGTCCTTACCAAAGGTTAATAAACCTTTGGAGCCGAAGTCGTTCTGGACGTACGGC CACCCCTTCCTTATCTATCAGCTTTTTCACCTCCAAGAATTTGCTTCCCCGAATTCC TTGCTCTCCCAGCCGCCTGGTCCCCCGAAAAGGGCTGAATATAAAACCGTCCTCA ACGGCATTCCATTCCTCCCTCGTCTGAAACACTTCCCCGCTGCCCCCGAGGTGAA GGGCCATCAACTTGATGAACGGCTTTTGCAAGGCTCTGACCCCGGCCCCGTCACT AACCAATTCTGCAATC SEQ ID NO:113 Middle LPZ-038 AGGTGACCGTGGGGAACAACTACATGACAAATCATTTCTTTGTGGTGGATGTACTG GACACCAAATAAGTGTTGAGAGTCCACTGGCTCTGTACGCGTGGCAGAATCACAAC GGACTTGAGAAAGTTGAAGATGGAATTTGTATCGCTAGATGGCCAGACCATGTTGC TTCAAGGGATGCACTCGTAACCCCCACAGTCTGTCTCTACCCACTAGATGGAGGCT GACATGAGACATGGAGACATTAATTGGGTTGTGGAGTTAAAGATCTCTCACGTTCG GGGAAAATCCAAGCCATCATACTTATATATCCGTCCCGTGCATGTAACCTCCTCCA CTCTGTCCCTTAGGCCCGTTGTTGCCT SEQ ID NO:114 E,L LPZ-039 AGGTGACCGTATGAGCAAGGAAANNACCGCACTGGCTCCCAGCAGCATGAACANC CAGGTCCCAACCATANACCNCNTGGAGAANGTGATCAAGATATTAGCGACAGTGTN ATTGTACNTCTCNCCAAACACATTATACACGATAAGAGAGCNTAAACTACTCTATTC CTTTGACGNAGTGACTACNTGAGTANAAGCGATCATTATCTTGCNAACTTTGCATG AAAACAACAAACCCACNTCCAGTTTCTCTATANTCTGGCCCCACNATGAATAANANT CCTGCCATAATAATGANTCTTTGTCCCCANAGANAAATTNNATAAGACAGGAGCCC ACTGTTGCTTGCATGACTACCANTCACTTTAAGGCGTTGCGAATCCCGGTCCTAAC CATCTCCATACCATNGGCANNCTTTACTTTCCAACTGCCCAAGACTGTGAACAGGG CGGTTCNNACCCTATAANTTTTAGCCTCTNNTCGAANCNCTTNTTTTCGTTCCCCGG AAANCCGNTTCCCACCCTTTGGAACCTTTTTTTTTTGCCGGGCCCCAGGCNAATTC TNCAATTCCCCNCTGGGGGG SEQ ID NO:115 Late LPZ-040 AGGTGACCGTGGCGGAGGTTAGGGAAGTTTGACTTCTCATTTTCTCACGCACTCCT CTCCCTCGTAACCTCGGTCGAGTCGATGGCGGCTTTTTAGTCGAGTGTGCTAACG CACCCTCCGGGCCTCAAAATTTCCAGCTACTCGTATTTGATCAATGCTGAAATCGC GTAATCACGTAGATAATAAAGCGTAATGAATTCTATAATGAAGCATGTTTCTCTATA GTTCATGTTGCCGAGAAGGAATAATGAAAATGAAGCCTTATATATTATCTGGGGCTC AAGGAGATGTTATCTTTTCTCTTCCTTGGTTAGAGACCGTCACCTTCACTTTGAATT GGATAAAGCTTCATTTGTTTAAGACCTCCCACCCGTAAATACATACGGTAGCCTTCT TATGTTAGAAACATACGTCACCTACGCAGAATTGTTAGAATGAAATGA SEQ ID NO:116 Late LPZ-041 AGGTGACCGTGGAACAAGATGATTAGTTCTCATGCGGGCCAGGATGATTAGTTCTC CTATGGCAACTGTTGGACAGGATGATTCGTTCTCCTGTGGACAGGATGATTAGTTC TCCTATCGAGGCATCCTACCCAAGCAGTTTGGGACTCATGGGAAGTACCTCTCATC TGATCAATGAGTAGGAAATGGGGTTAGGGACCATTAAGTAGTATTATCGATGGATG CATTGTTGTATCTATTGTACTCCCTATGCTAGAATGAACTCCATTGATCTGGGATCA ATGAATACTGTTTCTGGGAATCATTGAAAATTTGTATGAACACACTCTGAACACTGA ATTTCCGGTTCATTGGAAGAGATGGTTTTAAACACTCTCCTCATCTCATTTCTTCCC CTTCCTTATTCCAACCAAATTTGGGCCACCCTGCCAGGAAATTCATTTGATGGTTGG AAAATACCACGGGCCCTAACCAATTCTGCAA SEQ ID NO:117 Late LPZ-042 AGGTGACCGTNCATCTCTACCATNATNCCTCCCTCCCGNCTGTATCANCNGGCNTN NANGTCNTTNNCTANNNNAAGNTAATCCTATCCCNTTANAGTGACGGTCTCTAN NCCTAGAAGAGAANCCATAACATCTCCTTGAGCNACACATGGGATATACCGCCANC TTATNTAATACTTTCNCNGCACGGTAACNGACCANAANCATTCTTCACTATAGAATT CATGTCGCTTCATTATCTACCTCATTNCNCCANATCCCCCTTNATCTCATNNATTTA CTAGAAANTTCTGAAGNTCCNNAAGGGTTCGTTTTGCACCNCCCCAANTAAAAAAN CCCTNCCGNTTACNTCGAACGAAGGTTTCAAANGAACAGNAATTCCTTTACAAAAA TCAANAATTTTAACTTCCCNAATCCGGCCCCCCNGTNCCCGAAACCCNATTTCTAC GATTGCATCACCCCGGGGGNCCNCTCAANCCNNCTCTAAAGGNCCATNCCCNT NNNTGATCCTCTNCCATCCAANGGCNCCTTTCCACTTTTATTGGAAAACCCCCNTT CCCCNTTTTACCCTTNNAAGGCCCCTCCC SEQ ID NO:118 Late LPZ-043 AGGTGACCGTGGAACTACTGTTAAATCTGGAATCCCTTGTCTAGCTGTAAAAACTC GACAAGTGCATGTTGGTATTAGTAGGGTTAACAGAAGGGTTCTTACCCAGATTTAC CCCTTTGGCGGAGATATTTAAAAAAAAAGAATTGTCATTATGGTAAATAGGTGTGAC AGGTTATCAATAGAATAACTGACGAGAGTAAACTGATAATTATTAAGGTTAAAGTGT TCGTAAAGGANACTTGGACTCTAGGTTGGATGCCTACACTTAGAGCCCGTTCCCGC ACTGGACGGTCACCT SEQ ID NO:119 Late LPZ-045 AGGTGACCGTGGGGGATGGGGCCGTGGGGAAGACTGTATGCTCATCTCCTACAC AAGCAACACGTTTCCAACGGATTACGTGCCGACTGTTTTTGACAATTTTAGTGCAAA TGTGGTGTTGATGGCAATACAGTAAACCTTGGCTTGTGGGACACTGCAGGGCAA GAAGATTACAACAGACTGAGGCCATTGAGTTATAGAGGTGCAGATGCTTTTCTGCT TGCCTTTTCTCTGATCAGCAAGGCTAGTTATGAAAATATATCAAAGAAGTGGATTCC AGAACTAGACATTATGCACCAAATGTGCCAATCATTCTTGTGGGAACTAAATTAGA TTTGCGTGATGACAAGCAGTTCTTTGCTGATCATCCTGGAGCAGCCCCTATAACAA CAGCTCAAGGTGAAGAGTGAAGAAGCAGATTGGAGCAGCAGCATATATTGAGTG CAGTTCCAAAACCCAGCAGAATGTCAAGGCTGTTTTTGATGCTGCTGCAATTAAAGTGG TTCTTCAGCCACCAAAGCAGAAAAAGCGGAGAAAAAAGCAGAAAAATTGTTCTATTC TCTAAGAAAAATGTGGATGTTCTGAACGCNCTTCACTGACAATAANGNTGACGTNG GAATATCTTCCTCC SEQ ID NO:120 Late LPZ-047 AGGTGACCGTAAGCACAAGTCGTCAAAATATCTCTATTCCGGCAGTAAAAACCTAT AGCTAATGATGGATCAATACCACTAAGTGGCAGCTGGCGTACATCTCTGCAATGAT AAGAACCAGTATCAGTCCCCATATAATCAGGAGATATCTCCAGCACCTGCTGCACT ACATGTGGATCTTAGTACAGAGCCTGATCATCCTGAACACCAACAATATACGTTGAA GCTCCGGGCTTTCCACCAGCAATACCAAGACTTTGGGGAAATGTGAACGTTTCACG AAGTGATGGTACATACCTTGGGTTGATCTTCTCTACACCAAGAACAAGCGGCACCA AAATCAGGATAGGCACTTGGTCTTCCCCTTCTCCATTGGACCACTCTGAACACAAG CCTCGCAGCATCATCAATGCAGATAACTGGGCGCCCTCCACGGTCACTT SEQ ID NO:121 Late LPZ-049 AGGTGACCGTGCCATAGCGCATGGCGTGTAACTGGATGAGACCGCATGGCTCAAA TCTGCTAGGAATCAACATGAAATCAGCTCCAGCTGTTATCATATGAGCAAGTGGCA CGTTAAACTTTGCTACTCCCCTGACGTTGTCTGGATATTTCTCTTCAAGCTCTTCAA GCTGCTTCTCCAAGTACTTTTTACCGGTGCCTAGGATAATTAACTGCACGTTTCAT CTGCAATTAGAGGGACAGCTTCAGCAAGAATATCTGGACCTTTCTGCTCTTCAAGT CTTCCAATAAATCCTATAACAGGAATATCTGGATCCACGGTCACCT SEQ ID NO:122 Early LPZ-051 ATGTGACCGTCAAAAGGGCATATAAATCGGGGAGCTCAATGGCAAGAATGTACGAT TTCTGGCCTCAAGTCGCCCTGAATTTGGTCAACAACATCTTGATAGAGCGAGAGGA CGCTCCCAATTAAGATCTGGAAACTGTCGAGAGTGATTGAGGTCATTTTTAATCTAA ACTGAATTGTGGGGACAATTTTTCAATTCAGATCCTTCTAGCAAAGCAAAGCAAACC TTAACAGTATTGTATCCATGAGAATGGATTCTGCACAGGTCAGGCTCCACGGTCAC CT SEQ ID NO:123 All LPZ-053 AGGTGACCGTGGAGAAGAGAACGCTTTGCCGACTCTCTGGGATGCCCTTCCCTCC ATAGCCGTCGTGGGAGGACAGAGCTCCGGGAAATCCTCTGTGCTGGAGAGCATCG TTGGAAGGGATTTTTTACCGCGTGGATCAGGTATTGTTACTAGACGGCCGCTTGTC CTTCAACTTCACAAGACTGATGAAGGCAGCAGGGATTACGCCGAATTCCTTCACCA ACCCAGAAAGAAATACACCGACTTTGCACTGGTAAGGAAGGAAATTGCGGATGAGA CTGATCGAATTACAGGGCGTTCCAAGCAAGTCTCAAGTGTCCCAATCACCTTAGT ATTTATTCACCCAATGTTTGTAAATTTGACTCTAATTGATCTCCCTGGGTTGACAAAA GTGGCTATTGACGGTCACCT SEQ ID NO:124 Middle LPZ-054 AGGTGACCGTGCAATATTGTATCCAGGACCAAGTACTAGGACAGAATCAGGTTA CGAGTGGCTCCACTCCACAATACGATGTTCATCGTTTGATCACAATACAGGTTTGT TAGTCCAAGTAGGTGCGCTGCTGCAGACAGTGGGGCAGCCCTCGTGGGCTTGGA CTGCCTGTCATACTGTTCTCTCCTTGCTTCAGGCTCTACTGCTGTTGCTGCTGCTG ATACGGTCACCT SEQ ID NO:125 Middle LPZ-055 AGGTGACCGTACATACAAGGTCTTATCACCAGCAGCAAGAATAATCAGTTGGCCAT CTTCTGCAGGCTTCTTGCTGCCTGAGACAGGAGCCTCAAGAAATTTTCCCCCCTTT TCAATGATTGCCTCATTGATCTTTGTTGAAGTGATAGTATCAACTGTTGACATGTCA ATGTATCCTTTTCCTGTACACATTTGCTCTAGGACACCATCCGAGAGGGCAGCAGG AGGATCAGACAGGATGGCTATGGTATAGTTGCACTTCTTTACAACTTCGGCAGGAG TGCTTCCTATGGAAGCACCTTGCTGAACAAGTTCTTCACACCTAGACATTGTCCTAT TCCACACGGTCACCT SEQ ID NO:126 Late LPZ-056 GGTGACCGTACATACAAGGTCTTATCACCAGCAGCAAGAATAATCAGTTGGCCATC TTCTGCAGGCTTCTGGCTGCCTGAGACAGGAGCCTCATGAAATCTTCCCCCCTTTT CAATGATTGCCTCATTGATCTTTGTTGAAATGATAATATCAACTGTTGACATGTCAAT GTATCCTTTGTCCTGTACACATTTGCTCTAGGACACCATCCGAGAGGGCAGCAGGA GGATCAGACAGGATGGCTATGGTATAGTCGCACTTCTTTACAACTTCGGCAGGAGT GCTTCCTATGGAAGCACCTTGCTGAACAAAGTTCTTCACACCTAGACATTTGTCCTA TTCCGCACGGTCACCT SEQ ID NO:127 Late LPZ-057 AGGTGACCGTGGAGGGGCTCCAGTTATCTGCATTGATGATGCTGCGAGGCTGTGT TCAGAGTGGTCCAATGGAGAAGGGGAAGACCAAGTGCCTATCCTGATTTTGGTGC CGCTTGTTCTTGGTGTAGAGAAGATCAACCCAAGGTATGTACCATCACTCGTGAA ACGTTCACATTTCCCCAAAGTCTTGGTATTGCTGGTGGAAAGCCTGGAGCTTCAAC GTATATTGTTGGTGTTCAGGATGATCAGGCTCTGTACTTAGATCCACATGTAGTGC AGCAGGTGGTGGAGATATCTCCTGATAATATGGGGGTTGATACTGGTTCTTATCAT TGCAGTGATGTTCGCCACTGCCACTTAATGCTATTGATCCATCATTAGCTATAGGTT TTTACTGCCCGGAATAGAAATAATTTTGACAACTTGTGCTTACGGCACCT SEQ ID NO:128 Late LPZ-058 AGGTGACCGTGGAGGGGCTCCAGTTATCTGCATTGATGATGCTGCGAGGCTGTGT TCAGAGTGGTCCAATGGAGAAGGGGAAGACCAAGTGCCTATCCTGATTTTGGTGC CGCTGTTCTTGGTGTAGAGAAGATCAACCCAAGGTATGTACCATCACTTCGTGAA ACGTTCACATTTCCCCAAAGTCTTGGTATTGCTGGTGGAAAGCCTGGAGCTTCAAC GTATATTGTTGGTGTTCAGGATGATCAGGCTCTGTACTTAGATCCACATGTAGTGC AGCAGGTTGGTGGAGATATCTCCTGATAATATGGGGGTTGATACTGGTTCTTATCAT TGCAGTGATGTACCCACTGCCACTTAGTGCTATTGATCCATCATTTAGCTATAGGTTT TGCAGTGATGTACCCACTGCCACTTAGTGCTATTGATCCATCATTAGCTATAGGTTT TACTGCCGGAATAGAAAAATTTTGACAACTTGTGCTTACGGTCCCT SEQ ID NO:129 Late LPZ-059 AGGTGACCGTGCTAGGACACACAATTTCTCAGCAAGGATTACAGGTGGATCCTAAC AATATTGCTATAATTCAAAAGGTTCCACCTCCTTAAAAGGTAAGAGATGTTTGGAGT TTTCTAGGCTTGGCAGGATATTATAGAAGATTCATCAAAGATTTCATTAAGCTAGCC TCGCCATTGTCTAGCCTCTTAGGGAAAGATGTTGAGTTTCAATGGACTGATGACTG CCAAGGGGCTCTGGATGAGTTGAGAGATAAGCTGGTATCCGCCCCGATCTTGAGA GGTCTAAACTGGGCCCTACCTTTCCACATCCACATTGATGCCTCGAACAAAGCCAT AGGGGCAGCCTTAGGACAAGTTGAAGAGAAAATACCATATGCCATATACTTGTCA GCAAAAATCTGTCTAAGGCAGAACTGAACTATACGGTCACT SEQ ID NO:130 Late LPZ-060 AGGTGACCGTCATATTCCCCTCTATAGCAGCACTAACAATCCATTTTCTGAGTGCAT CAGAAAATCAACACACGGTAAATGTCTTGAGACTAACGAGAAATTAATAATCACGTT GTACAAAGAACAGTATGTCCCGTCACGTCACGAGTGCCCTGAGAGATCATCCAACT TTCTCTGAACCCTCGTGTTACACGCACGCAAAATCAAGGATCAGTTGTAGTTATTGC TGGCGTGACAGACGTGACACCTACTGTTCCGCTACAAACGATATAATTGAATCCAT GATCGGATTATGTATTATGATCTTAGCGCAGTGGTTATGAAATTATGATGAATTTGC TTATGATTTTCTCAGCGTTTGTGGAAGAATCTCGCTATTGAAAACTTCCCCGTATAT TTCCAAACTTATTATCATCCCACGGTCCCT SEQ ID NO:131 Late LPZ-061 AGGTGACCGTACAGCATTTATTGATGTTCTATTTTGTTGTTTGCAAGTTTTTCCGA CGCTGTGAGGCACGGAAAACGAGATAAGTTGTAAAAGTTTGCTCGCTGATTTGAGG CACGGAAAACGAGATAAGTTGTAAAATTTTGCTCGCTGATTTTTTGCTGAATATTTC TCTCACTATAAAAAGCATTTTCCAGAAATAAGAAGGAGCTTTCGAACTGGTTTTCCC CAAGAGTTGTAGGGGGTTTTTCCACGGTCACCT SEQ ID NO:132 Late LPZ-062 AGGTGACCGTATTTATGGTCGCAGGCACAAATTCTGCTACTGTAGAAGGGTTCTTA CCAACTTTAGGTAGAAGGCGAGGAGGGCTTTATTAGTACAGTTCTGTGTAATCTTA ATGATATTTTTTGCACTATTATTTTATGGTAAAAGGATTGATTTGTCTTTTGCAAAGG CCTTAGGATTGTTTATTTACCTTTGGGCTAAGGGAGGAGGTAAATTTTTCACATTGG GAAAAAAAATGCCTCGGTCGTTGTCACGGTCACCT SEQ ID NO:133 Late LPZ-063 AGGTGACCGTGCCAGTATGACAGATGGAACCATGCAGCTAGCCACCAAATTGTAAA CATCAAATTTTGTCTCAATATAAGTTGCAAATTCTTAATTAATTATGATCACCATTTC AACGGTCACCT SEQ ID NO:134 Middle LPZ-065 AGGTGACCGTGAATAGAAGCGAACACATCCTTGTTGCTGAATCTAACGACCAATCG GTATTTGGGTGTGTTGTACTTGTTCTTATCTTGGTTAATCAGGCGGATCCTTGCCCT GTAATCGGTCTTCCCCTCTCTCCTGCGCTGAATTTGACCTGAAACCTCTTGAAGTA GGCCCTGGTTTTCTGGGCTTTGACGAAAACCATGGTTGTGGATCTCCTCTCTCCTG CTACGGTCACCT SEQ ID NO:135 Middle LPZ-066 AGGTGACCGTGGTAGAGGAGGCAGGCACTCATCTAACAGTCGAAAGCCCTTTACA AAGGGGAATGGTACCAGCATAGAGAAGAAACACAGACGGTTTGAAGAGGATGATG GATCTGCCATAGATGAACGATCAAATAAGGTTCAAAAGCTGGAAAATGATGGTGAA TTCCATGCATCCCACTTGGCTCTGTCCCTCAAGTTGAATATACCTGGACGAGAGGT ATTGCATTTCCCAACGGTCACCT SEQ ID NO:136 Middle LPZ-067 AGGTGACCGTACTGATAATAGAAGAGGCAGGGAAAGAGAAATCAATGATAATAGAA GAGGCAGGGAAAGGGAGATCAATGGCATCATGCTACTTCTGTAGCTGTTACCT TAGTGATGTAATCTTCCATGGCAGACTCGGGGGTTTTATCTTTAAGTTGAATTTCCA TGCATCCCCTTGGGCTCTGTCCTCCAGTTGAATATCCTGGAACAAGAGGTTTTGCT TTCCACGGTCCCCT SEQ ID NO:137 Late LPZ-069 AGGTGACCGTGAGAAGGCAACTTTATCCCCTGCTAAACCAAGTCCAGAAATGAGGA AAATATGTGAAAACTGAATTGCTATATATGATGCCTAGTCTTGGCCTCTCAATTACA AGTTCAACGTCTTCAAATGATTGAAATATGGACCTTCTTAACCGTTCTGGAAATCTA TCAATCTTCAAAATTTTGAAACTTTGCCTCGATCTTGGAGTGATCAGACTTGATTTCT AATCCTAGAAATACCCTATCACTGGCTACCTGGTCTGTACGGTCACCT SEQ ID NO:138 Late LPZ-070 GGTGACCGTGGGATAGGCAGAAGCAAGAAACACAGAAGTTCTCCGGGAATGTAA GCGCTGACAGTGGGGGAGAAAGTAGTGAACAAGGACATGGTCGGTATGAAATACA TGGCAGGCGATGGATTTCAAGGGATTAAGCATCTCAATGGATATTTACTATTGGAC TGTAGTAACTTTCGCCATCGCTTTTTGAACACATCTGTGGCTTAACTGTCATCTGTA ATGGTAAGCGAACCAGGTTTTGTTCTGAACCACTTGTATGTACGGTCACCT SEQ ID NO:139 Late LPZ-071 AGGTGACCGTGGTGGAGCGATTAGTGATTGTGATAAAGGGAGCATCAATATCTATG TAGACGCCGTATAAAGGTGGAAAAGGTATGTTTTGCAGGTATTTCTTTGTAAATGGT TTATAATGGGTTAAGCTCGGATATATGAGGTTTATATATAAGTCCTGTTAGTGTCAG TCTTACCAGCCTTCCTCCAGTGATCAAATGTGCTCTAACAAAGTGATTTTGAAGTGT CAAGGTCAAATTATGTCATTTCAGTGAGTCTTCAAACAAAATTTGGTCACTAGGCAT TAGGTCTAAGGGTTTGCTTGAACTCCCTCTAGAGTTGTCCAAATGGGCGGGCTATG TCATCATTTAAGCTGAATCTATCATCCAATCAATAAGGTTTTTCATTATCATGTCAGT GTCTAAATGAGTCATTTTACCGTCTTGTTCACGGCTTCACTTGTGCCTTTGGCAAAT TCAATTCCCTCCTCCAAGGGTTTGAACCAATTCTCTTGGACGGCCCCTAAACCAA ATCTGCAAAATCCAC SEQ ID NO:140 Late LPZ-072 AGGTGACCGTGGTGGAGCGATTAGTGATTGTGATAAAGGGAGCATCAATATCTATG TAGACGCCGTATAAAGGTGGAAAAGGTATGTTTTGCAGGTATTTCTTTGTAAATGGT TTATAATGGGTTAAGCTCGGATATATGAGGTTTATATATAAGTCCTGTTAGTGTCAG TCTTTCCAGCCTTCCTCCAGTGATCAAATGTGCTCTTACAAAGTGATTTTGAAGTGT CAAGGTCAAATTTTGTCATTTCAGTGAGTCTTCAAGCAAAATTTGGTCACTAGGCAT TAGGTCTAAGGTTTGCTTTAACTCCTTCTAAAAGTTGTCCAAATGGCGGGCTATGTC ATCATTTACGTCTTGTTCAGCTCAGTGTGCCTGGCAATTCATTCCTCTCTAAGGTT TGAACCATTCTCTTGACGGCACTAAGCCAATCCACACTGGGGCCGTCTATTGAATC AACCCGGACACTGGGTTACAGGCAAC SEQ ID NO:141 Late LPZ-073 AGGTGACCGTCCAAGAAGAAATTGGCTTCAAAACCCTAGGAGAGGGAAATGAACTT GCCAAGGCACAACTGAAGCATGAACAAGACGTAAAATGACTCATTAGACACTGACA TGATAATGAAAAACCTATGAATGATGATAGACTCAGCTAAATGATGACATAGCCCGC CATTTGGACAAATTTTAGAAGGAGTTAAAGCAAACCTTAGACTTAATGCTTAGTGAC CAAATTTTGTTTGAAGACTCACTGAAATGACAAAATTTGACCTTGACACTTCAAAATC ACTTTGTAAGAGCACATTTGATCACTGGAGGAAGGCTGGAAAGACTGACACTAACA GGACTTATATATAAACCTCATATATCCGAGCTTAACCCATTATAAACCATTTACAAAG AAATACCTGCAAAACATACCTTTTCCACCTTTATACGGCGTCTACATAGATATTGAT GCTCCCTTTATCACAATCACTAATCGCTCCACCACGGTCACCT SEQ ID NO:142 Middle LPZ-074 AGGTGACCGTGATAGACCCAAGAAAAATAGATCCAACCCTCAGAGGGACAAAGA CTTATAAAGACTAGAAGAGTGAATCAACCTATTCTATTTAGAATATATATTTTTGGGG TGCTTGCTTATCGTTTTGGGGGTTAATGTATGTCGTACTACGGTCTTATGCCCTAAT TTGCCCATTGAAATCAACTAAATTGACAGTAACCGACTAAAAGTTGGTCCACACTAA GATATCGATGACCAACGATCATAAAGGTGTCCATGATCCTAATAGTATATGTGTCAA TTAATGTAACTTTGGTGCTACAACATAAAACCATTCGTGGGGATCCTCCTTTTTATG CGGTCACCT SEQ ID NO:143 Middle LPZ-075 AGGTGACCGTGGGACCGACCTTGACTACAGGCCAAAATTTTGACTGTTGACCAGC GTTCACTTCTGTATTTTTGGTTGGTATGAGCAACATTGACTTGCTGGAAATTGACCA GGTTTGACTGGTATTTGGACTTGGATTTTGGCACAGATTTCTAGACAATTTGTATTT GTAAACCTTACAGAAGAATAATTTATCGAAGAAGAAAAATGCTAGGTTTCCCCTCAA GTTTGGGTTTCCCAAGGGAAAAATTGTTGTCCCAATGGTTGAATTTTCCAAAGGTCT CCTAACCCGACAATACCTCCTAAGAATTCCTTAATTTAACCTTTCTTGTTTTCACGGT CACCT SEQ ID NO:144 Middle LPZ-076 AGGTGACCGTGAAGGAGCAGCAACAATTTGATTTTGTTTGGGTAGATCGGGGATTT TCTCGTGGAACATACCTGATTGAGTATAAACTAAGTCAAGGTACTGTGCTTGAGAAA TTACTTGCTCCTCAGTAACTACTCTGGCCTTAGCTACATCCTCAGTGATCTTGGGTA GTAAAGATTTTACAAACCATTCAGCTAAGATCTGATCCGGGATATAAACTTTCACTA AACGTCGTCGACGTCTCCATTCATGGATATGATCTGAAATGTAAGTGGACGTTGAC TGCTTTAACGAAGTTAATAATTCTGTGCCATTTTCATATCTGACGGTCACCT SEQ ID NO:145 Late LPZ-077 AGGTGACCGTACCTAATGGGAAGACACTTCAAGGTAAAAACAAATCATGATAGTCT TAAATACCTTTTAGAACAAAGATTATATTCAGAACAACTTGCTGGAAGTGTACCAAG TATGACTGGTATTGAGACTTAGATCTTCGCACAGATTTCAAGACAATTTGTTGTTGT AAGACTCACTCACGAAAAGTGATGTGGATATGAAGAACTTCCCTGTCGCCTCTTGG TTAGGAGTCTCCCACTCATAGGAATTGTGTAACTTATAACTTGGTCCACTAAAGAAG TTAGGTACAGTGTGTTCCTTTACCAGGTTCCCTGTTGTAACTTACAAATCTACGGCT ACCT SEQ ID NO:146 Late LPZ-078 AGGTGACCGTCACTGGAGGTTTGAGATGCTTGATCGGTACTGAAATGAGACATGAT CAGAATAGGACCTTGTTGAGGCCGTGTCTCACCCCCCATCCACAATCTTTTGTAAT TTTGAGTTTCGTTTAGAACATACTTGTAGGATAAAACTTACCTTACTCATGGATCAT GGCTGTATATGTTTATCGACCAGAGACAGATATGCCGAATGAAAGCGAGTCTAGTA TTCTAATGCAATATATTGGTAGTATGGGACATAGTACTGAACACTTGTATAGTACGG TCACCT SEQ ID NO:147 Late LPZ-079 AGGTGACCGTGGTCTCAGTTATGCCATATGTCCGCCCCTCCATATGATGCTCCGCC TCTATGGGGGTCTTTGCGATGTTGATATCTAGTAGTACTTCTTGTCCTATTGCAGCA ACCTGTACTGGTGTTGGTGTTGGTATGGGTCTCCTACGCGATGGAGATATGAGAC ACCCATAGGTCGAACAGGTCTAATATCTGGAATCCAACGCTATTGTTGTAGAAG ACGTTGCTCCCGTCCTTTAGCTTTGGCTGGTCACTATCCTTACGCTCCACGTACGG TCACCT SEQ ID NO:148 Middle LPZ-080 AGGTGACCGTTGGGAAATGCAATACCTCTCGTCCAGGTATATTCAACTTGAGGGAC AGAGCCAAGTGGGATGCATGGAATTCACTTAAAGATAAAACCCCCGAGTCTGCCAT GGAAGATTACATCACTAAGGTTAAACAGCTACAAGAAGTAGCATGATGCCATTGAT CTCCCTTTCCCTGCCTCTTCTATTATCAGTACGGTCACCT SEQ ID NO:149 Late LPZ-081 AGGTGACCGTCAAGGCAAAGTGTCATGCCACTCATTGGAATTAGTTAATATAGCTA ATTTGAGATATTACAGTCAACTGTGGGTATATGTATGTGAGATCAAGGTGCAGTTTA GATATTATCAGTGGTGCAGTTTAGATATTATCAGTGTTTGTGAATCTGCATACTGCT TTTGGTTGGTTCTAACTACGGTCACCT SEQ ID NO:150 Middle LPZ-082 AGGTGACCGTAGACATATATCATGGAAAACCCAAGTAACATACAAACACAAAACACA TGGAACTTCATAAAACCTCCACTCGTCATAAGCTTTATTGCTATGTTATTGTGGTG TTGCATCGTACTTAGTGGAGGTTATTGTTATGTTATGTGTTCTATTTTCCTCCCGAA CGCCCTTCGGAATTGAGCTAACCGTGGTTAACAACATGTGGGCTTTTTTTCTCGAC AGTATATATATAATAAATCTTTATTTTTTTAAAAACTAATGCTATTGCATTTATATACT GGAAAAAATGATTTTTCTGTATTATCGAAAATAATAATTTAGTTTCTTGATAATCACT TGGAATTAAGAAATTACAAACCCTAACAACATCAAGAAATTTTAAAACACATAAGCTA GAAATTTTAAAACACATAAGCGTGACAACAAGAAGATCAAATCTAATACTTGCTTGG GCCGGAGATTATGGATTCATGAAGCGATTTGACAGCGTCCATTGATCTTCCTCTCC CACGGTCACCT SEQ ID NO:151 Late LPZ-083 GGGGGTAGGGGTGTTTATACTGAGCATACTTCGAAAGTGGTTCACCACCACCATG TGACTAATTGTTCCTGACTTTGGTAGACCTATAATAAATTCCATAGAAACCTCCGTC CATATTGATGCCGGAATGGGCAACGGTTGTAATGTGCCTGGTACTTTGACGGTCAC CT SEQ ID NO:152 Middle LPZ-084 AGGTGACCGTTGGGAAATGCAATACCTCTCGTCCAGGTATATTCAACTTGAGGGAC AGAGCCAAGTGGGATGCATGGAATTCACTTAAAGATAAAACCCCCGAGTCTGCCAT GGAAGATTACATCACTAAGGTTAAACAGCTACAAGAAGTAGCATGATGCCTAGACA AATAGCTTTGCTCAACACATCCTGATAGTGTACACTAAATCGCACAACTTTACTACT ACAAAGAAAGATCGTTGACACCTTGACAAATAGCTTGCTCAACACATCCCAACAAT TTGGATTGCGAATACCGACTCCAATTTGTACTTGATCCATATGTCGTTGCGATGTAC TAGTTCCTCTATACATATGTTTCTGCAAGAATCGGAGTTGGACCTCTTCTTCCCTGT TATCAGCACGGTCACT SEQ ID NO:153 Early LPZ-085 AGGTGACCGTGGATAAGAGAACGCTTTGCCGACTCTCTGGGATGCCCTTCCCTCC ATAGCCGTCGTGGGAGGACAGAGCTCCGGGAAATCCTCTGTGCTGGAGAGCATCG TTGGAAGGGATTTTTTACCGCGTGGATCAGGTATTGTTACTAGACGGCCGCTTGTC CTTCAACTTCACAAGACTGATGAAGGCAGCAGGGATTACGCCGAATCCTTCACCA ACCCAGAAAGACATACACCGACTTTGCACTGGTAAGGAACGAAATTGCGGATGAGA CTGATCGAATTACATGGCGTGCCAAGCANAGTCTCAAGTGTCCCAATTCACCTAA TATTTATTCACCCAATGTTGTTAATTTGACTCTAATTGATCTCCTGGGTTGACAAAAT TGCTATTGACGGTCACT SEQ ID NO:154 Middle LPZ-086 AGGTGACCGTTGGGAAATGCAATACCTCTCGTCCAGGTATATTCAACTGAGGGAC AGAGCCAAGTGGGATGCATGGAATTCACTTAAAGATAAAACCCCCGAGTCTGCCAT GGAAGATTACATCACTAAGGTTAAACAGCTACAAGAAGTAGCATGATGCCATTGAT CTCCCTTTCCCTGCCTCTTCTATTATCATTGATCTCTCTTTCCCTGCCTCTTCTATTA TCAGTACGGTCACCT SEQ ID NO:155 All LPZ-089 AGGTGACCGTACATACAAGTGCTCAGTACAATGTCATATACTACCAATACATTTGAT TAGAATACGAGACTCGCTTTCATTCGGCATATCTGTCTCTGGATGATAAACATATAA AGCCTTGATCCATGAGTAAGGTAAGTTTGAAGCTACAAGTATTTTCTAAACGAAGTT CAAAATTACATAAGATTGTGGCTGGGGCGTGAGAAACGGCCTCAACAATGTCCTGT TCTGATCATGTATCATTTCAGTACCGATCATGCCTATCATACCCGCCTGGTGACGG TCACCT SEQ ID NO:156 Middle LPZ-090 AGGTGACCGTACTGATAATAGAAGAGGCAGGGAAAGGGAGATCAATGGCATCATG CTACTTCTTGTAGCTGTTTAACCTTAGTGATGTAATCTTCCATGGCAGACTCGGGG GTTTTATCTTTAAGTGAATTGCCATGCATCCCACTTGGCTCTGTCCCTCAAGTTGAA TATACCTGGACGAGAGGTATTGCATTTCCCAACGGTCACCT SEQ ID NO:157 Late LPZ-091 AGGTGACCGTATAGTGTCAAGCTTTTCTGGATTGGATAATGGACGGCGGCTTGCG CATACATCTACACATTCTGTAACAAGTACACTCTACTGCAACAGCAGACCCAATTTC ACCTCTTCAGTCAGCCAGAGATCTCGATGGATTTGGGTTGAGGAGGTTGGGGTTC GCCTGCTTCGGCACGGTCACCT SEQ ID NO:158 Early LPZ-092 AGGTGACCGTGCTAAGTAATTATCATCTGTACCTGTGCTTGCTGCAGGAAGTAAAC CAACCCGACTAGTCTTTTTAATAATACAGGGAGCCTTGCCACCAATTTCCTCTTGAA GCACCCATATTGGACGGGTTTGTGTCATCCTCTGTATTATCCTTTTTCATCCCAAGC AGGCTGTCTGTTTTTGTAGTAGAAGGATCACAACACAGATCAGGCCCTCCATAGTA CAAAGAAGAACCGAGGAAAGTATCATTAACGTTCTGACTCCTGCCATGAAGGCTTC CACTATGACCTTGACCCTTTTGTGAATTACTGCCATTTAGACCTTGACTGGCTCTTG CAACCAAATGCCCCAGAATGGAACTTCTTTGTGCTCCAGTTCCATTGTGGTTAGTT GAATCCCTACCACGGTCACT SEQ ID NO:159 Late LPZ-093 AGGTGACCGTGCAATATTGTATTCCAGGACCAAGTACTTAGGACAGAATCAGGTCA CGAGTGGCTCCACTCCACAATACGATGTTCATCGTTTTAATCACAATACAAGTTTGT TAGTCCAAGTAAGTGCGCTGCTGCAGACAGTGGGGCACCCCCCGTGGGCTTTGAC TGCCTGTCATACTGTTCCCTCCTTGCTCCTGCTCTTGCTCTCGCTGGGCTGTGGTG AGTTACTAACCTGGTTCGACCCACAAGGGCTTCTCACTAGGGCGTTAGGCTGCATG GATCTGCCAGATATTGTGGTTGCAAGGGACAGAGGCATGAGACACAGGCCTTTGC TTTGCAGAAACTGCATTGCTGACCCCATGTTCATCCATCAGTTTTGCTACCTCTC CTTCTGTTATGGACGGTCACCT SEQ ID NO:160 Late LPZ-094 AGGTGACCGTATCCGCAGCAGCAACAGCAGTAGAGCCTGAAGCAGGGGACCTAAT TACAGTCAAAAGTCCAGGGCTACCAATGCCTGCTAACAGCGCACTTACTGGACTA ACAAACTTGTATTGTGATTAAGACGATGAACATCGTATGTGGAGTGGAAGCCACT CGTGACCTGATTCTGTCATAAGTACTTGGTCCTGGAATACAATATTGCACGGTCAC CT SEQ ID NO:161 Late LPZ-095 AGGTGACCGTATCCGCAGCAGCAACAGCAGTAGAGCCTGAAGCAGGGGACCTAAT TACAGTCAAAAGTCCAGGGCTACCAATGCCTGCTAACAGCGCACTTACTTGGAACT AACAAAATTTTTATTGTTAATTAAAAACGAATAACATCGTTTTTGTGGGAGTGGAACC ACTCGTGAACTGAATCCTGTCCTAAGTTCTGGGTCCTGGGAATAACATATTGCACG GGTCACCTT SEQ ID NO:162 Middle LPZ-096 AGGTGACCGTTACAGCTAGGGAAGACTTTAAAAGTTTGTAAAACTAAGCATAGCTC TAAACACTGAAGTTAAAAGACATGATTGGAATGTGCAAGTGGTTCAGTATCCAAATA TTGAAGGTTGCAGAATATGGAGCTACTGTGCAAACGAGTAACTTTATCTATATTTTC ACAAGATCATACAATGGGAAACGTTGAGATAACAACTGCATCGGTGAACCAGAATA GTTATAAAAGTTCTTGCAAGTAAAGGGATGAATAATTGCATGGTTGGAATTAAGAAT GACCATGTAGAGCTGCTATACAGATTCTCCAAGGTTTTATATTTGAGGAGTGCGCG CTATTGATGTTGTGCAAAAATTTCAGAAATTAAGTTCTGCGGCATTTATCAAGGTG TTTGAGCCATTTAAATAGCAAGTTTTTGTTCTCCAAGTACTTTCAGGAAAGCAGAT AGCTCTAGTTATAATGCTCCAGTGACAAACACATCTAGTTGGGGCAGTGAATGACG CTTTTGTCATTCTCTTTTGGTTTCAGGCACGGTCACCT SEQ ID NO:163 Early LPZ-099 AGGTGACCGTGGACAAACTCTAGAACAGGCATAGCTTTCATGTTCAGTTGTTTTTAA AGAGCAGTCCTCGCAGCAGATCGTGCAGCTTCCTGCTTCACTTCCGTTGATTTTCC TGATCTGAAATACCCGTAAACTTGCTGAAGAACCCAAATACTTAATAGCGTCTCTAA ACAAAA SEQ ID NO:164 Late LPZ-100 AGGTGACCGTGCCTGAAACCAAAAGAGAATGACAAAAGCGTCATTCACTGCCCCAA CTAATGTGTTTGTCACTGGAGCATTATAACTAGAGCTATCTACAAGCCAAAACAGTG TTTGGGAGAGATTCCATAACGTCATTGCCTCTGCTACACATCATTCATTGGTTCCAA TAATGAAGCCACGTGCTAAGGACATTGAGAGAATCTTATAAAACAAGAAATATAGTA AATTGGGAAATGCATTTTATCGTCTAACCTGCTTTCCTGAAAGTACTTGGAGAAACA AAAACTTGCTATTAAATGGCTCAAACAACCTTGATAAATGCCGCAGAACTTAATTTC TGAAATTTTTGCAAACATCAATAGCGCGCACTCTTCAAATATAAAACCTTGGAGAAG TCTGTATAGCAGCTCACATGGTCATTCTTAATTCACACCATGCAATTATTCATCCC TACTTGCAAGAACTTTATAACTATTCTGGTCACCGATGCAGTTGTTATCTCAACGT TTCCCATTGTATGATCTTTGAAAATATAGATAAAGTTACTCGTTTGCACAGTAGCTC CATATTCTGCAACCTTCAATTTGGATACTGAACCACTTGCACATTCCAATCATGTC TTTTAACTTCAGTGTTTAAGAGTATGCTTAGTTTTACAAACTTTTAAAGTCTTCCCTA GCTGTAACGGTCAC SEQ ID NO:165 Middle LPZ-101 AGGTGACCGTAAAATACCATGAGAAATGCTTTCATCAGGCACCGCTGGTAGGTTT CTTAAGCTTTTCATTAGGCAAAAGAGGCTCCGTGAGTTGATCGTTAATTCTCTCCTT GAATGCCATATTGACCAGACACTCTGATTAGAAACTGGAATACAACTGCACATATAG TCATTCTATATGATTCATCCTTCTGCACTTCAGCATCCTGCGGCAACTCTTCATCCC GCCATACTGAGAAAAATATTTGACTCTTGATCATGTGTAGATGAATCTTCATGAAT CTTCTCATCTTCATTCTTGTCTTTATATCTTTAGGAAGTGCATCTGGTAAAAGTATAA ATGCATCTTCACGGGTGCTTCAGTTTTTGCATGCTCCCGGTCTTCTTGTTTAGCAT GTGGATCTAGGAAATCACTAAATGTAGTTCTCTCAATTGGTCTGGTGGAAATTCTCC TCAATTCGAGAATTACGAATCATCATACCTGAGTAATATATGTTGCCCTGTACATGC ATATGCTGGTTTTTGGCTCCACCATCTCCAAAGGGCTCAAAAACTATGCGACCCC TGGTTGCCGTAGTGGAAGGTTATACATTGCGTTCCCAGTAGCCACGGTCAC SEQ ID NO:166 Middle LPZ-102 AGGTGACCGTGGAGGGGCTCCACTTATATGCATAGATGATGCTGCGAGGCTGTGT TCATCTGGTCCAATGGAGAAGGGGAAGACCAAGTGCCTATCCTGATTTTGGTGCC GCTTGTTCTGGTGTACAGAATATCAACCCAGGGTATGTACCATCACTCGTGAGAC GTTCACATTTCCCCACTTCTTGGTGGAGCTGGTGGAAAGCCTGGAACTTCATCAAT CTATCGTTGGTGTGAGGATGATCAGGCTCTGTACTTATATCCACATGTAGTGCAGC AGGTGGTGGAGATGTCTCTGATAAGTTGGGGGTTGATACTGGTTCGTATCATTTGC AGTGATGTCCCCCGCTGCCCTTAATTGCTATTGATCCATCATTAACTATAGGTTTT TACTCGCCCGGAATAAGACAATCTTTTGACACTTGTTGCTTGGGTCAC SEQ ID NO:167 Early LPZ-103 AGGTGACCGTGGCGCCTGACCTGTGCAGAATCCATTCTCATGGATACAATACTGTT AAGTTTGCTTTGCTTTGCTTGAAGGATCTGAATTGAAAAATTGTCCCCACAATTCTG TTTCGTTAAAAATGACCTCAATCACTCTCGACAGTTTCCAGATCTTGATTGGGAGCG TCCTCTCCTCTCTCAAGATGTTGTTGACCAAATTCAGGGCGACTTGTGGCCAGAAA TCGTACATTCTGCCATCTACCTGTTATTGAGCTCCCCGATTTATATGCGCTTTTGAC GGTCAC SEQ ID NO:168 Middle LPZ-106 AGGTGACCGTCAATACCATTAAACTGGGGATTCGTCTCAACAAGTCAACATGCTAA CCTCACAGCTCCAATCAAACAACGTCCGTCGAAGGGCGCTCACACTCATCCAAATT ACTTCCCTCTGCAAGACTCACAAAATCAGATTCTTCATGAATTGCTCAAACGAGGCT GTTATGGATGATGCAGCTGATTACTCAAGTGACAGCACTCTGAATCCCCGTCCCAT ATATAGCGACGCGGCGTTTCAGCCGTGACTGGTCGCAACAGCCTCAGTGGGACACAA AAGGCCAGAAGCCCCCCAAGGTTCTCACGGTCAG SEQ ID NO:169 E,L LPZ-107 AGGTGACCGTGTCGATGTTGTTAGATGTGATTAGGGTTTTATTTCTTGATACAGATG CACTGTTTCTCTGTTTATTCTTTTATTTCTTCAATGTATGTTGTCAAATTATACTTAGT CA1GATCTCCTTTTATCGTTCGTCAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAG TTTAACAATTAAAAGGGGAAATTAGGCCATATCAGCTTGTCGTATGGACCCACATG ACTGTAGGTCAC SEQ ID NO:170 Middle LPZ-108 AGGTGACCGTATGCAGAGTCAAGGTTTAGTTCCTTCAGAGCCTGCCCGAGTAGCA CTGAGGCAGCTCAAGCCATTTCACGTAGGAAGCCCACAACAAAATAGAAATCAGAG TGAGTCTTTGATCGAGTAACCCATAAGTTCTTAGCTCCCGTTCCATCTTAACATAAG CATTTTTCTTCGTCTTCTCGCAGCCGT SEQ ID NO:171 Late LPZ-109 ATTGCAGAGGACTTAGAGAGGGAAAACCGTTCCGATCTGGTGAAGCAATTGGATG AGCGCTCTGGAATTGATCCCGTTTCTGATGATATCGTACGGCTAAGCTCAGCTCT TCAGGCATTGGCAGACAATACGATTCTTCAAATGAGATGACAGATTTTAAGAAACTT ATAGGATGACATATTTCCTAGCTTGAAGCGGATCCCCCTACGGTCAC SEQ ID NO:172 All LPZ-110 AGGTGACCGTCCGATAAAGGATGAGAATATAGGTAGATCAACCCAAAAACACTCTC AGAAAACGATTAAAGCCTAACCCCAAGATCGTTGAGTAAATTTAACCCGGTAACCTC CACATAAAATATACTTAGCAACAATAAACTCAACAACTAAACTATCCCTTTAAAATTA AATTATCCTATTTATTTAAAAAAACAAATCCTTTATATACTAAGGTCCCCTGCACAT CTATTACTAAGGTAAAGGAAGGGAATTATATGCTATCATTGTAAACTTTGACTTCCG TATTTATGATCAGACCATGAGTTTGATAATTAATTTTACGCTCTTTACTCCCCATTCA AGGCACGTGCCTGGTGATATATGAACGCCAAATTATT SEQ ID NO:173 Late LPZ-111 AGGTGACCGTAGAATACAATCTATGTATCTTAAATGCTAACAAAGAGAATTTGTTGTC TAGCTTGTAAATATACAAAAGAAACTCTCACAAGGAGTGAGAAGCACTAAGGCCCT TGGAAAGAATACGTTTCTATTCAGCGGAGTGTATTTTGAGCTACGGCTTGGCACAA CTCATCCTATAAAACAAGACTCTGTGAGAGGGCAGAGACCTTGATCCTGGGCGTG GCAAGCCGGGTGCCTATTGCGGTAAAATCGAGAAGGGGGACCCTGGAAAAGAGAG GCTGAAATTTGTTTCATTCTGCAACTGAAACCTAACCGGAGGCCGAATCTGATCATT TCTAAGACCTTTGGGGTCCTGGGCATCCCATTAAAAGAACGCTGCTAACTCTCCCC TCCACAAAGGGCCAATGCGCTCAGGTCGGGCTTCTCATCTTCACATTTCTTGCCGA AATCTATCTGAATTTGTTGTATTGAATAACACTGCCTCCTACACGGTCAC SEQ ID NO:174 Late LPZ-112 AGGTGACCGTGGGCGCCGTGGCTCAAAAGGCCCTCGCAGACGCCCGCTCCATCA AGCTCATGGGCCCCCTCCACCCTCGGGGGGCAAGCCGGGAACGTTGCTGTCAGA CGAGGCGAGGACCTGGAACTGCCGTTGAAGGAACGGTTCTATATTCAGCCCCTCT CGGCGGACCAGGCGCTGCGAGAGCCAAGGAATCCGCGGAAGCAAATCCTGGAGG TGAAAAAGCTGATAGATAAAAGGCGTGGCCGTACGTCCAGAACGACCTCCGCTCC AAGGCTTCTTACCTTCGCTACGACTCAACACCGTTATCTCCTCAAAGCCCAAGGAA CAGAAAAAACCCCTCAAAACCTCACCCCAAAGCTTTTTTGACACCCTTGACAAACCT GGACTACGCTGCAAGGAGCCAAGGATACCCCAAGGGCAGAAAAAATACTTTGCAG AAGCTGGTGAACCGCCCTTAATGATGTTCATTCCAAGCTTGGTTAAGCTGTATTGC ACTCATTGTTAACCACACTTAACGCCAATCCAATCTATGCTGTGTTGCATCTCCACT TCTTAGTTAATAACGTCTGTGTCCCAAACTCTGTGCCACACACGGTCAC SEQ ID NO:175 All LPZ-114 AGGTGACCGTACAATACAAATAGGTAGTTTATCACATTGTAGCTTATAGAATGTACA ATTGAAATCAAATAAATTCAACCAAACTCAAATAATATGATCATGTGCTCCTCACCTT CTCAGCAAACTCGTAGAGCAGAAAAAAGGATTATGTTAAATCACAGTTCACACATTA GGGTAAATCCCACTAAATGACCTCTCTTCATTATCCAAGTATCTGACACCAACATAT TTCAAACAAATAGTGCAAAAAGGAATGGTGAAGTAAAATAGTCAAAACTAAAAAATA AGCTTAAAATTTCTCACATGTTTGAATATGTGCACCACAAATTTTGTTAGTGTCATCA AAATGCATGTAATCAACTTGCCGTGTATATAATTTCACACAATATCCGTAAAATTTTG CAATTCCTTATGAGCATTTCATGTCTAGAGATTGCAATGACTTGGCTACAAACATGT TTCTCTACACAAGATCACAATATTTAGTCAGGACACGAATTGCAATGGGGATTCTCA CAAGCATCACAAGTCATCTCCCATGTACTAATAAAAAATTGTTTAAAT SEQ ID NO:176 Middle LPZ-115 AGGTGACCGTATAGTGCATATTCAGATTGCAATTACAGACGTATTAGAACCAGATTT TCGCTTCGATACAGCTCATCGAGAGCAACAGAGATCCAGATCAAAAACCAGACACA GTTTAAGAACATCGAAATACCAAGCCCAGGGACAGTTACCAGCATATAGCTCTACC ACCAACAGATTATTACAGAACCAAAACATAAGACCACTTGCAGACAAAAATAAACCC TAACGCAGAACGTGGCAACTATCTCCTCCAGCTACCACCATCGGAACCACCACCAC CATAGCGAGAACCCCACCACCACCATAGCCGCCACCGCCACCACCATAACCACCA CCACCACCACCACTGTACCGCCACTACCGCCATAACCACGGTCAC SEQ ID NO:177 E,L LPZ-116 AGGTGACCGTCCTTGGAGATACCAGCTTCAAAACCTCCAGTGGTGGAGTCGATGA CAATACTGCACAGTCAGCCTGAGATGTTCCAGTAATCATGTTCTTGATAAAATCACG ATGGCCGGGGCATCAATCACAGTGCAGTAGTATTTAGTTGTCTCAAACTTCCAGAG TGCAATATCATTGTGATACCACGGTCAC SEQ ID NO:178 E,M LPZ-117 AGGTGACCGTATAGTAGGAACTTTAGGTGCTTTTGGTGGCACTCTCCAATTTTCATG TCCTTACATACCCCACTACGGAGAAGGGTAGCCCAAGATTTGAACCCAAGACTTCC GGTTCGTGAGACTTCATTTCCACGGTCAC SEQ ID NO:179 All LPZ-118 AGGTGACCGTAAGATCAAGAGCACAGAAAGCAGCCATAGCCCCGCCCATTGAATG CCCATAACAATAATCTGTAACCCATCTCTCTGTTTCTGAGCTTTCTGAACTGCTTCT ACAACAGTGGTCGTAAGGTTGTGTTGTGATAAGCAGAGTAAAATCCATAATGTACC ATTGCACCAGCATATTAGGATAGTTGAGATCAAGTGTCTTACAGAATAAATCCTCCA CCCAATTCTGTAGCTCCTTTCTTGAGTACCCCTGAATGCAATTACAATTGCATTGAT ATCTTCTGCCACACCACAAAAGCCTGAAGGCAGTGTTGTACATCAACTATAAGCTC ACCACCTGAAAACCCCAGTCAAACCATTGCACCTAGAACAAGTCCAAGACATTAGA GCACTCAAATCATCCATATAGACCGCAGAAGCATATTGCACAAGTATCTCAGCAAGT GTTCGATTATAGACATGGCCA1GGTCAC SEQ ID NO:180 Middle LPZ-119 AGGTGACCGTGGGAGGGGAGATTTTTGATTTATATTTCCAATATAAAAGAAAATCTA NGTTGTAAGGACATGGCAAGAGCTCTTATTTCCGGGGTTTTAGCCGTGGCCCGGA GCGGATGAAAGCAAATGTAAGTCACTCCGTGCTTCTCGGCATTTGGACGCTTCTA CTCTACCGCACTACAGACGGGATTGAACCTCGCATCTCTGAGTGTTTGGTCGTTTA CATGGCGGACTTGTTCCGCACCTCTGCGGACGTCAAATGCCGCGACGATAATCCC TTTGAGAACAGCGATACGGCAGAAAGATCGCCGTTGACGAAGCGAGAAAACTATTG AGACTTGCAGATGTGGAGCTGAAGAAGAGCTTGAGTCGACGGTCAC SEQ ID NO:181 Middle LPZ-120 AGGTGACCGTCCGTTCGGGGTGTATTTGTCGAACACGTAGGATGGTGCTACGTTGA AACCACCGTTACCTTCTTCGATATGTTATAGTTCGAGTTCATACGGAGGGAATACC GTTTGTAGTGTTATTCAGCACAACCCCGTCCTGATTAAACACCCCCGCAACCAAGG ACGTATTCGACGTTCGGTATTGTTTGACACACTCAAGTTATAACCCTGAATAGGCG CTACCCGAAGTAAGCATTGTACCAGTCGTTATTTTTGCCTTCGTATGCGAAGGATT TTGAAATATATCCGGACAGGCTGCAACCGATCTTCATAAAACTCTTTCTTAAACTGA GCAAACTGAACAGCATTAGCATTTTGACCCGACCTTCATCGGCACCTGCTGCACA CCCGCATACGTATTAAAGCTATGTTCGTCTGGCCAGGTTTGCCTTTTTTGGTTGTAA TCAGGACAACGCCGTTAGCCGCCCGCGATCCGTAGAGCGACGTAGAAAGCCGCAT CTTTCAGCACGGTCAC SEQ ID NO:182 Late LPZ-122 AGGTGACCGTGAAATATGTGGGAGATGATATGTGGTTTCCTGAATATTCACCTCTT GTGTAGAAAAGTGAGATCCTTAAGATGTTTTTGCTAATAAGACTCTTAGGAATGTTGG ACCCCTTTCAGAATGCCATTTGAATAGATTCAAGGTGGTAGCTGTTGCCTGGGGCT GTTTTAGGGTTTTAGGCCATGCTCTGTAATTCATTGAGTCAAAATTGGATTAACTG GTGTCTTTTACCTCATAATAGCTACTGCAGTATTTGTCGATATAGCTTCCCTATTTAT TGACTCTCCTTAGGTACGGTCAC SEQ ID NO:183 Late LPZ-124 AGGTGACCGTCCGTCGGGGTGTATTGTCGAACACGTAGGATGGTGCTACGTTGA AACCACCGTTACCTTCTTCGATATGTTATAGTTCGAGTTCATACGGAGGGAATACC GTTTGTAGTGTTATTCAGCACAACCCCGTCCTGATTAAACACCCCCGCAACCAAGG ACGTATTCGACGTTCGGTATTGTTTGACACACTCAAGTATAACTCTGAATAGGCGC TACCCGAAGTAAGCATTGTACCAAGTCGTTATTTTTGCCTTCGTACTGCGAAGGATT TTGAAATATATCCGCACAGGCTGCAACTGATCTTCGTAAAACTCTTTCTTAAACTGA GCAAACTGAACAGCATCAGCATTTTGACCCGACCTTTCATCGGCACCTGCTGCACA CCCGCATACGTATTAAAGCAATGTTCGTCTGGCCAGGTTTGCCTTTTTTGGTTGTAA CAGGACAACGCCGTTAGCCGCCGCGATCCGTAGAGCGACGTAGAAGCCGCATCTT TCAGCACGGTCAC SEQ ID NO:184 Middle LPZ-126 AGGTGACCGTCGTCAGAAAAAACGTGATTTCCGCAAACTTTGGATCACTCGTATCA ATGGGCAGCTCGTTTGAACGGACTTTCATACTCACAATTGATGCATGGTTTGAAG GGCTGAATCGAAGTGAACCGTAAAATGTTGGCTGACTTGGCTGTTAACGATGCAGC AGCTTTCAAACTCTTGCAGACGCAGCTAAAGCTAAGCTTGGGTAAATAATTAAAAAA AGAACCGAGGTTTCCTTGGTTCTTTTTTATAACTTTTAATGAAAAGTATGAAGAGAG AAACAGCCTGTCTTCTACTTATAGTATAAGATAAAAGCTTGTTACTGATAAGACAGC TTTCATGGTAAAGCAGTTAAAAATAGGGATTTGCGATATAATAGAAAAAACAGACGT TTATGTAAATAAAAAACAGTAGAATGGAGAAATATGTCAGAGAATCGTTTGGCTTG GGATCAGTATTTTGCGGCCAGGCTCTCTTAATCGCTAATCGCTCAACCTGTAAGCG AGCCAAAGGTGGCTCCGTATTGTCAAGGATAATAAGGGTTATTTCAACTGGGTACA ATGGCTCAGTTTCAGGGACTGGAGACTGTATTGACCAAGGAGTGCCTGGTCATTGA CGGTCAC SEQ ID NO:185 Late LPZ-127 AGGTGACCGTGGCGGAGGTTAGGGAAGTTTGACTTCTCATTTTCTCACGCACTCCT CTCCTCGTAACCTCGGTCGAGTCGATGGCGGCTTTTTAGTCGAGTGTGCTAACGC CCCTCCGGCCTCAAAATTTCCAGCTACTCGTATTTGATCAATGCTGAAATCGCGTAA TTACGTAGTAATAAAGCGTAATGAATTCTATAATGAAGCATGTTTCTCTATAGTTCAT GTGCCGAGAGGAATAATGAAAATGAGGCCTTATATATTATCTGGGGCTCAAGGAGA TGTTATCTTTTCCTCCTTGGTTAGAGACCGTCAACCTTCACTTGATTGGATAAAGC TTCATTTTGTTAAAACCTCCAAGCCAGTAGATACATACGGTAGGCACGTATTATGGT AGAGACATACGGTCAC SEQ ID NO:186 Late LPZ-128 AGGTGACCGTCCTGTTGCCTTAACCGCGAATCCAAATCGACTTGGGCTGCTTCCTTT CGTGCAGATATTTCTGGTTTGGACTCTAGTTCTTGCTCCTGGAAATCATGCTTGAGT GCTGGGTAGCTGCCTCCAAGTTTGGTTGACAGGCCCATTCCTTACAGCTTCTCTCT TCCGCTTATGACAGAGTAATGACAGGAATTCAACCTGACGGATCCGTCTAGCTCTC ACAAGGTTGGGACCCTGTCTTCGAGAGGGTTATTTCTTGAGACTGTTGACTATATT TGGATGAGCCCTCAGCTCTGTGTACTATTGTTCATGTACTGGATACTTTGTAAATGA TTTTATTCTGGTTTTACCCCGGGGGGGGCATTTTGACTCCTGGGTTTAATACGGTC AC SEQ ID NO:187 Late LPZ-131 AGGTGACCGTGGAACATGATGATTAGTTCTTCTGTGGGCCAGGATGATTAGTCTC TGTGTGACTGTGGGCCAGGATGATTAGTTCTCCTGTGACGACTGTTGGATAGGATG ATTCGTCTCCTGTGGACAGGATGATTAGTTCTCCTGTCGAGGCACCCTACCCATGC AATTTGGGATCATGGGAAGTACCTCTCATCTGATCAATGAGTAGGGAAATGGGGT AGGGACCATTAGAGTACTATCGATGGACACATCGTTGTATCTACCGTCCTATGCTA GGACGACCTCCATTGTTTGGGATTAGTGAGAGTGGTATGACACTCTGAGACTGACT TTGGGTCAGTGGAGGATGTATGATACATCCTCGATCATTTCTTCTTCTTCATAGTTC GAGCAGAGCAGAGCACAACAGGCCAAGTAGTGCAGGGTAGTGCATTTGATGGCTG GGATAGTAGCGACGGTCAC SEQ ID NO:188 Middle LPZ-133 AGGTGACCGTAAATAAGATGACCCACATGGAGTTTGGCCCTAGTTTCCAATTTTTAA CAC1CGCTCTCAACTAGGGAGAACTCCATTCGCTGATCCATTTGTCCGACTATACTA TCTCTGCATCAGTGCCCTACACTACTCTGCACTGCTCTGCTCTACTAAACCATGAA GAAGAAGAATGACCGAGAATGTCTCATGCCATTCTCTATTGACCTGAAGTTAGTCC TATATGAAGAGA1TGTGTCATATCACTCTTATTGACCCAAAGTCAGTTTTATTGATCC CAGATCAATATCACAGAGAGTGTCTCAAACCACTCATACTGATCCCAGATCAGTTTC ATTGATCCCATATCAAGGAGATCATCCTAGAATAGGGAGTACAGTAGATACAATGAT GCATCCATCAATAGTACTTCTATGGTCCCTAACCCCATTTCCCTGCTCATTGATCAG ATGAGAGGTACTTCCGATGAGCCCACACTGCATGGGTAGGATGCCTCGACATGAG AAATAATCATCCTATCCACAGGAGACGAATCCTCCTGTCCCACGGTCAC SEQ ID NO:189 Middle LPZ-136 CTAGGGAAGACTTTAAAAGTTTGTAAAACTAAGCATAGCTCTAAACACTGAAGTTA AAGACATGATTGGAATGTGCAAGTGGTTCAGTATCCAAATATTGAAGGTTGCAGAA TATGGGCTACTGTGCAAACGAGTAACTTTATCTATATTTTCACAAGATCATACAATG GGAAACGTGAGATAACAACTGCATCGGTGAACCAGAATAGTTATAAAAGTTCTTGC AAGTAAAGGGTGAATAATTGCATGGTGTGAATTAAGAATGACCATGTAGAGCTGCT ATACAGACTTCTCAAGGTTTTATATTTGAGGAGTGCGCGCTATTGATGTTGTGCAAA AATTTCAGAAATTAATTCTGCGGCATTTATCAAGGTTGTTTGAGCCATTTAAATAGC AGTTTTTGTTTCTCCAGTACTTTCAGGAAAGCAGGTTAGACGATAAAATGCATCTTC CCAATTTACTATATTTCTGTTTTAAAAGATTCTCTCAATGTCCTTAGCACGTGGCTTT CATTATTGGGACCAATGAAGATGTGTAGCAGAGGCATTACGTTATGGAATCTCTCA CCAAGAACACTGTTTTGGGCTTTAGATAGCTCCTAGTTATAAATGCTCCAGTGACAA ACACATCCTAAGTTTGGGGCAATTAATGACGCCTTTTGGTCATTCTCCTTTGGGTTT CAGGCACGGTCAC SEQ ID NO:190 Late LPZ-137 TCCCTTTAGTGAGGGTTAATAGATCTATAGTGTCACCTAAATCGCGGCCGCTCTAG AACAGTGGATCCGCAAGCAGGATAGACGGCATATGCATTGGATGCTGAGAATTCG ATATCAACTTATCGATACCGTCGACCTCGAGGG SEQ ID NO:191 Middle LPZ-138 GGTGCGATCCTAAACATGCAAGCTTTGAGTTTGTAACTTTGTAGAAGTGGACATTTC TAAGTTGGATGTACAAATCTACTGTTGGTTGTATTGTCATCCCATAAACAACTGTTT GATGAGATGTTTTTTTAAAAACCACATCATAATATTTTTAGGCCTTGTAAAAAAAAAA AAAAAAAAAAAAA SEQ ID NO:192 Late LPZ-140 ATTCCAAACTTTTCTTCAAGATGTACACCAACATCATTGTCCCCAACTAGTAGAC TGACTTTTCACCAGGTCCAAAGAGAGGGGTGGTGGAAGCAGATTTCAGGCTTTCG AATAAGTATCAATGATATAAGCATCATCCCCTTGCCAATTGTTCTGGATCGCAC SEQ ID NO:193 All LPZ-141 GGTGCGATCCCATCAGGGGTTGTGTTTCTAAGAATCACTTCCATGTTTCAAATTCAG CACTTGATCTTGTACATACCCAATTTGTTGCCTGCTACTAGCTAGTATTGTCTTTCA GTTTGAACCATTTTTTTGAGTAAATCGTGTTTAGTCTTTGGCAAAAAAAAAAA SEQ ID NO:194 Middle LPZ-143 GGTGCGATCCGCATTAGAGAAGCATACAGGAAAAAGAAGTACCTGCCTCTTGATTT GCGCCCAAGAAGACTCGTGCTATCAGGCGACGCCTTACCAAGCATCAGGCATCAT TGAAGACGAGAGACAGTTAAAAGAAAGAGATGTATTTTCCAATGAGAAAGTATGCAG TCAAGGTGTAAGCCACAGGATTTGAGCTTTCATGCAATTTTTTTGTTACTTGCGGGA TGATATTGCCTATATATTTCCGTCCACGTTTTTGGCAAATTCCGATTTGCATCAGAA TTCAAGTTATGATAGTGTTCTTCGCTTTTGAGCAGTTGATATTGTTTATCTTTTAT TCTCTGAATTGCAACATATTCTAATGCAATGAGTGGATTATATATTGTGGTATTTC CATGTTGAACTCATATAAATGAGCGTAATTGAGTGGTAGCGCTAGGATATTTACAC TTGGCAAAAAAAAAAA SEQ ID NO:195 Middle LPZ-144 GGTGCGATCCGTATAGGTAGTTTGGATGATGAACGGGCAAAGAAGGCAAAGGAGT ACAGGATGGATCCTGTAATTCCTGTTTCAGAAAACAGAAAATCTGCAATATAAGGAT GGCTAACTTTTCAGCTATGAAAATATATGGTGCAGTGGCACTCATATCAGTTGCAG GTTGTCAAATAACTTTTGTGAATAGGAAAGTTGTCCTCTTTTAGAGTGCAGAAATCC TGCAATATAAGATGGCTAAGTTTTTCAGCTATATGAAAATATATGGTGCAGCAAAAA AAAAATA SEQ ID NO:196 Late LPZ-145 GGTGCGATCCCATATACAATTACATATATTTTCAACAATTCTTTTGTTGTTATGAAAA TCTATTGAAATAAATTGAAATAGTTTGCATCATTTATTTATCGGAATTCGTATTTATAT ATTAAATTTCTGATGTCTCAAATCCTTCGTTACTGTAACGATATCATTAATATAATGT GTCTGCAAGTTTATTGGGCAAAACAAAATTTATTTTTCGGTCACATCATAAGTTTATT TTTGGTCACATCATATGCACCATCACATTAAGCATAAGCATATACAGTAGCGTAAAA ATACAATTATTGTTGTTGACTAGGATCGCAC SEQ ID NO:197 Late LPZ-146 GGTGCGATCCTAGTCAACAACAATAATATGTATTTTTACGCTACTGTATATGCTTAT GCTAATGTGATGGTGCATATGATGTGACCAAAAAATAAACTTATGATGTGACCGAAA AATAATTTTGTTTTGTCCAATTAGACTTGCTGTATATGTCTGGAGTCCTACCCTTG AATTGACTTGTTTCCC SEQ ID NO:198 Late LPZ-147 GGTGCGATCCCATATACAATTACTTATATTTTCAACAATTCTTTTGTTGTTATGAAAA TCTATTGAAATAAATTGAAATAGTTTGCATCATTTATTTATCGGAATTCGTATTTATAT ATTAAATTTCTGATGTCTCAAATCCTTC SEQ ID NO:199 Late LPZ-148 CCACTGCACCATATATTTTCATATAGCTGAAAAACTTAGCCATCCTTATATTGCAGAT TTCTGTTTTCTGAAACAGGAATTACAGGATCCATCACTGTACTCCTTTGCCTTCTTT GCCGTTCATCATCCAAACTACCTATACGGATCGCAC SEQ ID NO:200 All LPZ-149 AGAGCCTTCTTGCAGACAATCCGTGAAAACATGGCTATACAATAAAAATTCCCAGTT TGAATTCTAAAGAAAACTGTTCAATATTTGAAGGCCTCTGATATCACAGAGACTGAT ATTAAATGGAAATTCATACAAATGAGGAGAGCATGTAGCAACACTAGAAGCTTTGG CATAAAGCACCAGATAAATTCATAAGAACTAAATCCATAAGAAGGATCTCTCGTTCA CCAGTCACAATCACACTCGGATCGCAC SEQ ID NO:201 Middle LPZ-150 GGTGCGATCCCTGGCCCTGATAACTTTGGTTGCAATGGAAAATGCAGTACTAGGTG CGAAATGCTAAAGCCCGCCCGGAGCGGTGCATGAAGTACTGCAATATTTGTTGTAG TAAATGGCTGGTTGTGTTCCCAGTGGTCACTATGGCAACAAGGACGAGTGCCCCT GCTACAGAGAATGAAGTCCGCAGCCGGCAAGCCCAAGTGTCCCTGATCTTAGCAC TTCAGTCCAGTCGCCACTTCTTTTATTCTCTTTTTTTATAAAAGTGACGAGGCCG TTCTTGTGCTTGGTGCCATATGTAGAGCGGTGGCTACTTCTCCTGTGTTAGGAAAT GTTGCAGTACTAATAATAGAACTTCTT SEQ ID NO:202 Middle LPZ-151 GGTGCGATCCAATAAAGATATACTTTGCAACAATAATCAAAATATCATATGCAAAG TTTAAGATCAAAATAGAATGCAACAAAAAAATGGTTGTAACATAGGAACCAACAATG TTGCATTCAAGTAAGACTCTTTGCAAAAAAAAAAAATAAAAAAAAAAA SEQ ID NO:203 Middle LPZ-152 GGTGCGATCCACAAGTAAGATAATTGAGTATATATTCAAGATGCAAATATTTCATTA GGACCACTCATAAAGTTATCAATGATTCACAAAGAGACCTCCTGACCTCTCTCAAAA GTGGTGGCAACACAAGACTAGTGTAGTTTTTACTATACCTCAATGAAACTACCATCC TAACTGATGCCATAATCTTCTGTTATATATTACCAAAATTTATGAGATGATTGATCCA TAAACACTCCAGAACACATAGTCATCCAAAGGAACCTTTGCTTGAATATGGACCCC CTTAATTCAGGTACTTGCTACTCCAATAAATTGCTTAATCTCTCCACCGATAACCAC AGTTTGGATCGCC SEQ ID NO:204 Early LPZ-153 GGTGCGATCCAGGACATGAGGCCGAGTTTGCCATTGTGATATGATTGAGGAAGTC CAGTCTCAAAATTAGGTTTATCTTGATGTTTGACAAGAAATATAGAAGGGCATGATG AATCAAGAACCTTTTCCAAATCTGTTACTGCAACCAATCCAATGACATAATAACGCC AATGGTGGTTCCTGTGATGACATAATAAATTGGATTAAATTAATAACATCCCTAATG CCATGTGGTTAGCTGCATCATCACCGTATCCATCGAGTGTTCAATTTTTGGGATGT TGTATCAAAAAAA SEQ ID NO:205 Early LPZ-154 AAATATTTTTCAATACAACGCCATGTGACATTTTTGTGCTTCTTGTTTTTGATACATA CTTCCAAAAACTGAACACTCGATGGATACGGTGATGATGCAGCTACAGCCATTGCA TTACGATGTTACTAAATTAAATCAATTTATTATGTCATCACACGAACCCAAACAATAG CGCTATATGTCATTAGAATGGTTGCAGTTACAGATCTGGAAACAGATCAATGAATCA TCATGCCCTCTATATCTCTTGTCAAACATCAAGATAAACCTAATTTTGAGGACTGGA CTTCCTCAACATATCACAATGGCAAACTCGGCCTCATGTCCTGGATCGCAC SEQ ID NO:206 Middle LPZ-155 GGTGCGATCCGTATAGGTAGTTTGGATGATGAACGGGCAAAGAAGGCAAAGGAGT ACAGGATGGATCCTGTAATTCCTGTTTCAGAAAACAGAAAATCTGCAATATAAGGAT GGCTAACTTTTCAGCTATGAAAATATATGGTGCAGTGGCACTCATATCAGTTGCAG GTTGTGAAATAACTTTTGTGAATAGGAAAGTTTTCCTGTTTTAGAATGCAGAAATCC TGCAATATAAGATGGCTAAGTTTTCAGCTATATGAAAATATATGGTGCAGCAGAGT TGTCAATATAAACTTGTGAATAGGGAAGTTTTGGCAAAAAAAAAAAAAAGAAAAAAA AAAA SEQ ID NO:207 Late LPZ-157 GGTGCGATCCTCGTTGTGAAGACGTAGTGATGGAAAGGTCATGTTTGTAGGAGAC ATAATTATAGGAGTTTCTTTATTATAATAACCAAGAAGTCCGATCCTGGGGGCGTTG AGTATATAGTCAGTCTTTGGTAATTTGGTGTGGTGCTGTTTGACCTGCCTTTCCTTT GGAGCAATGATCCTTGAGGATGGAAGAGGTTATGTTGAGGCTCAAGAGATGATTGT TTGAGTTGTGGAAAGCAAAAGGTTTCCAGATGTAGTCAGATAGTAACTTCTATGCTT TTAATAAAATTTAGTCTGTGGGGCATGCCCCTTTTTGCTGGCAAAAAAAAAAA&GAA AAAAAAAAAA SEQ ID NO:208 Late LPZ-158 GGTGCGATCCGTATAGGTAGTTTGGATGATGAACGGGCAAAGAAGGCAAAGGAGT ACAGTGATGGATCCTGTAATTCCTGTTTCAGAAAACAGAAAATCTGCAATATAAGGA TGGCTAAGCTTTTCAGCTATGAAATATATGGTGCAGTGGCACTCATATCAGTTGCA GAGTTGTGAATATAACTTTTGTGAATAGGAAAGTTTTCCTGTTTTAGAATGCAGAAA TCCTGCAATATAAGGATGGCTAAGTTTTTCAGCTATATGAAAATATATGGTGCAGCA GAGTTGGAAAAAAAAAAAAAAAAAAAAAAAAAAA SEQ ID NO:209 Middle LPZ-162 GGTGCGATCCCAGGAGAATATTAGTTTCATGTGTTGCTATCATTTTCTTCAATATGC AGGGCAACCATTTGAATGAAACTATTCCTTTCGAATTTCAAAAACTTAATAGGCTAA CTTATCTATCTGGAGCCGATTTTCATTGACGAGTAACCTGTAAGCTGGCCAGCAAA AGCCAACAGATGTTCAGCTTGTTGGAACCAGTTGAAGATTGTAATAGAGATGGTGA ATAATCGCGGACGGCTCGGCCAATGGAATATTTGTTGCATCATCATCAAGGGGGTA TGAATTCCAAAGAACTTGTTGATTGAAATTCCCAAGCAAAATTCTGTGAAATGAAAA ATTTATTGAGACCATTGGGCAAAAAAAAAAAAAAATAAAAAAAAAAAAAA SEQ ID NO:210 All LPZ-165 GGTGCGATCCGACTGTGATATGTGACTGGTGAACGAGAGATCCTTCTTATGAATTA ATCTGGTATCTTTATGCGAAAGCTTCTAGGGTTGCTACATGCTTCCATTCTAATATC AGTCTCTGTGATATCAGAGGCCTTCAAATATTGAACAGTTTTCTTTAGAATTCCAAA CTGGGAATTTTTATTGTATAGCCATGTTTTCACGGATTGTCTGCAAGAAGGCTCTTT GGCAAAAAAAAAAAA SEQ ID NO:211 M,L LPZ-166 TTTTTTTATTTTTTTTTTTTCCAACGAGATCACTGTCATTGTTCAATAACTATATGCCA AAGAGCCTTCTTGCAGACAATCCGTGAAAACATGGCTATACAATAAAAATTCCCAGT TTGGAATTCTAAAGAAAACTGTTCAATATTTGAAGGCCTCTGATATCCCAGAGACTG ATATTAGAATGGAAATTCATACAAATGAGGAGAGCATGTAGCAACACTAGAAGCTTT GGCATAAAGACACCAGATAAATTCATAAGAACTAAATCCATAAGAAGGATCTCTCGT TCACCAGTCACATATCATACTCGGATCGCACC SEQ ID NO:212 Middle LPZ-167 GGTGCGATCCGACTGTGATATGTGGCTGGTGAACGAGAGATCCTTCTTATGAATA ATCTGGTATCTTTATGCGAAAGCTTTTAGGGTTGCTACATGCTCTCCTCTTTTGTAT GAATTTCCATTCTAATATCAGTCTCTGTGATATCAGAGGCCTTCAAATATTGAACAG TTTTATTTAGAATCCAAACTGGGAATTTTATTGTATAGCAATGTTTTCACGGATTGTC TGCAAGAAGGCTCTTTGGAAAAAAAAAAAATAAAAAAAAAAAA SEQ ID NO:213 Middle LPZ-169 TCCCAAAGGCAATTATACATGGATCGCACC SEQ ID NO:214 All LPZ-170 GGTGCGATCCCCACTGCAGAAAGATGAGCCAGTACCCTGAAATTTTGCTGTTGTCC ATGCCTGGGTCACGGAGGAAAGAACGGCACGGTGCAATATGATTTTGCTACATACA AGTTCCAAGAGTGGATGCAGACAGTGCTGGCCATGGCTGATTATTTGCAGGTGACT AATGCTCTTTTGGTTATCCTTACCATCATCATCTTCCTGCCATTCTTTTGTACCTCGG TATGGAGACGAACACCCACTTTTCAAAGTTTGCAGAGGAAGCATGTATTCATAACA GGAGGATCAAGCGGCATTGGCCTTGAGATTGCCAAAGAGGCTCTTCACAGGGTT CTTACGTGACACTGGCGTCAAGAAATCTTTCTAAACTTCGTAGGGCTGTTTGAAGAA ATCATCCAAGAAGTGGAGTGCGACGGAGACAAGATTAATATCAAGGTAATATACCC TGCAAAATGTTGTCTGGAATACAATCCAAAACCAATTTAGCAATTAACCCATTGGCA AAAAAAAAAAA SEQ ID NO:215 All LPZ-171 GGTGCGATCCAAGTGCGGTATTCTTCCTTTGGCAGTTCTCTGAACTGTTGAGAGAA TTTGAGTAGGATAACGACATAATTACTATGCTCACAAGCCCAGACAACACGAATAG ACTCCCTTCCGTGCGTCGCCTTCCAGAGGACGCAGCAGCTAAAATCTCGGCCTGA CTCACCACATATATATTTAATAGCTTGTATATGCCATATGAACTGTTAGCATGATCTC CCTCTAACTGCGAATTGTGTTGCTGTAAACTAATCCCAAAGGATGTTTACTCTGTTG CTTTTCCAACTGCTGATGGATTTCGCTCATACAATGACCCGAGAGCACCATAAACC ACCCAGCGTTGTGGCCTATGACCCATAGCTTTTTGTTCGCACAGCAATTGAAGACC GGCTACAGGAGATGACTAATGCACTTCCGAGAAGGTTTCACCGCGAATGACAGGG AAGGACAAGGCAGAGCAGCAGGCCAAGACAGCTTTAGTCGCAGAAGTTCAAGCAG ATCTAGATTCATAGTAAATGGAAGTTCTACACTAGTTACAAATTTAAAAACGTACCTG CATGGACTACACGGTTTATTTACGAGTGCCACTTGTCTCATTGTTTTCCATCAGATG TCTGCTGGATTGTGGTAGTGTGTTCTACCGTATCGGTGCGGGTTTTGTATATTGTG CGTCGACAGAGTGACAGGTGGTGATTTTACTGGCAATTAAAAAAAAAAAACAAAAAAAAA A SEQ ID NO:216 Late LPZ-172 GGTGCGATCCTAGTACAGGCGTTTGGAACAGAGTGGAGAATATGTGGAGTATTGG GGGATGCCCCCGGTCGTGTGTTGCTGCGTTTGGGAATTTGTATTTCTTCCATAGGC AACAAGTGATGTGTTATAATAGTAAAGAGAATGTTTGGGAAGTGGTGGCATCTCTTC CTGGAGACATGAATATTGTTACTTTGCGCAACAGTGTGGTGTGACAAGATATTTGT GAGCGGTTGTGCTTGCAGTGGCGGCGATCAGGTGTGTTACATGCTGGACAAATCT TGGGCGTGGGCTCCTATTGAGAGGTCACATGAGTTTGAGGGTTTTGCTCAGTCTG CAATAACTGTAGAGATATGAGCAAATTCTGTTGGGTTCACTTAATTTTGGGATTATT ATAGTGCAGAGGGGAGCCGGGAAGTTTCAGTGTACAGTGATGGGCACCACATGTT GCCAGCATTGGGGGTGCCCTGTGAATATGATTTCTATAAGTCCGGATTTTAAATATC TAGGCCATCTATCTCATCCAGCCTCTGATTGTGTCTGTACTAAATATATCCTGTATA TTCGTGATCCCTGGTTTTGAAGTGAGCAAGTTTTAGTGGAAGAGGATTTTTATTAAA TATATATAAAGTTTCTGTATTCAGGGTTTTGGCAAAAAAAAAAAAAA SEQ ID NO:217 Middle LPZ-173 GGTGCAATCCGCCATAAGAGAGGCATACAGGAAAAAGAAGTACCTGCCTCTTGATT TGCGTCCCAAGAAGACTCGTGCTATCAGGTGACGCCTTACCAAGCATCAGGCATC TTGAAGACTGAGAGACAGAAAAAGAAAGAGATGTATTTCCAATGAGAAAGTATGC AGTCAAGGTGTAAAGCCATAGGATTGAGCTTTCATGCAATTTTTTTGTTACTTGCG GGATGATATTGCCTATTATATTTCCGTCCACGTTTTTGGCAAATTCCGATTTGCATC AGAATTCAAGTTATGATAGGTGTTCTTCGCTTTGAGCAGTTGATATTGTTTATCTT TATTTCTCTTGAATTGCGAACATATTCTAATGCAATGAGTGGATTATTATATTGTGGC AAAAAAAAAAAAAAAAAAAAAAAA SEQ ID NO:218 Middle LPZ-174 GCGGACGCCTCAGGATAGCGTTAGGGTTGCCTTAGGATAGCGTTAGCTCTGCCTT CTAAGGTTGCCGTCTTATCCTCCAGCGTCTAGGGCTTCCACTCCTAGGATTTCTCT TCCACTAAAACCCAAGACAAGTGGAGAGAAATCAAGATAGAAGTGTGTGTGAAATG ACTCTTAAGTCATCTCCTTTTAGACTAAAACATTGAGCACATGTGGGGTTTATTTGG TTGCTGGCCGTCGTT SEQ ID NO:219 Middle LPZ-175 GGTGCGATCCTGAAACAACATATTCCCGATGGCTCTTCCGAAGGAACCATTGCTCT ACTGTGTGGCCCTCCCCCCATGATCCAAGATGCCTGCCTACCTAACCTGGCCAAAA TGAATTATGACATTCAGAATTCGTGTTTTCAGTTCTAATTACACCCTTCTGGTTAATC AAATTGGGACATCCCCTCCCACATCCTGTTATTAATTAAGCCATAGTCTAGTGTATA AAATCTGTTGATGTGTACAGCATCAAGTTAATTTCCTCCTTTTCTGTCAAAAAAAAAA AAAAATAAAAAAAAAAAA SEQ ID NO:220 Late LPZ-177 GGTGCGATCCGATCCTAAGCGGGTGCATATATATAATGACAAGCTGTAGTAACTAA CTCTTGTCATGAGGCCATTGCTAACATAGCCTGTCCAATGCACATAGCAGTCAAAA AAAGCAAATAGCCGCCATGTTCCCATACACGAAGTAAGTACCCTCCCTATTGAGTC ACCTTACCCGCCGAGAGAGATCCCAATTCCATGTATTCGGTTAAGTAAGCCCTGCC AGCTATGTCCCACCCATGAAAGAAAGTACTGATCCGAGTGGATCGCACC SEQ ID NO:221 Late LPZ-179 GGTGCGATCCAAACTGTGGTATCGGTGGAGAGATTAAGCAATTTATTGGAGTAGC AAGTACGCTGAATTAAGGGGGTCCATATTCAAGCAAAGGTTCCTTTGGATGACTAT GTGTTCTGGAAGTGTTTATGGATCAATCATCTCATAAATTTTGGTAATATATAACAGA AGATTATGGCATCCAGTTAGGATGGTAGTTTCATTGAGGTATAGTAAAAACTACACT AAGTCTTGTGTTGCCACCCACTTTTGAGAGAGGTCAGGAGGTCTCTTTGTGAATCA TTGATAACTTTATGAGTGGTACCTAATGAAATATTTGCATCTTGAATATATACTCAAT TGATCTTACTTGTGGATCGCACC SEQ ID NO:222 Late LPZ-181 CAATCTGTCTGCAATTGATATTATTGCATCCAGTAAACCAGATACACATTCACCACA ACATTAGAGACTCTAGAAGTTCCTTTGGCGACAGGCAAAACTCATGATTACAGATAA TTGGAGTTTCCTCTAACCAGAGTCAAACGATCTAAAGGGATTTGTCTAGTCCTCCAT TCCCTCATTCAATGAGGCGATGGCTTATGCCGTGACAACAGTTTCTATAGTTGCAT CCGCTCCTGTTGATCCCACAACATTTTTGGTGTTCTCTGCATCTTCTTCCTCCCATA TCTCTGGCAGGGCTTGTCTAATGTTGTGAATACTTGCAAGGGCAAAATCTGCTCCC TCTGTTCGGATCGCACC SEQ ID NO:223 Late LPZ-182 GGTGCGATCCTCTCAGTTACGAGCTCAATTTCGACCAGGGGTCTCGGCAAATTGA GGATCATGAGAAGCAGGGTATGCCCTTGAATGCCCTGAAGCCAGGGGAGTCTCAG GGCAATCACGAATGAAACCTGACAAACCCTAAGAAAACCCCTAGAGCGTGCCCTGC AGAAAGGGAATTCTTTTTGAGGCCGGCGGTCTTTCTGTCGTCTTCTCGCAGCCGTA SEQ ID NO:224 Late LPZ-186 GGTGCGATCCAGCAAGAGAACGAAAAAGGTATGAGAATCTATGAAATATTTGTACA TCACTGTATTCATATGAGGGCCTTTTTTTACAATGCGGTAGGGTTGTTTGGAGAAT AGAACCTGATTAAAATGTAGATGGATTCAAGCTTTTAGTGAAATGAGGCTCGGAAC GCAAGTATGCTGTCCACTTTGAGACTCATTCTTCTATAGTATCTGAAGCCAAAGCC SEQ ID NO:225 Middle LPZ-189 GGTGCGATCCCATGGGATAGTTGCAAAACACACAAATTTGTTGTGAAAGAAGAGAG ACACGCACAGACAACCATATGATCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TTTTTTTTCACAACTCTGCTGCACCATATATTTTCATATAGCTGAAAAACTTAGCCAT CCTTATATTGCAGGATTTCCGCATTCTAAAACAGGAAAACTTTCCTATTCACAAAAG TTATATTCACAACTCTGCAACTGATATGAGTGCCACTGCACCATATATTTTCATAGC TGAAAAGCTTAGCCAGCCTTATATGCAGATTTTCTGTTTTCTGAAACAGGAATTAC AGGATCCATCACTGTACTCCTTTGCCTTCCTTGCCCGTTCATCATCCAAACTACTAT ACGGATCGCACCA SEQ ID NO:226 Late LPZ-194 GGTGCGATCCTGCGAGAGCCGAGGGTTCATTTTCCTTTCGACAACGACGTTCAGT GGCGACCAGAGTTTCCCAATCACTTCAGCGATTCTATTCCTTCGTTGTAATAAAGCT TAAGGAATCCATGCTTTATTCCTTGGAAGGTTTGAATATTTATATTTGTTGGCATTAA TGCTATATACATCTATACTAATTTTGGGTTGTTCTAAACTTGTTTTGAATAACTTAAA SEQ ID NO:227 All LPZ-195 GGTGCGATCCATGGCAAAGAGCTCGTTCAAGCACGATCATCCTCCAGAGAGAAGA CAAGCTGAAGCTTCTCGGATTCGAGAAAAGTATCCGGACAGGATTCCGGTTATTGT GGAGAAGGCTGAGAGAAGTGAGATACCTGATATTGATAAAAAGAAATATTTAGTCC CAGCAGATTTGACTGTTGGGCAATTTGTTTATGTTGTCCGAAAAAAAAAAAA SEQ ID NO:228 Middle LPZ-196 GGTGCGATCCCCTGTATTCTTGAAAGGGTTATAACGGAAGATAGCATTTTGCTCAG ATTGTAGACAGTCTGCATGATTTGTCAATACTACTATTTCGCATTATTTGTTAATACT ACTAATCCTTGTACTCATCTAGACTATTTAATTATTAAATTCTACAGTTTCTTTCTCCT AGATGGCAAACAATATGAATAAAATGCCAATAGTTTTGGAACTACTCCATTAAGAGC TTTAGATGATTATCATTCATCATTTGCCTGTTTTGAATCGTAAATGAATGTGTCACGG TCTTCTTTTCTGTTAGTCTCTATGCTTTCATCAGAAGAGTCTAAGCCAGTTACTGGA AGCTATTTGTCATCTCTTTAAACATTGTTTCCGTGCCAAAAAAAAAAAAAAAAAAAAA AA SEQ ID NO:229 Late LPZ-197 GGCAGAACTTCCAAAGTCTAGTATTTGATTAACTAATATGATGAAGACACTCAGTCT ATAACATGACGCCAGAAATCAGACCATATGCATGATAACTAGCACGATTAAAATACA ATTCGCAACCTTTAATACACTAAAAACGTTTACTGTATAGTCCACTCAGAACATTTC GATAGTATTGTCAGATCGACTTATTTAGCTCATATTCAGCAATCTGAACTGTACGAT GCGGCTCATTCAAGGGCATTTGGGTTTGCCCTTGGCATTCTTCATATCCCGATAGC AAGGACACGCGTTCTTGTTGCCATATGTCCCTGGGGGATCGCACC SEQ ID NO:230 Early LPZ-198 GGTGCGATCCACATTGGCCAGGCCGGTATTCAGGTCGGCAATGCCTGTTGGGAGC TTTACTGTCTCGAGCACGACATTCAGCCTGATGGACAAATGCCAAGTGACAAGACC GTTGGCGGTGGAGATGATGCATTCAACACATTTTTCAGTGAGACAGGTGCCGGTAA GCATGTTCCTCGT181GCCGTGTTTCTGGATCTGGAGCCAACTGTCATTGATGAAGT TCGAACCGGCACATATCGGCAGCTTTTTCACCCAGAGCAGCTGATCAGTGGCAAA GAAGATGCCGCGAACAACTTTGCTCGTGGCCATTATACCATTGGTAAGGAAATTGT GGATCTGTGCTTGGATCGCAGC SEQ ID NO:231 Late LPZ-199 GGTGCGATCCCAGCATTGGATGCATTTCTAGCACAAAGCCATCTTGACTAAAATAG CACTGCGGGCAACTGCAGTCCATAACTTTCAGAGCATTGTTGCTGCCTCAATTGTA TACCAATCCATATTCTAAAAATTAGACCTGGAAACCAGTCAGAAATTTAATGTTTTCT TGCAGAAAATGCCCTTTTAGAAAAAGGAGAGAATAACTGCATTCAAGTTCTAACTCC CAGACATAGCCTGGCAACGTCATTCATCAGTTCGGATCGCACC SEQ ID NO:232 E,L LPZ-201 GGTGCGATCCAGAAAACAGCACAAGCAATCTGTAAGACCAATATTATTATCATCTCT CACTGCTCGTGAACAAAATGCTGGTTCATAGCCATCACGAAGGCTAAGGCTACTAT CCAGCCAAACTGATCTOCAACAATAATTTCATAAGCTTAAATAAATAGTCCATCCAG TGGATGGAGCCAGAAAGCCATAGAAACTTCAAATACTTGTGGTATCAATCTCTCCTC TGTTAAGGGAGGTATCAGATCAGAAGCACTAATCAAATGCATACATAAATGCAGTA GACTGCAATAAAACAAAATCTGCAGATAGCAACTGAGCGCTTAACGAACGGAAAAG AGTTTAACTTGATCTATCACAGGATCGCACC SEQ ID NO:233 Late LPZ-202 GAAAATGGGAGCCTCAAATATTCAAAGCCTCATCTCAAGAGTCTCAGATTCGGATT CATTTCATTTGGTTCGTAATAAAATAATGCATCAAATAGTTATTATCCACAAAAATGG GAGAATTATTACAATCTGTCTTCTCAACATAAAGTCATAGCATAGCATAGAACCACA CCACAGTCGTCATCATTTGTTTTGTTCACCACCGAAGGGGCTCTTTACAGCGTCCA TGAAGCCCTGTGTAGCACCCTTCGCCTTGTCCCCCGCCTGTTGGAAGAAAGAGCC AGTTTGTTCTTTCCCCTCTTGGGCTTTTCCCGTGATGGATCGCACC SEQ ID NO:234 Late LPZ-203 GGTGCGATCCTATTATAGAACCATGACTCTTGTCGATGGGGCATAAACTTCTCATTC TTAGGCGTGCCTACTGTGACTCTTGCCGATGTGGCATAAACTGCTTATTCTTAGTT GTGCCTTCTGTGCAGAACTTGTTGAGTCGGTGGATTACACTGAC SEQ ID NO:235 Late LPZ-204 GGTGCGATCCATTAACTAGATTAACGATAACATTCCTCTGCATCCAATCCAATGCTC ATCTAAATCTACTTCTACTTAGATCTCTGCCTCATCTTTCTCCACCTCCTCATCCATT CTGAAATATTAATTTCTGCATAGATTTTGTTAGGGTCTAGTAATCATTTTCATGAATT TAAATCTGTTCTAGTCTCTTATTATTATGCTGCTTATGCTAGCATCAGAACCTGTGTA TAATTCATTCATGTATATATTGGATTACACAAATTATACGGATGCCAGAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA SEQ ID NO:236 Late LPZ-205 CTTGAAGCTGATATGTTTGAACCCGAAATTTTGTTACCCAACTCCAGTGTACATTGT GTCACTGTCAAAGAGAACATGAGAGCTGCATGCAAGCTTTTGCATGATAGATAGAT TACTGATCACCGAACATTTCTTACTCTACTTTCCTCTCCTATCCCCAGTGATTTTTG GGCATTTTCTATACCCTTCGGATCGCACC SEQ ID NO:237 Late LPZ-206 CTCATGAACAGCAATATGATGCATTCCTCTTATACACATTTCATATATGTCACCCTT GCCGTCATGGCTACTCTAAGAAGAGCAAAACAGACCCATTGAATCTTTACACGCGC TTGTTTATATGAATACAAATAATTTAGGCGTTTCTTTACACGCCCTTGTTTACATTAA TACAAGTGATTTAGGCGTTGTTACCAGAATAGTGCCACGGATCGCACC SEQ ID NO:238 All LPZ-207 GGTGCGATCCCAAGATAGAAAAGGGAACTATGGTCTCGAGGAGTGTCAGGTGCTA CAGATCACAATATACATAAGGGTCTGATAGTAGTACTCGGCCCAATGTTTGAGGGC TCTAACTAAGGAGGATCAACCGTACCCTTAGCCGTAAAACCCGACTACCCTATCGT ACGGGCGAGTAATCTCTCTGAGTGTTGTTCTCGGTGTATCGTAGCAGCAACACGG CTGACGGTTTATCTATGGTGAGGTTTCAAAGGAGCTAGGGGGCTTCCAATATACCC AGAGGGTACTTGGAAGACAGTTTATACGCGGTTCTGTCTAATGCGCTACTACTCGA AGGGGTACCCACAGGGGTACAAGAGAGTGCAACAAGCATGACCACCCCTTGTAT TTCTTGCATGTATGCCTCCCCAAATCCGCAGGTTTATGCGCTCATTGACAGATTCC GTGGTTTAAAGATGCCGGAACATGTCTCTAGCCAAAAAAAAAAAAAAAAAAAAAAAA AAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAAA SEQ ID NO:239 E,L LPZ-208 GGTGCGATCCTCCTAACCTGCAATGTCCTTCCTGCAATTATCAACAGA AATTAGGTTTATTTTTCTTTTTGTCTTTTCTTCTTTTTTTTTTTTTTTTTTTTTTTTTTTT TTTTTTTTTAAGTAAACGACCATTTCAAACGCCATTCAAATGCTATGAATTAATGTT GAATTAATGTTAGCATTAAGTCTTTTAACATTTTATGTAAGGCATATATATCGTTCCA ACTACTCTTACAATACACCTGCGGTGTACTCCTGCCACCGCATGTACCACCGTTAC ATGTACGCCTGCCAGCACATCTAACAGGTGCCAACTCCTTTGAACTCATCGTCGCC ATTTTTGTATGCATATTTGAACTCATCGTCGCCATTTTGGTATCTTCACATATGGCC AGTCCAGGATCGCACC SEQ ID NO:240 Late LPZ-210 GGTGCGATCCAAGGAGTGGGCGTGCAATGCGTCGAAGATAGCCACCACTGCAGG GGCGTGGCATGCTGCCGTGCTTCCCACAGGGAGATCAACACCTGCACCTCCGCCT CCTTCCGCGGTTACCACGAG SEQ ID NO:241 Middle LPZ-211 GGTGCGATCCAGCCACAGAAAGATTGGTTTACTCGATAATTGAACGGTAGACTTTG TGCAGGTTTAGATTGTGTACATGCTGATCAGTATTGTCTACACCATTTTCAATCTTG TTTAGTTCTATGGTAATTTATGTAACAAATTCAGCGATGTTGGGGAAATTGGTCACA TCAGCTTTGTGCCTATATATTCAAGTAAATCAGGGGATCCATTAATACTGCTTTT AATAATTGGGGCAAAGTTGTGGGATGACTGCTTCAGCGGAATACGTGCTTTTCATA GTGCTGTATGACATTTTGTTGAATATGAATTTCTTTGTGATACAGTTGCGCGAAAA AAAAAAAA SEQ ID NO:242 Middle LPZ-212 GGTGCGATCCATGCCAAGAGGGTGACCATCATGCCCAAGGACATCAGCTCGCTC GCCGCATCCGTGGAGAGAGGGCATAAACAGTCAGTCAGATCCAATGGTGTGTTTT CACACCACCATATGTTTCTTTTACTAAATTTGTTAGGTCCCTTCGGTGGGTCTTTTC TTTCCCCCGATTTTAGTATTTTGTTGTTCTTCTGAGTTTCATCATTGCAAGTACAAGA TGCAGAATTGATGGTTATTGGGACTTGGAGACTGGTTATTGCTATGTAGAGTATTTA TATTAGACAGGTTTCACTTGAAGATATAAAATTG SEQ ID NO:243 Late LPZ-213 GGTGCGATCCTCATGTGTATAACCGAAGTTTGCGGGATTCAGATGGTCAGTATCT TAAATGTCCAACTTTCGGTACGAATGGGGTGCGTTCTGAAACGTGCCACGAAAGAG GTGTTCAGGATCTGTCTGAGGCATCTTTCCGGTATTTTCCACTTCCATGGTATGAG AAACTTTCGTCTTGTTGCAG SEQ ID NO:244 Late LPZ-214 AGGAGACACAACTTTACGAAAAAGTTCAATCTGGAGTCTTCTAAGTTTTTCAGACTC TCTAAATATGAAAAGCGCCGAGTTTCTCCTATACTGGACTCGTTAAAATTTTACAGT AAAGGACCTGTTCTATTACAAACAGGAACGGACCGCTCCTCCTTAGGGATCGCACC SEQ ID NO:245 Late LPZ-215 GGTGCGATCCAGCAAGAGAACGAAAAAGATATGAAGAATCTATGAAATATTTGTAC ATCACTGTATTCATATGAGGGCCTTTTTTTACAATGCGGTAGGGTTGTTTGGAGAAT TAGAACCTGATTAAAATGTAGATGGATTCAAGCTTTTAGTGAAATGAGGCT SEQ ID NO:246 Late LPZ-216 CTCAACATAAAGTCATAGCATAGCACCACACCACAGTCGTCATCATTTGTTTTGTTC ACCACCGAAGGGGCTCTTTACAGCGTCCTTGAAGCCCTGTATAGCACCCTTCGCCT TGTCCCCCGCCTGTTGGAAGAAAGAGCCAGTTTGTTCTTTCCCCTCTTGGGCTTTT CCCGTGATGGATCGCACC SEQ ID NO:247 Middle LPZ-217 GGTGCGATCCCATGGGATAGTTGCAAAACACACAAATTTGTTGTGAAAGAAGAGAG ACACGCACAGACAACCATATGATCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TTTTTCGGGACCAAATATTTTTCAATACAACGCCATGTGACATTTTTGTGCTTCTTGT TTTTGATACATACATTCCAAAAACTGAACACTCGATGGATACGGTGATGATGCAGCT ACAGCCATTGCATTACAGATGTTATTAAATTAAATCAATTTATTATGTCATCACACCA ACCCAAACAATAGCGCTATTATGTCATAGAATGGTTGCAGTTACAAGATCTGCAAA CAGATCAATGAATCATCATGCCCCTCTATATCTCTTGTCAAACATCAAGATAAACCT AATTTTAGGACTGGACTTCCTCAATCATATCACAATGGCAAACTCAGCCTCATGTCC SEQ ID NO:248 Late LPZ-219 GGTGCGATCCTGGACTGGCCATATGTGAAGATAACAAAAATGGCGACGATGAGTTC AAATATGCATAGAATAAGCGTTCTGTAATTGGAACGGCCATAGGAGTTGGCACCTG TTAGATGTGCTGGCAGGCGTACATGTAAACGGTGGTACATGCGGTGGCAGGAGTAC ACCGCAGGTGTATTGTAAGAGTAGTTGGAACGATATATATGCCTTAACATAAAATGT TTAAGACTTAATGCTAACATTAATCAACATTAATTCATAG SEQ ID NO:249 E,L LPZ-220 GGTGCGATCCCATGGGATAGTTGCAAAACACACAAATTTGTTGTGAAAGAAGAGAG ACACGCACAGACAACCATATGATCTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTTT TTTTTTTTTTTTTTTTTTTTTTTTTTTTTGTTTTTTTTTTTTTGTGAAGTGACAAAATCTA AACCAAAGATTAAAAGGCTTTGGCTTCAGATACTATAGAAGAATGAGTCTCAAAGTG GACAGCATACTTGCGTTCCGAGCCTCATTTCACTAAAAGCTTGAATCCATCTACATT TTAATCAGGTTCTAATTCTCCAAACAACCCTACCGCATTGTAAAAAAAGGCCCTCAT ATGAATACAGTGATGTACAAATATTTCATAGATTCTCATATCTTTTTCGTTCTCTTGC TGGATCGCACC SEQ ID NO:250 Late LPZ-221 GGTGCGATCCCAACCAGGTGTCCATGCAATATATGGTGAGCATCAAGTTTGAGGTG GTTGATTGAAAGTTACAAATTGGTGACATCTGAAGTCTCATTCAGTTATGTTTTTGT TATAAAAACCATAACCAATTTTGTATATAAGATCCATAATCAATTTTGGCCAA SEQ ID NO:251 Late LPZ-222 GTTTTCAAGAAGAGCCTGACGGTTTCCTCGGCGGGATGACGGAAACAGGAAGCGG CCGGCCGGTTCCGGACCCTCCGCAGGCGGAGCATAGCATTTTGCCGGAACCACC GCATGTCGTGCACCCAACATCCGCGTCTGACCAGCGGAGGCACATGCACCCAACC CTCCCGGTTCCATGCACCTCGGGCAGCGCGGCCACCCGCCGGCCATCGGCTTAT CCATCATGGATCGCACC SEQ ID NO:252 Late LPZ-223 TGGGCGAATCATATGGCTTGCATTTTCATTGTAACATGTATACGTTAAGGATTATCA TAATGCCTCCAAAACCTTGTATCTTCGTCCTTGCCACAATACATCCAGGATAACTAA TGGAAGCTTGACATGTCTTCACCAGTAATAATATATCAACTATAATACATGCCATTC TTTATCAGTTTTGAACAAAATAATCGATTTGCATTCTTGACAAAGAACCTCGCGCAT AAAAACAAATAAATTCTCATAATGCCTCCCAAACCTTGTAGTCTGGGCCCTCAGTCG CCACAATCCATTTAAGAGGAATTTGGGGGTTGATAGTGCCCAGGTCCAATCTTCAT GAAAATTCGTTCATCAATCTTTGCTGCATACACATCTCTCTCTGCTTTCACTATCTG GGATCGCACC SEQ ID NO:253 Late LPZ-224 CCACTATAATGAACATTGATATTACAAATATAATATACATAATATTACAATTCAAATC ATTGACAATGAGCAGGCACTACTTGCAGTGCTTTGGAATTCAGACTTCTGATTTGC ATTAATTCTTGTAGACGCTTTTCTGGGAGGGCAGGTTTTCCGCTTCAGAGAAAACC ACGTACAAAACGATATTAAATAAAAATAGACACATACAAAAAATACTTCATTTTTTGC TCTTTCCATTTGGTTTCTTCCTCTATCTCCATTTTGGAGGGCTTAAATGACTCAAAT TTAAAAGTCAACAACAGAGTGCAGCACATTCTATTAGCTTTGCTGTAAATATCTGAT TGGATCGCACC SEQ ID NO:254 Middle LPZ-225 GGTGCGATCCGCATTAAGAGAAGCATACAAGAAAAAGAAGTACCTGCCTCTTGATT TGCGTCCCAAGAAGACTCGTGCTATCAGGCGACGCCTTACCAAGCATCAGGCATC ATTGAAGACTGAGAGACAGAAAAAGAAAGAGATGTATTTTCCAATGAGAAAGTATG CAGCCAAGGTGTAAAGCACAGGATTTGAGCTTTCATGCAATTTTTTTGTTACTCGCG GGATGATATTGCCTATTATATTTCCGTCCAAGTTTTTGGCTAAATTCCTATTTGCATCA GAATTCAAGTTATGATAGGTGTTCTTTCGTTTTTGAGCAGTTGATATTGTTTATCTTT TATTTCTATTATTAATCTTCTAAGTTGGATCGCAC SEQ ID NO:255 Late LPZ-226 AAACAGACAAATATAGAAATATGCATACATAAGTCCCTGCAGAATTGTTTTCCGCAA TGAATTCTGGTTTATGGCAACATTACCTACTTAGTACTAACCCTAAGATTATTTTCAG CTCTGATAAGTGGCATACGTGTATCAATCTTGCATGAGTCTATCCCTGTTTTAATCT TTTGTTGGGATCGCACC SEQ ID NO:256 Late LPZ-227 GTGGAAGCTTCATTGTAAAACACTACTGGTTTTGAGAGAACAAAATATATACGCTAG CCGAGTGGATTATAACAAAATATAGGCTTTATTTCTATTGGATCGCACC SEQ ID NO:257 Late LPZ-228 GGTGCGATCCCATACATTAACATAGCCATCACAGCCCCCAGTGGCAAAAGTACCAT AGCTGCAAAACATTATAAAACTAACATTCCTACAAGGAAATAAAATACAACTAAAAA AGCAAGCAATAGGCATTAGGGGAGGGAGAAGCTAAAACTATTAAGCAACTTACATG GGATGAAAGGCAATTGCGTTTACTGGATAAACAGTATCTCTGCCAGCCTCTGACTT GCGATGACATTTAAAGGCATATTTTTTAAGCTTGACCAGCTTCAGATACATCATAAT ACTCCATAGCCATGCGAGCTTCCACAGAACTAAGGGGCAAAACCTGTCCATTGG ATCGCATCA SEQ ID NO:258 Late LPZ-231 GGTGCGATCCAACTGAGAAGGGTGTTGGTGGAAAGATGACACCAAGTGGGTTCT CTATTCTCCAGAGGATGCAAGAAAAATTCTGAGAGCAAAGAAGAATGGGGACTCAA ATATTACGTTGGGTTCTGTTAAATCTGCCAAGTACCCTTCAGGAAAGCTTTATGCCA TAGACCTGGTGGCCATGAAGCAAACCAATGTAAACACTGGCTTCTCCAGAGATATC AAAATCATCAATTCTTGCCCTACTGATGATCAGGAAGATGTAGAGTCTGATGAAGAA GATGAATTATTCACATTCTCTCGTCCTGTCAAAGTTGAAGTGATTAACCAGAGCAGG AAACCTGATAAGATTGTCAAGATGGTTCCTTCTGTCACTGTAGACCTTGAGAAATTG ACTTCTCAATACCTCCTGGAGGATGAGTGCAATTTGGTTCTAAAGCTTCCCAGGGC TGCAGCTGCCCAATCGGATCGCACC SEQ ID NO:259 Middle LPZ-233 GGTGCGATCCAGCTAATCAAACTTAATGGAGAGCCCTCCCAGGAAGAGTAAATGG TAGTCACTTGAAGCCCTACACGGGTGGGCTGGCGGTCTGACTAACTGACCAAAAC ATAGTCTTCGCGACCCAACAAGCCAGACAGAGGTGTGGGACTATAAGCACAAGTAC TAGAAGCTAGCATCAAAGTAGAGAATTAAGTTAGATACAGATGATTCAGAAGCA ATGGAGCAGATCCAGACCACGGTAGCATGGTGAGTTACGAACCTTCACGCCACAC CAACGCAATTGGTTAAGACTTCGCACTAGGATCGCACC SEQ ID NO:260 Late LPZ-234 GGTGCATCCATAGTTCCTTTGCTAAGCGACTACTCTATCTCTTTTGACATTCTCC AAATATTGGGTCTTTCAGTTCCTTCAAATGCTAGAATCATATCAACATGGGATTTAG TGAGGCCGCAATACTAACCAGGGCATTAAAATAATACATTTCATTGATCCTATTCCC AAAACATTTCCCGCTATCGTACGTTGACTCAGCATATTTAGAGCAATTCTCTTACA AACCTTAAGAAGGTTGTTCATGATAGTCTTTCCGTCTGCAATATTGGATCGCACC SEQ ID NO:261 Late LPZ-235 GGTGCGATCCCACCCAAGAGTTAAATTCACTTCTCCGCCTTTCTGAGGAAGAGCAC TCTTTGGATGATATGAAAAGTGGTCCACTCTTAACCGTATTCGGAACCCTGTTC CGCGGACGGTCGTATGGCGTAACCGGCGCAGACATTTTATCTCCTCACACAATATC AACATTCAAGTCCCCGCTGTTCCCCGTTGCCTTTCTCTGCTCCCGACCGTTAAACA AGAACGACCACAAGAATGAACAACACCGCAACCGAAACCTGACCCTCCACGTTGTC TTCGGTTCGGATCGCACC SEQ ID NO:262 Late LPZ-237 GCGGACGCCTGGCAAAAACAGAGGGTATGCTCAAGCCTTACAGAAATTGAAAAATA AGAGAACGTATGACCATCAATCTCAATCTCAAGAAAAGAAGTTGCAATACGACTCCA ACACTTTTGAAAGTTGGAGGTTTGCTCTTTCTAGCGTTGCAGACATGGTTGGTTTTG AGCTGGAAGCGTGTAACGGGCACTTTACAGTTGCGGGAATTGGAGATTGAGGACC CCCTCTCAAACGTCGATAGGGAGGCTAAGCATCTATAGAGGATTGTGATTGGTCCT TTTCCGCTACATGGAAAGTTTGTCAAACTCAGAAAATTACCAGAAGAATTCTGTCGT CTTCTCGCAGCCGT SEQ ID NO:263 Late LPZ-239 GACGTTGTAAAACGACGGCCAGTGTAAAGAGCAGCCCCGATGCGCCGAAGCTCGC GAGGGAAAAGCTGCAGAAGATGGGACCGATGACCAAGAATGAGATCATCATGAGC GGCACGCTACTGGTCACGGTGGGTCTTTGGATATTTGGGGGTAATGCTGAACGTGG ATGCTGTTACTGCAGCGATCCTTGGTTTGTCTGTCCTACTCTGCACAGGCGTCCGC SEQ ID NO:264 Late LPZ-240 TACGGCTGCGAGAAGACGACAGAAGCAGAACCTGCCAATATAGGATCAATTGAATG TTGTGGGATTGCTGCATGCCCACCTTTCCCAGTTATTACTGCCTTGAAGAACCCAC AGCCAGCGAGTAAGGGCCCGGGTTTCGAACCAATCACAGATGTAGGATAATCGCT TGAAACATGCATAGCGAATATGCCTTCCACATTTTCCAGTGCTCCCTCCTCTATCAT TCTTTTTGATCCTGCACCTGATTCCTCTGCAGGCTGGAAGAGTAATATGACAGTTCC CTGTAACAAATGCTGACGTTGTTGCAAAATCTTTGCACCACCAAGAAGCATGGTAA CATGTGCATCATGTCCACAGGCGTCCGC SEQ ID NO:265 Middle LPZ-241 TACGGCTGCGAGAAGACGACAGAAAAGAGGCAAACCGAGCTCGACACCTCCACTC AGAGCATTTGCAAAAATCCACAACAAATCTGGAGCCAAGGTCTTTCCCTCATTGAAA ACATTTATCGGACACATCAATGTCTGTAGTCTTTCCCATGGTCCATCCAGAGTAATC ACGGGAAGAACAATGCACTTCAGTCAGAATTTTTGATGACAGCTATCAGCTCCTG ATCCTTTGAACCAGGTATATAATAATCTTGACCTGACTCCTGTTTCAACAGTGTAGA GGTTCTGTCAACCTCAAGCAATGAATCGGCAGAACTTCCATTTGCTGTTTTGTCAAT ACAGGCATTGTTTTTACCAAGACTGTGACGCATCTTCTGTCCTTGTCTATACAGTGC AGTTTGTTCAAGCATAGACTTATGTGCTAGAACATGTCTTCCTTTTAAATTGTAAGA GAAATGTAGGGGTTGACTGCTTTTACTGAGGCGTCCGC SEQ ID NO:266 Middle LPZ-242 ACGGCTGCAGAAGACGACAGAACCCTGGCTGACTACAACATTCAAAAGGAGTCTAC CCTGCATCTGGTGCTCCGTCTAAGAGGAGGCATGCAGATTTTTGTTAAAACCCTTA CAGGCAAAACAATTACTCTGGAAGTGGAAAGCTCGGACACTATTGACAATGTAAAA GCTAAGATCCAGGACAAGGAGGGAATCCCACCTGACCAGCAGAGGTTGATCTTTG CCGGAAAGCAGCTAGAAGATGGTCGTACTCTGGCCGATTACAACATTCAGAAGGA GTCGACCCTTCACCTGGTGCTCCGTCTCCGTGGTGGCTTTTAGGTTGGCTGTTGT GTGTCAATGTAGTCTGGTGATGTTCAGTGGTTTTCCTGCTTAATCCTTTTTATGTAT GCATGTGTTTGTTGTGTTTGTGTTTTGTCTCTATGTTTTTTCTACTTGGTTTGTCGGT CGGTTGAAGCCCGGCTGGTGTCCTGGTAGGCGTCCGC SEQ ID NO:267 Middle LPZ-243 GCGGAGGCCTGGACAAACACAGAAGGCGAAGTAAAAGCCAGTCTTACTTTTCATGT AAATACTATCAAACTGCATGGCCGTTCCGCTGGTTGGCAATACCACACCTGCGCCG GTAGTGCCAATGAACACTGCACCGGCAGCTCTTTCAGAAGTTGCAGAGGACTTACC ATTTTAATTTTCACGGCATCCCGTCAAACGGCGGGATGCTTTTAATTTTTTAATCAA AAAAAATATTAATTATGGCACACAATATTGTTTTCAACGAACAGACAGGCAAACACA GTTTCTTTAGTGTAAAAGAAAAAGCATGGCATGGTTTGGGGCAAATTGTACAGGAC TATCCCAACAGTAAAGAAGCATTGCAATTTGCAGGGCTTGATTTTGAAGTTTGCAAA AGGCCCAATATTCACAGGCTTGATAATGGTAATGAGATTATTTCTACCAGTTCATTC TATACTTACCGTCCTGATACCAACGCCATATTAGGCGTCCGC SEQ ID NO:268 Late LPZ-244 GCGGACGCCTGAACATAGGAGCATTCTTAAGCATATCAGGTATAACCATAAACCTG ACTTTGCTGCCCCGAATAAAGACATGCTCCAATTGGGATACTTTTCCATCCTTGGC GTGTNTGTGATGCCCTCGAGCTGGCAATTCCAGTTATCTTCGCATTCGATCATGCT ACCCCTGTACAGCTCGCCACTTTTGAGTTCAACTGTCACAACATGCCCGGCTGCTT CATGGAGCAACTTCACAGGAATCCCCAAACTTCTGCTCATTTTTTTGTCACTGCTCA AAAACCCTAAACCCCAGATAAAACCCTCGGTTCTGTGCCTTTTATCCCCGGGTGGC TTATTGTTGCAGTAGTTGGCAACGGCTAGACTTACTCACATTTTGATTTCAATCTTT CTAAGTTTGCCCTTTTGGGTTTTCCTCACAGTAGATCCTATTTTATGTATTTTCTCGT CTTCTCGGCAGCCGTA SEQ ID NO:269 Late LPZ-246 GCGGACGCCTGCAGGAATCGGCCGATTTGCAGTTCGAGGCATAAGCGCATCGAG GTCGCGTTCGATGTAGCAATTAAGCGCGCATGAACCGCCGCTAAGCAAGCCAGTC CCAATCAAAGCACATGCAAAGCGGATGCAATCAAATCTTCCGTTGTAAGCAAGCAC AAATCCAACTGCACATGAGATCACCACCATGAATGCAATTCGAGTGCGAGCTAAAT CCCAAAACGCTGCGAGTGTCCCCTGAAGGCGATTCGTATGTAATATTTGACCGCTG CTCAACACAAGCAGTACTCCAAACACCAGTGCTTCCGCCGTCAATTCTGTCGTCTT CTCGCAGCCGTA SEQ ID NO:270 Late LPZ-247 CTGCGAGAAGACGACAGAACACAGACACAAAATTTGGAAACTACAGAAAAGACCAT GTCATGAAATCTTCATAATTGGGCTTCAGATGCAGAGGGGGTCGGTTTTGGATTAA GCAATGGCTGAAGTGCTTTGACAACAATACTCATGTTAGGACGAAAATCTGCTTCAT ACTGCACACACAATGCCGCAACAGCAGCCATCTTTGCAACAGCCTTTGGAGGATAT TCACTCTTCAACTTGGGATCAACACACTGCTTTACTTTGTCTTCACTCAATCTTGGA GTTGCCCAAGTAACAAGGCTTTGTTGTCCCCTAGGCATTGTATGGTCCACAGGCGT CCGC SEQ ID NO:271 Late LPZ-248 TACGGCTGCGAGAAGACGACAGAAAGAGACAGGCTTGGACTTCGTGGCCTTCTTC CACCACGCATTATTTCTTTTCAGCAGCAATGTGATCGTTTCATGGTTTCTTTTAGAT CCCTGGAGCATAACACTCGAGATGGTTCAGCTGACTTAACAGCTCTGGCAAAATGG CGTATTCTTAACAGATTGCATGACAGAAATGAAACACTATACTACAAGGTTCTTATA GATCACATTGAAGAGTTTGCTCCAATAATCTACACTCCAACTGTAGGATTGGTTTGT CAGAATTATGGTGGGCTGTCAGGCGTCCGC SEQ ID NO:272 Early LPZ-249 GCGGACGCCTCAATAGTATGGAAGGGCAGCTGCACTACTCAGCATGAGTGGAG GCCTAAAAGTTTTGTTAATCTTTCTGGTGAGGTGGACACCAAAGCCCTTCACAACA GTGCAAAGGTGGGGCTATCTCTGGTTTTGAAGCCTTGAAGGATATGCACTATTTGG TACAGATTTAAGCGAAGGTCTGTGCCAAATTTTTATTGGAATTTTTGAGTTTTTCCTT TCAGAATAATTATTTCAATGCCTGTGTTTTCTGTCGTCTCTCGCAGCCGTA SEQ ID NO:273 Late LPZ-250 GCGGACGCCTTTTGCCCAATTAACATCCCTGCATCTGCGCATTAAAAATTGATTGC AGACCTGAGGTTTAAGTGGAAGCTTCTTCCACCATCTCTCCCCTGTTTAAGGAAGA CCCGAAACCCTAGCCACTGTCTCCTCTGTGACTTAAAATTCCAGTTCACCAACCTTA ACTCTGCGTCCGTTAAAATTCTGGGCAAACTGCACTGCCAATTGGTCATCATATCCT CTGAATTTGGCAAAGAAAACATAGGTCATTCTGTCGTCTTCTCGCAGCCGTA SEQ ID NO:274 ND LPZ-251 GCGGACGCCTCGTCAATCCATGGTTGTAAACATGCCTTCAAAACTGTTTCCTTATGT CGCACAATGTCTACATGTTCCTTGAGCGATTTTTCCTGCTGCATTGCGAGCCTCTG TGTAAGTCCCACTATCTGCGCTGTCCCTTTTACTTCATAATACTTCTGTCGTCTTCT CGCAGCCGTA SEQ ID NO:275 Late LPZ-255 TACGGCTGCGAGAAGACGACAGAAAAAACTGTATACGAGTAGGCAGCGAGTCCTG GCAGTATGGGAGATTGAACTCCAATTACATTTAGTTACAAGTAGCATCAACAGTGAC TGAGCCAAGAGCTCTACACAGAAAAATAAAATAAAAACTGTATATATTTACAGGAGA AACCCCTATGGCCTCAGGGCCTGAATAAATCAATCGCAGCGGTGGTCGATGTGGC CTTTTCAGGGCTGCAAATCTTGCAAGGGGAAGCCATCATCCTTGTTCCGTATCCTT TTTGAGGGATAGCGAGCCACGCAGCCAAGATTTGAAGCGATTGAATACTTTGGGGT GTCGAGAACGCACCAGAACAATGCCACTCGAGAAATACTACTGTGATTACTGTGAC AAACAATTCCAGGATACTCCCTCCGCTAGAAAGCGACATCTACAAGGCGTCCGC SEQ ID NO:276 Late LPZ-256 GCGGACGCCTGTACCGTATTGGAATTCTAAACCCTTCCTTGGTATAGGGTTTTCGC CACCCTTGCGTTCATTTGGTTTTGTATTACGTCCGATTCCTCCGTCTGCGAGCTCTC TGCAACTTGGCAATTTCATTGTGATTTTATCCTATGATGCTTCGTATTTGTTTGAAGC TCGTCCTCCTAGTTCTCTGTGATACCAGTTGGTAGTCTGCAAGTTTCGATGTGGGT TCTTTTAGCTGGTCTGGGGTTTTGTTGCTCTGAGTATGTTGAGCTGCATGCTCGTG GCGGTCTTCACGGCTCCATTTGTTCGGAATCTGTTGTGGAAGTGTCTCGGTCATCT GTGGAACTGTGGAAACCTGGTAAGATTTGTTTATCTGCTTGTGTCTAAACTGTTCTT GAGTTTTCTGTCGTCTTCTCGCAGCCGTA SEQ ID NO:277 Late LPZ-257 GCGGACGCCTGCTGTTGAAGAAGGATGAAGTCATTGTCTGCGGCCCTGTTCAGCA TGATTTCGGCATTCTTAATCTGGTCAACCAGTCAGAAGGTGGCGCTGAAGGTGACG AAGAGGCAACCTGGGTAGCTGCACTGGAAACTCAAGCTGCAAGGGGCACCGACCC TCAGACTTCGCGCGATAACTTCTCCCTCTGGGTAAGTCGATGCCAAGGTCCTTGT TCTGGGTTCTTCTCTCTGTTTCGCATGTTGTTCTTCTCTCTGTTTCATTTGTTTTTCT TCTGTCGTCTCTCGC SEQ ID NO:278 Late LPZ-258 GCGGACGCCTGCACATACAAAGAACGACAAAAACAAAAGCATAAAATCCAATAGAT GCAACTATATATCAAGTCAGAAATGATATAACTCATCATTATTACAAAGAACAATAAG AGTGGAACCATAATAATAGTCGTCTATTATTGATAAATAAAGAAGAATACAACCATA GTTCTGTCGTCTTCTCGCAGCCGTA SEQ ID NO:279 Late LPZ-260 GCGGACGCCTGTATAACATGCACCAAGAGACCCAATCAAAGCACATGCAATCTGTA TATATAGCAGAATAACAGCCAGGGATTGCACTCTATCGTAATCGCGAAACCACGCA CTAATATGTGCCCATGCTGATGATGCACACAGCATGTTCTGTCGTCTTCTCGCAGC CGTA SEQ ID NO:280 Late LPZ-261 GCGGACGCCTGAACTGTATAGAGTTGAAACTTGAGGGAAGGCTTGCTGCCACCAA AGCCTCCCTCCTCTTTCCTTGGCGGTTCGTCACCTCCTTTCGCGTCAGAGCCCCAA TTCCCCTCCTGCGCACACCAGCAAACTGCATCGAATGTTTTTTCCACCATTCTGTAA ATTCCCTCGGAGTTACCTTGGGGCAGAAGCCGCATTGAAGAGCATTGAATGCTATT CATTATCCCACCGTAAACTACCATTGCAACCTGCCTGTGTATCGACCCGCTGTCCT CTACGCGTGGCTGGCACATGGCGTCGTTAATTGCATGTTGACACCCGTATCCGGG TGTGCTTGTGTGCTCGTCTGCATATCATGTTTTAGGATCTCATAGAAGGTGGACCA TTCTGTCGTCTTCT SEQ ID NO:281 Late LPZ-264 GCGGACGCCTCTTACAATGTCTCTAAAGATTGGAAAGATTGTCTTGTCTGCAACC ATAACTTCCGCGTGCTTTCTTATTAATGCAACCCACTGTGATCCTTTCCGCCATTTA TCCTTTCGAATGGTTGGAGCCATTTTTGGGTTGTACCGACTAGCTTTTGGGTCTAC AAAGCTGTCTACAAAACTCTTTGGAGATGACATTACATAATCATATGTATAGCTGAA GTTGTACAAAGGTACACAACTATCTGAAACCAAAATGAATCTCTCGTTAGCTGGATC CTCGAGTGCTTTCCTAAGTAGAATACGCTCCGCTTCTATCATACTGGCTTCTCCCC AAGTACCTGTATGCTATCACTAAGCTGCCAGCCGTAACAAAATGTACATTCTGTCGT CTTCTCGCAGCCGTA SEQ ID NO:282 E,M LPZ-265 GCGGACGCCTTGCTAGGAGAGCTCTACGCCATTATTTGAACGATTGAGCCGAAGTT TCACCGTTTAAGGCATTTGTGTCCCAGAGGTTATTGGAGATTAGCAGCTTGGATTT GGCTGCTTCGCTCAGCGCCGTGATTCAGCTTTTGATTGATTCTCTCCAGTTTCAT CCTGTAACGACAATGGCAATGAAGACCTACACATTGCAGTGGCAGCTGCGTACGC TGTAGTCCTGATGTTCGCTCTCTTTGGCATCGCAAAGGCTGCTGATGCACCGTCTC CCAGCCCCGTTACTGGCGCGGGTTCCATGGACTTCGTTCCTTCTGTCGTCTTCTCG CAGCCGTA SEQ ID NO:283 Middle LPZ-266 GCGGACGCCTTATCAGCTGGGGGCATTCATAGGTATGGAAATTCAGATCAACTTCA GTGGACAGTATGTGGATTTAGGCGACCTGTGACAGTTCACGATATCTATTCATTTCT ATCCAGAGACAGATTCCCATACTCACCTCCGTCCTTCCCATATATTTTCTGGAAGGC ATCATGTCCTCCCAAATTTACTCATTTTGCCTGGCCGTCGTTTTACAA SEQ ID NO:284 Late LPZ-268 GCGGACGCCTGTTGCCACAGAAGAATGAATAATGCTTCAAATTTGAGACCTCTTC GGAGGAAAATCCTTGTTCTTACTGCCTAACCACTCATGATGATCTGCGTCACGCTG ATTATGAGCTGCAATTTAAATTATTTCAGATGAAACATTCCCATATTGAGCTTGCAG CAAGTTGCAGACCCTTCAATTTCAGTTCTGTCGTCTTCTCGCAGCCGTA SEQ ID NO:285 Middle LPZ-269 GACGTTGTAAAACGACGGCCAGGATTAAGGTTCATGAGCTCCGCAACAAGAGC TCAG SEQ ID NO:286 Late LPZ-270 GCGGACGCCTCTAGGAGCCGGCGGAATTCCTGTGAGCTCGAATTTGCCGAGCAG GTTATTGTCCTTCGTCCGCGCTCGCTCACCTTCATATACTTGAATTAGAACCCCAG GCTGATTATCTGAGTAAGTTGAGAAAATCTGCTCCTTCTTGGTTGGAATGGTGGTG TTCCTCGGTATTAATACTGTCATTACACCTCCCGCTGTCTCCAACCCCAGACTTAAT GGCGTGACATCTAGCAACAGCAGGTCCTGCACCTCTCGTTGCCTTCGCCGCTGA GAATGGCAGCCTGCACAGCTGCACCATATGCCACGGCTTCGTCTGGGTAATGCT CTTACAAAGCTCTTTGCCATTGAAGAAATCTTGGAGCAATTGTTGTACTTTGGGGAT ACGAGTCGAACCCCCGACCAAGACGACATCATCTATTTGGCTCTTGTCCATCTTAG CATCTTCGCATACATTTCTCCACAGGCTCCATACTTCTCCTGAAAAGATCCATGTTG AGTTCCTCGAAGCGAGCTCGCGTAATTTGTGGCGTAAAAATCAATTCCTTCATATAG AGAATCAATCTCAATCGTTGTCTGTGTAGTAGAAGACAGCGTTCTTTTGCCCTCTC ACATGCTGTTCTCAGCCTGCGAAGAGCTCTGGCATTCCCGCTGATGTCTTTTCTGT GCTTTCTTTTGAATTCCTGCACAAAGTGATTCACCATTCTGTCGTCTTCTCGCAGCC GTA SE Q ID NO:287 Late LPZ-271 TAGCCATCGCCATTCTATAATCTTAGGATCCTTGCTGAACGATAAGCCCATAAAAT TGATGCACTGCCTCGCTATCCCTGGCCGTCGTTTTACAACGTC SEQ ID NO:288 Middle LPZ-272 GACGTTGTAAAACGACGGCCAGGAAATTACAGCTACCTCTAACTGGTTTGACGGCG TTGCATCTATGAGCCGCAAGGGTTCGAATCCTCTGCGGGCCAGATCTGCGATGG AACCCTGGGCGAGTGCAATGATGATGAAGAAGAGTTTGCGATGGATTCTGAAGCG CACGGGAGGCTTCTGAGGAGGATCCGTTACTATATCAGCTACGGAGCATTGGCTG CTAATCGCGTTCCTTGCCGACCTCGGTCTGGGAGGTCTTATTACACTCGGAATTGT TACGGCGCAACAGGCCCCGTCAGACCTTACCACAGAAGCTGCACTGCTATCACTC GTTGCAGGCGTCCGC SEQ I D NO:289 Middle LPZ-273 GCGGACGCCTGGGAAGCAATGGATGGGTGGCTAGACGCCATCCGTCTGTGTATA CTATTTTTGCACGCGGAAAGAGTGATGTCCTGGCCGTCGTTTTACAACGTC SEQ ID NO:290 Late LPZ-274 GACGTTGTAAAACGACGGCCAGATTCAAAAGAAAAAATCCTCACTTCTTGGCTCCG TTTGCGCTCCCGCCGAAGCTCCTCTGCAACCCCTCTGCAGCGTACACTGCATCCC GCTCGCGGTGCTGGCTCACCTCGCAGGTCCGCTGACGGTAAATGGTTTCCAATAA AGCTATTTGTCCTCTACCCAAAATCCATCTAGCATTCGTTGTGGATTGACATTCTGC CATTTCTCTGCTTTTCTGGTTGATATGCAAAGATTGAAAGCCCAATTGCAAGCAGTG GTCGTGGATTCACTATAAGGCGTCCGC SEQ ID NO:291 Late LPZ-275 GACGTTGTAAACGACGGCCAGGAATAAAACAAAGCATCACTGCAAAATTTCAAAC GTGGTAATAACGGCTAGCCAGCTCGACGTGAAGGCAGTGGGGGCCTTGAGGTTGC CTTTTGGCGTTCAAAATTGGCTAGACTACCATAACATAAATATTGATTTCTCAGTGA CATCACTGGTTTGGAGTCATCCACAGCCTGTGCACCAGTACGGCAATTGCCTTTTA CATGAAGCCATCCTTTCACTTTTACTTTTGAGATTCTCAGAACTGAGGGGCTAGGC GTCCGC SEQ ID NO:292 Middle LPZ-276 GACGTTGTAAAACGACGGCCAGCACCTTCCTAGTCCCCTGTCCATTCTCCTGAAA TAGGAGCAGTTTGACCCAGTCCAGTTTTCAGAATTGAGAATATGAAACAAAGAACC AAGCATATGAGAGAACATACAAAGACTTTGTATAAACTACTTTTCACAGGATCTCAA CAGCCCTCTGCTGAGATCCATTTGATACAAGGCCCCTTGCATCTCCACCCTCTCCC TTATCACCTCCACTAGAAAGATGATGGAAAGCAGACACATGGAAATGTTGCTGCAG GCGTCCGC SEQ ID NO:293 Middle LPZ-277 GACGTTGTAAAACGACGGCCAGTTAGGTTGTATATTGATTGATGACTCTTTGACTCC ATTTATGAAAACATCTTTGTTCTCGAGATTTAATCAGTATTAAGCTTTCAGAGTGAAG TTCAGTTTGATCTGCATAAACCTGATCCACCATATCTACATCACATCTAAAATTACTA AAATGTGAGGAGATGGAATTTGTTTCTTGAGAATCCCTATTCCTCATCGACACTGTT TACTGGATCAGATCCAATCAAACTCTTGAGAAGTAATCTCTGGAAAGAAATTAAAAA GTCTTTACCTGAATTATCTCGATATCAGAAGCAGAAATTATGATACATAGACTTCTTA ATAATGAAGAGTCATTTTGCCAACGTTGTCTTTGCCACCCCACCAATCCCCATGATC CCAAAGATCTGAGGTTTCCATCTCTATGTGGCTGTGATAACACTGGATTTTTCAAAA ATCTTCTACTTTCGCATCCAAACCTTTTTGGGATATTT SEQ ID NO:294 Late LPZ-278 GACGTTGTAAAACGACGGCCAGGGGGATGGGAGATACAGAAAGATTCCGGATAAA AGGGAGCAATGAACGGCTGGTTAAAGCGTAGTCCACCACACTAGCCCCACCTCCA TGAGGCCTACACGTGAAGAAGCAGGATCTGGGAAGCGCGAGAGGCCGTCAAGA TTATCAGCTCATGTGATTCGCCCAACTGCAAAAGATGTCTACCGTAGGCTGTGATG GGGCCCAAGGCGTCCGC SEQ ID NO:295 Late LPZ-279 GCGGACGCCTATCAGATGGGTGAGTTGACCGACATTTATCGTCCGATAAATGTTTG AGGCTGATGTCATGGCAATCCACGTGTCTGCACCATATTTCATCGGAGCCCCTCGT CGGAATATTCCATCGCCGGAGAGCTGGCGCGATAGGTTTCAGGCGGCCGGTTTCT GGTTTGCAGCTGTGGCTTCCCGCGCGCCTTAACTGTTGGCCCGCGCGCACAGGG GAAATTACAAATTTCAACATATCCAATACCATCATATAACCCAACAACACTAGCAACA GATCCTGTTCTGTGCCATCGTCCAACTCTGA SEQ ID NO:296 Late LPZ-280 GCGGACGCCTTAATTCGACTACAAAGATACTGAAGCCAATGATGACAGGTTGTGCC ACTTTCCCAGCTGATAAAGACAGCTCTGAAATTGATAGAGCCAGAACTCCAGCTGC AATGCTCCCCAGAGCCTGGTTGAAGCGCTTGCTAAAGGTGGCACTTTATAGACCGA CCCAAAACCTCCCTGGCCGTCGTTTTACAACGTC SEQ ID NO:297 Early LPZ-281 GCGGACGCCTACTGGAAACCCGGTCCACCGAAGGCTGAAATTGTCCTGCTTTGTA TACCGAATGGCAGGAAGGTTGTCGAGCATCAGGTTCACCTGGTAAAGATTATCGAT CCTATGCTTCAATACCTTCAGCTGCTCTGCCCCAAGGACAGTAGTATTGCACAGGT AAATTCAGATTCATTGACATTCATCCGGAAGCGATATGGTGAGTTCTCGATCCTGT CCCCCATGAGGAGCTCCCCAAGATTTTCTGCCATGTCCTTCACACCATCCAAGGGC TTGCAGAAGGGCAGGCTGTAATAGCTGTAGGGAAGCTCTGTCTCGACTGAGGTAA GGGAATTGACGTTCACCCATAAATCTGACCCCTGGGAGAATATGATGTGAGGAATA CAGTGCCCAGTAAATATAACTCCGCATTATACGTTTGTGTGTGCCTTCCCCAATATT GCCCCAACATAATCAAAACCCACAATCCCAAATCCTGGACCGTCGTTTTTACAACTG TC SEQ ID NO:298 Early LPZ-282 GCGGACGCCTTGTCAGGACCAAATGTGTAAGAAACACCTCTGTCATTCGAGCCCC TCCTTGAATTGCATTGCAGGGGTCTGACCAAAGAAGATCACATTAACAACCCTGTAT CTGGCACATCTGTAGGTCGAGGTATATTCTTTATTTGTTCCAAATTGGTCAGTTCAG GCGAAAGACCACCATGCATGCATAGGATCTTTTCATCTATAAGTGCAGCAACAGGC AGGCAGTTGAAACAGTCTGTAAAAAGTTTCCATAGTCTTACATTGAATCTGCGCTTG CACTCATCATAGAAACCATATATGCGATTTATTGAGGCACATTCATGATTTCCCCTC AGAAGGAAAAAGTTCTCTGGGTATTTAATTTTGTAAGCAAGGAGGAGGCATATTGT CTCTAGGCTTTGTTTGCCCCGGTCCACATAATCTCCCAAGAAATAAGTAATTTGATT CTGGTGGGAAGCCACCATATTCAAAAAGCCTTAGACAGATCAGAATACCGGCCTGT CGTTTTACAACGTC SEQ ID NO:299 Early LPZ-283 GACGTTGTAAAACGACGGCCAGGAGACGGGAATACCTATTTTTGGGAGGATTATTG GGCTCGGGAATCAGCATATTGATGTGGCTGCAACTCGCATCCTCGATCTTTGGTGG TTCTTCGGCGATTTACACATTTGAGATCTACTTCGGTCTGCTAGTTTTCCTTGGGTA TATTATATTTGACACACAGATGATCATCGAGAAAGCGGACCATGGAGACTATGATTA TTTAAAACATTCACTGGACCTCTTTATTGACTTCGTTGCTGTATTTGTTCGCCTGAT GGTCATAATGGCAAAGAATGCAGACAGTAAATCCAGGGAAGGGAAAAAGAAGAGA AGGGCTTGAACTATGTGAGATACAAAAATATCGAGAATAGAAGGGCTTGAACTAGG GCTTGAAAGCGTCCGC SEQ ID NO:300 Middle LPZ-284 GCGGACGCCTATCAGACAAGGGTTGTTGACCGAACTTTATCCTCTGAAAAGTGCTT GAAGCTGATGTCATGGCAATCCACGTGTCTGCACCATATTTCATCGGAGCCCCTCA CACGGAAACAACCTTAAGCCAAAAGGTGGTGCGATGACTTACCGGCCGTTTATGGT TTGCTTCGGTGGTTTTCTGTTGGGTGGTTTCCCGCGCGCGTTAACTGCTGGCCGT CGTTTTACAACGTC SEQ ID NO:301 Late LPZ-286 GACGTTGTAAAACGACGGCCAAGAGGGGGAAACTCCCAAAACACTTTTCCATTTTT CTTCTTTTATTAAACTTCAAAGTATTTTCCAACAGAGTTACAAGGGGCCAACCATGT CCAAATCCATGCATTTACCAAGTACAAAGAATGGTAGTCCTTGGCTTGACCTATCG ACTAGCCAAAAGTGCCAAGTCCACAACTAGGGTGTGCCCAACCTAAGGTGACACC TTGCCTAGAAAAAACCCCAAACTTGGCACCACAAATAACACAGAAACACAACTCTTG ACCTCTGCCAGAAACCAGGCTCTCTTGGGAAAGCCACACCTCTCTCTGTGATATGT CTTATCTCCAATTTCCCTTTTTGTGATGCACTCCCTTGCTTGTGGTTCTGCGATATC ACACAAACTTACATTTCTGCGATTTTTGTTTCTTGCTTCTCCAAATCATGCGATCTTA TTTTTAACCCTTGAGACCCTTCACACTTTCCATCCATGACGTCACTTCATCGTTTTA GCCAATTCGTCATTTGGGCATGTTGGGCGTTGGGTCTACCCGTATTCCGGTCGTAC AGGCCAAATTGACCATTTTGGTCCAGGTGGGTGCACCCATTCCTGGAGGGCGTTC GGC SEQ ID NO:302 Late LPZ-287 GCGGACGCCTCCACAGAGCTCACACATACAATATACTATGATGCCTCCAGAACTAT GGCACTCTGTATGCCGCTTCAATATGGATTAGCCCACACTGCGCCATCCAATTAGG CGAATCAACCTTATAGCACCATCCACAACCTCCAGCGCTCTCTTTTTCACGCTAGAT TGGCCAACTACAGGCTTTACAACACTACTCATATACAACTCAACTCGGCTCCTCTGC TCACCACTAAATCACACAGGCTCCAATCGCTAGACAGAGCCACTACACAGGCACTA ATAGCCACTACACAGGCACTAATCTTGGCGTCCTCCACCAGGTTCCAACAACAACC CCAAATTGCATATGCACTCCACAGTGAGCACCAACTAGGTCCACACAATAGGCCAC ACCAACAACACTCCAAGGACCCTAGATCCTGCCTCACCCAGACACCACTAGGCCTT CCTCACAGCTCACCTAAGTGAGCCAACAACTGGCTGGGCACACAGCTCCCAACTAT ATGAGCACACAGCCCAACTACAGCTCCAGCACACGCACAGCTACACGCACAATGC CTTCTCAAGTTCACAGCCACACCATAACGCAGCACAGTTCTTACAAACATATCTCTC CAGGCGTCCGC SEQ ID NO:303 Middle LPZ-288 GACGTTGTAAAACGACGGCCAGGATAATGGACACGAGAAACCTTTGGATGTGCCT CTAAAGTGCGGGCAATCCTTAAAGCTGTTGAATTTGTGCTGTACACGAAGGTGC AGGGTCTTTATGCCACGAAGAATCAAGTACGCTGCATTTGGACTTAATACACCTCC CAAGACATTGTGCAAAGCACGTACTGTGCCAATAACCTTGTTTGAACCACTCAAACT GCCTGCAAGAACATCATTATGACCTGCAATATATTTAGTTACCGAATGCAATACAAT ATCTGCGCCGAGTGCTAACGCTTTCTGGTTAACAGGCGTCCGC SEQ ID NO:304 Middle LPZ-289 GACGTTGTAAAACGACGGCCAGTCATTATTGACAATAATCCTTTCAGCTTTTTACTG CAACCTTTAAACGGTATACCTTGCGTTTCTTTCACTGGAGCACACTCAGATGATAAT CAGCTTTTACAGGTGCTCTTACCTCTGTTGAAGCATCTTGCCACTCAGGAGGACGT GCGCCCTGTGTTGTATGAAAGATTTTACATGCCCGCATGGTTTGAAAAGCGTGGCA TTCCAGCATCTGAGTGGCCCTTGTGACTTGGTTTTGATTTTGGATACTCTTTGTCAT TTTGGGTCAAGGTAAAGGTGTACGTATCCAAGTGATGCAAGCGTCCGC SEQ ID NO:305 Middle LPZ-290 GCGGACGCCTGATAGCACGAGTCTTCTGGGACGCAAATCAAGAGGCAGGTACTT CTTTTTCTTGTATGCTTCTCTTAATGCGGATCGCTGGCTCTGAGAAATCACAGTCAG AACCTGAGCTATTGATAGCCTCACGACCTTGATTTTAGAGAGTTTGTTGGGCGCTC CTCCAGTGACCTTGCAACTCTGAGCAAGGCAAGCTCAGCCTGAGCTCCTTGACC TGGCTTAACAGCTCGGATTTGCCCTTGTGGCGGACTCAAGGACCTTTAACCTGGG CGTTCGT SEQ ID NO:306 Late LPZ-293 GCGGACGCCTGGTGTCGCTGGGCCAGTTCAAGTATTTTAGCAACAGTGTTCACACT TATTCCCTGTGATATTCTTGACTCACACAACCACCTAACTGACGCAGACCATATCG ATCTGCTGCTGTAAGCAAATGTTCGATCATTGTCTCAGGTGTCAAAAAGCAAGGGG ATGGATCAGAAAGCTCTTCTAAATCTGCATGCTCCTCTAAATCTGGAAGGGTATCTT TGTAAATAAAGTGTAACATAGCCTTAAACACCTCTGGCCGTCGTT SEQ ID NO:307 Late LPZ-294 GACGTTGTAAAACGACGGCCAGAGGTGTTTAAGGCTATGTTACACTTTATTTACAAA GATACCCTTCCAGATTTAAAGGAGCATGCAAATTTAAGAAAAACTTTCCTGATTCAA CCCCCTGCCTTTTGGCACCCTGAAGATGGTTCAACAATTTGCTAACGGAACCAATT CAAAAGGGCCGCCTCCATTTAAGGTGTTGTGTTAGTCCAGAATATCACAAGGAATA AGTGTTAACACCGGTGCCAAAATACCTGAACTGGACCAACGACACCAAGCGTTCGC C SEQ ID NO:308 Middle LPZ-295 GCGGACGCCTTGTAATCCAGGGCCTTGAATATTGTAAGAGAAGATCGAGAAATAAT AGTTTTCTTATTATCAGGAATCACAGCTTGAAGAAGGCAGACCATGGACTCCCACT GGCTTCGTGATATTGAGTCCCCAACAAACATTAGTCGTTTTCCCCTCAATCTCCACA GCAAGTCTCTGGCATTGAATCTGCGAAAGGAACACCCGAGTGGCTTCCACCTCCAT TTCTCGTAATCAGAATCTGGCCGTCGTTTAACAA SEQ ID NO:309 Late LPZ-297 GACGTTGTAAAACGACGGCCAGCAGAAGACCAGTGCAGTATGCTGCAGCATAGTT TGTAAGCCCTACTTCGAGTCCATAACGAGGCAACTCCCTAGAATAAGCAGCCGACA TAACAACATCTCCCGCAAGAGTTGCATAAATGATCTGTGCCACCACATCCTTGTTG TGAATCTAACGACCAATCGGTATTTGGGTGTGTTGTACTTGTTCTTATCTTGGTTAA TCAGGCGTCCGC SEQ ID NO:310 Late LPZ-299 GACGTTGTAAAACGACGGCCAGCATCCATTGCAGAAATTTTGGGGGCTATATTTAG CAACAGATATCACAGCTGTAAGTCAAAGTTGGACCCTTCTTCTTCGACATCTTTTC CAGCTGTGCAATAAACTGAACACTGTCCTTTTGGATAAGCTCCTCAACATATTTAG AAAGTTCAACATCCAAGACATTGCGGTACTCCTCAACATATATGGATGCAAGTTCAT CATCTGCAGCTGGTCTCACCGCTGTACAAACTGTTTAACATGGTTGACAGTTGCA AGTTGAGCAGTCCGTGGATCCAAATAATGAGTTCCGTCAAGCTCACTGAACTCAGT CACAATCACCTGGCCACTTTGATTGGGCATCTCGAGGGATATCATGTGAGACTTGT TGTGGATGGGGAAAGCGTCCGC SEQ ID NO:311 Early LPZ-300 GCGGACGCCTGCATAAACATCGCTACCCTGGGGATGATTAATAATAGTACCAGGGT TAGGATTTTCTTCATCTTGAGCGATATCATCATACATAAAGACCACAATGTTTTCCTC TTTCAAACCGCCTTTCCTCAGAATTTGGTAGGCATGGCAGATATCAGCCTGATGCC TGTAGTTCCAATAACCGGAAGAACCAGCCAACAGAATAGCCCACTGAGTACCGATC GTATCACTATCATCAACGATATGATCGGTGGGCATTTTCAGTACTGAATCCCAACCC CTTCTGGCCGTCGTTTTACAACGTC SEQ ID NO:312 Middle LPZ-301 GCGGACGCCTAGACTGGGCATACCAACTACCTTCCTCATGCCAGGCCATGGGCCA CCTACCTGGTACTTAGGCATAACACCTTACTTACGAGCATGCCAGGCTCAGTCAGA TAGGCATGCATCCCACCCACCTAGCTATGACCCAATCCTTATAAACACTAGATATTC TCCCTGGCCGTCGTT SEQ ID NO:313 Late LPZ-303 GCGGACGCCTAGACAATCATACTGAAGATCTGTAAGCCATGACAAGACGAATAA AACGAAGCACGGCGCAACCAGCGTGAATATTGACGCCTTAATTTCATTCAACTGGG TTGCGGATTCTTTATTCCTCAACAAGTGTTCGATAGCTTCACATACGCAAGGCCCCT TTTACTCTCACCTTCATGGTTTAATGCTGTAACCGTCGAAGGTTGATGAAAGGACTT GGATGATGATGTTGCCAAAAAAAAAAAAA SEQ ID NO:314 Middle LPZ-304 GCGGACGCCTGCTCAACACCTGTATAGTCATTTCTTGTTTCCTTTTCTCAATTTTC TCTTTCGAATGACCGCATTGAAATTCAGGCTGCCCAACGCGTTTTTGTTTTCACAAT TAATTTTTGAATCATACGCGAAGATCATGATGAGAATGGTTGTGGAAAAAAACTGTT TGTAAATATTTAG SEQ ID NO:315 Middle LPZ-306 ATATCACATTACCATTCAAAAAATAAACATTTTACAAAATACAATTCCATAACAATTTT CTTCCCTGTTCCAACCTCCACAAAAGTAAATGATCGTATAAGAAATTAACTACCAAC AAAAATCCCAAAGTTAAAGGAAGACATCCCCAAAAAAGATGTAACTTTCAAAACCGG ATGACTTCACTCCTGCCATTGCACCTAGTCATTTACTTCTCAGAGGAGTTTGGCCCT TTCTTCTTTCCAAAAGTAACCACTGCGGTAAGAAACCGGCGGTTGTATTGCATTCG CTTGTAGGCGCGGCCTCTAGGCTTCTTCTTCTGTCTTGTTTGGCCACCTTAGGGTC CGC SEQ ID NO:316 Middle LPZ-307 GCGGACGCCTTGGTACAATGGACTTGCAAAAATAAAATGAGTTCTCATTGTGGGT GAGATGCGGATATTTTATGCATAGGCACTTCATGGAGATGTGGTTATAAACGCCA TCTTAATATCTGTACCTATTACTTTCAAAATATGAAGGCAAGATGGAAAGCTACTCAT CTGTTGTGAAGTCAGAATGTTGGTAGCGGTTGGGCTCTGAAAGTAAGAAACTTTTT GATTGGTTTAATTAAATGAGGGAATTTGCCTGGTTTCCCTCTTCCTTCCGAAAAAAA ATTTATTTA SEQ ID NO:317 Late LPZ-308 GACGTTGTAAAACGACGGCCAGACAATATTGGAAGGGAGAAAGGCGCCAGCAGGG TTGAGGGGAAGAAATGCATAATGACATATATAATGAGATCTATTTGTATACGATATT ACGGGTACGATCGATGATTCGAGCTACGATCCCATACGACGCTAAAGCGTAATTAC ATATATAATAGATGCATTTCAGAATGACTTATCTATTTCATTACGCGATATTATATAC GTAATTACGTATATAATTGCAGAGATCTCACCGACCAACCAAATAGTCTTTCATTTC ATCCCAGGCGTCCGC SEQ ID NO:318 Late LPZ-309 GCGGACGCCTGTATCACTAGAGGTGAATACTCAGCAAGCAAAACTGAAGGATATTA TTGAAAAAGCTGTCAAGGCTAAATTGGGTGTCAATTCCCCATTGATCATGCATGGTT CTACACTTTTGTTTGAGTCCGGTGATGACATGAGGAAGATGTTGCTGCACATTAT GCACAAAACTTAGAGAAGACGTTAGCAGAATTTCCAGTTCCAATCACAAATGGTGTT ATTCTTACAGTAGAGGACTACCAGCAAGAGTTCTTATGCAGTATTAATATTAAGCAC AGAGATGACTTTGATGAGGAGTCAGGTGGCATTGTACTGTCTGGAGGCGTCCGC SEQ ID NO:319 Late LPZ-310 GCGGACGCCTCCTTGTAGATACGATACATGAGTCTAAGATCAAAATCATACAAGAA GAGCTTCATTTCCGGGCCTCACCTTTTCTACAAGCTCCTTTTTGGCTGGTGGAAAGC CAAACACTCTGTATCGGAAACACTCCTGCCTAGTTTCAGAATTACACATAAAAATCA AGCCGGCAAACCTATCTTTGCCACTGCCATCTCATTGTTTGCGTCCTGGCCGTCG TTTTACAACGTC SEQ ID NO:320 Late LPZ-311 GCGGACGCCTTACTAAAACGACGGCCAGATGTGTAATGGGGAAAATGTGTCATGAT AGTTGGGTACAAATAACGAGCCACCTGCTCTATGTTTTCGAAGTTTTCTGTTGGATT TGTCCGGGTGAGAGAGCGTTCGTTCGTTGCGCGAGAGGGGCAAAATGCTGAGCG TGGGGAATTGCCATTGCCGCCCCTGGAAGTGCCGCACGAACGCGATCACATTTAA ATCACCATTTACTTCATCATCACCATGGTTAAATGCAGTCCCTGCTCCTCAAACAG GACTTCAGATCCTTCAAGCTCGAAATCTCCGCCTCTGCTTCCTCGAAGACAAGAC TCTGTGAGGAGGAAGCGCAGCAGCTGAGCTTAGCGGATCTGCTGAAGCCCGGTG GCCTCGCCCCCGATGGGTTCTCGTACAAGGAGAACTTTACCATACGCTGCTATGAA GTCCGAGTTAAACCGCACTGCCACCATTGAGGCGTCCGC SEQ ID NO:321 Middle LPZ-312 GACGTTGTAAAACGACGGCCAGCAACCAAATAAACCCCACATGTGCTCAATGTTTT AGTATAAAAGGAGATGACTTAAGAGTCATTTCACACACACTTCTATCTTGATTTCTC CCACTTGTCTTGGGTTTTAGTGGAAGAGAAATCTAGGAGTGGAAGCCCTAGACGTT GGAGGATAAGAAGGCAACCCTAGAAGGCAGAGCTAACGCTATCCTAAGGCAACCC TAACGCTATCCTAAGGCGTCCGC SEQ ID NO:322 Late LPZ-314 GCGGACGCCTGCTCAGCACCTGTTATAGTCATTTCTTTTTTCCTTTTTCTCATTTTTG TCTTTCGAATGACCGCAATGAAATTCAGGCTGCCCAACGCGTTTTGTTTTCACAAT TAATTTTTGAATCATACGCGAAGATCATGATGAGAATGGTTGTGGAAAAAAACTGTT TGTAAATATTTAGGTGACCAACAATTTTCATGATTGCAATCTAAAGTTGATAATTGAT TTATCGGGTCGACATTTGTAATTATTAACACGGAAAATCTGAGGCTTACAATTTTTG GATTGTAAATATTTAGGTGACGAACAATTTTCATGATTGCAATCTAAAGTTGACAATT GAGTTATCGTGTCGACATTTGTAATTATTAACACACAAAATCTATGAGGCGTCCGC SEQ ID NO:323 Late LPZ-315 GCGGACGCCTCATCAATCCATGGTTGTACACGCGCCTTCAAAGCGGCTCCTTATG TCGCGCAGCGTCTACTTGTTCCTTGAGCGCTTTTCCCTGCTACATCCGCGCGAGCC TCTGTGCAAGGGCCACTGTCTGCGCGGTCCCTTTAACTTCGTCGTACTTCTGCTGC AGCTCACGTGTCTCTATTTCTAAGTGCTATATATTTGGGTCCTCCTGCATAGTAGTG AACTTCGAACGACTCCTCAAATAGCCAGGTGTAGTCTTTCATTGCACTATTGATCTC CACTATTCCTGCTATAATGGCGCTAACATGCTGTTCCTTCACCTTTGGCGGAGTG AAGGCTGCGCCTCTGGAGCTCGGTTATTTGAAGCTGAACCTTGGGCATATCTTC CTTCACCTCGTGCATCCCCTGCTTCGAGTTTCTGGATGCACGCCTCCACTGGGTCT TCTGCTGGGATGGGCAACTCTAAGACCAACTGGTATGCGTCGC SEQ ID NO:324 Middle LPZ-318 GCGGACGCCTTCTTCAATCCATCAGGCCTGATTAATGTATTGACCTTCTTTGTCTGA ATGTCATACATTTTTTTCACTGCATCCTTGATCTTCTTCTTGTCTTGCTTTCTATCCT TTCTCTTGCTTTCTATCCTTTCTCTGGC SEQ ID NO:325 Late LPZ-320 GACGTTGTAAAACGACGGCCAGCAAAATTGATATAAAGAATAGACACATCGACTCA AATGAAGTGACTCAACAGTTCATAATTCATGTCAGCTTGAATGCATGGACATACAC CCATAAATAGGCAGTTGGGGTCACCCAAAAGAACATAGAAACATCTCGCATCTCTC TGAAGAAACTCGGATGGGTACAGGTCTGTGACTTCGCATATTTTGAAGGAGCACTC TCTTGGATAAGTACAATATAGGTACCATCTCGGACTCGCCTGAAATCTCGCAAAGA AGTCTCATTCTCCTCCTTGTTACAGGCGTCCGC SEQ ID NO:326 Late LPZ-321 GACGTTGTAAAACGACGGCCAGAAGCATCAATAAACAAAATGACAGATTAACAAGT TCTCTCTTAATCTTAAGAGAATACATCAACATCCAAGTAAAGTCATAACACATTTACA AAATGGTGCCACGGTATCCATTCTCTGTAACAAGGTTTTTCTGAAAATAGTTTTCCT CTTATCTATGTAACTCTTCATAGGGATGCCTGTGTCAACGTGCCATATTCCCAAATT TGGCCACAATCAAACCTTCCTCATTAGAAGAAACAATCTCTGGTCTAGCTCAAAATT GGCAAAATTTCCAGCATCTCCCTTTAACATCATTAGAAGGCGTCCGC SEQ ID NO:327 Early LPS-097 GGGAGATGCTAATTTGAAGCCCTTCTCTGAAGGTGGACAATTCCAGCAGCAGTGGT CTAAAGCCCCAATATGGCTATAGAAATTCTTCTGGGGGTTGCACCTATGGAAGAGG GTCGGAGAGGACGAAGCTGTGGATCGCTCTTACCATCTGTGCGGAAGGTGGTAGC AGAATTCATTGGAACGTTCTTCCTCATATTTGTAGGATGCGGATCTGTCGTTGTTGA TAAGATAAGCAACGGTTCCATAACTCATCTTGGTGTGTCGCTTGTATGGGGAATGG CGGCCATGATTGTAATTTATTCCATAGGCCATATTTCTGGAGCTCATTTGAATCCTG CAGTGACGTTGGCCCTTGCGGCTGTGAAGAGATTTCCATGGGTTCAGGTTCCAGG CTACATAGTAGCTCAAGTATTTGGATCGATATCTGCTGGGTTTCTCCTACGTTTCAT GTTTGGAGAAGTGGCATTCATGGGAGCCACAGTCCTTCAGGCTCAGAAATGCAGT CTTTCGCTTTGGAAATTATTACTACGTCATTGTTGGTGTTTGTGGTTTCTGCAGTCG CCACTGATACAAAAGCGGTGGGTGAATTGGGAGGTTCAGCAATTGGAGCGACCAT CGCAATGAATGTAGGCATATCCGGACCAATCTCAGGAGCTTCAATGAATCCAGCAA GGACAATAGGATCCGCAGTGGCTGGCAACAAATATACAAGCATTTGGGTTTACATG GTTGGGCCTGTAATCGGTGCGCTAATGGGTGCAATGAGTTATAACATGATTAGAGA GACAAAAATGTCCGAAAGGGAGATTATGAAGAGTGGGTCATTTGTTAAGGACATGG GCTCCAGCGAATCAACAGCATAACAACTTAGAGATTTNTTGCATTCCCGAGACGGT ATCCAGTGATAGTGGAGAGTAGTCATAATAAGATTTGTGAAAATGTTTGTGTAGATT AATGTGTAAAATTCAATCCATCAACCATGAAGCGAACTGCATTCCGTTTTTAAATGT TTATTGGATTTGAATTAATAAACAGCTTATACGTGAAAATCCCTACTTTATGTACGGA SEQ ID NO:328 Early LPS-098 ACTATAGGGCACGCGTGGTCGACGGCCCGAGCTGGTATCCGATGAAGCTAGATTC AATGGTTCAAGTCCTATGAAAGCTAGATTGGAGAATTGCAAAGAAATCTAATCTCCG TTAGTTGTCCCAACCACTGACTCGCACCCAATCAGAGTATATTAAAGTTAAAGATTA TATAAAGGTAAATTGAACATTTATAAAATCTTAAATGTATTTTTAGAGTTAAACATTAT ATAGAATATTTAATGTAGTATAGATATAATAAAATATTAAAAATTAATTTCTCTTTACT ATCAAGTGAATAAAAATAAAAAATAAATGTAAGACAATATAATAAAAGACTTGTTTTT AGTGCATTTTTTGGACTCTTCGTTATTGTGTGGTATTGTGTTATTTAAACTGATCTTT TTACTGTATATATGGATGGGTTACCCATCAAACTTGTGATTTCAATAAATTCCTCCC GGATTTTAGAGAAATTAGACCATAAAAACTCACGAAAAAAATTTTAGACCATAAAAAC TCACGAAAAAAACTTCCCCAAAATCACGCTAAAAACAACTAGATAAAAAAATACCCA TCTTTGATGATGTGGATAGTGACAGCCTATTCCAAACTATCACCTAAATTGTAAGTT ACATGCATAACACGATGACCTCATCTATACGTTGTGCCAAATAAAGGTATGACCGTT CAAACTAAAGAATCAACGAGCTCCAACGCATCTTTTGCTGTGGGGGGATTTCTCACG GCTTAACNTTCATGGANCCGATTACCTTNCTANCCAACCAAGGGTTTTAACCTGG CAAATNCCAAACCAATTACCAGCTTNACAAATCAACCGAGCCGCCCNACCGGGATC ATTTTGGTCAAGTCTCGAAAACNGGCATTGGGTATATGGNATATGGAATTGGAATT GGATCAATGGTAACCTTGGGANAAGCTTAANTTGGAAANCCCTTTTTTTTGANGGG GGCCAANTTCCCGNNCCCCCGG SEQ ID NO:329 Early LPS-099 ATACTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCTATGGTCGACCTGCAGG CGGCCGCGAATTCACTAGTGATTAGATGGTAAGAGCGATCCACAGCTTCGTCCTCT CCGACCCTCTTCCATAGGTGCAACCCCCAGAAGAATTTCTATAGCCATATTGAGGC TTTAGACCACTGGTGCTGGAATTGTCCACCTTCAGAGAAGGGCTTCAAATTAGCAT CTCCAAGTACATTGATCTATTCTATTCATATACATATAACAATGCTGCTCGAGACT GACAAAATGATCCGTTGGCGCTCGTTGATTGTTAGCTGTAATTGTTTGGATTGTTCA GTTAAAGCCTTGTTGGTAGGAGGTAATCGGTCATGAATGTTAGCCGTGAGAATCCT CACAGCAAAAGATGCGTTGGAGCTCGTTGATTCTTTAGTTTGAACGGTCATACCTTT ATTTGGCACAACGTATAGATGAGGTCATCGTGTTATGCATGTAACTTACAATTTAGG TGATAGTTTGGAATAGGCTGTCACTATCCACATCATCAAAGATGGGTATTTTTTATC TAGTTGTTTTTAGCGTGATTTTGGGGAAGTTTTTTTCGTGAGTTTTTATGGTCTAAAA TTTTTTTCGTGAGTTTTTATGGTCTAATTTCTCTAAAATCCGGGAGGAATTTATTGAA ATCACAAGTTTGATGGGTAACCCATCCATATATACAGTAAAAAGATCAGTTTACCAG CCCGGGCCGTCGACCACGCGTGCCCTATAGTAATCGAATCCCGCGGCCGCCATG GCGGCCGGGAGCATGCGACGTCGGGCCCAATTCGCCCTATAGTGAGTCGTATTAC AATTCACTGGCCGCGTTTACACGTCGTGACTGGGAAACCCTGCGTTACCACTTAAT CGCTTGAGCACATCCCCTTTTCCAGTGNGTAAAACGAAAAGGCCCCNCCATCGCCT TTCAAAAATTGGCAACTGAANGGGAAGGACCCCCT SEQ ID NO:330 Early LPS-100 ATACTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCATATGGTCGACCTGCAG GCGGCCGCGAATTCACTAGTGATTAGATGGTAAGAGCGATCCACAGCTTCGTCCC CTCCGACCCTCTTCCATAGGTATAAAACCCAGAATTTGGTGAGCAGGAAGAATTTC CATAGCCATATTGAGGCTTTACACCACTGCTGCTCGAATTGTCCACCTTCAGAGAA GGGCTTCAAATTAGCATCTCCAAGTTACATGGATCTATTCTATTCATATATTTATAAC AATGCTGCTTCGAGACTGACAAAATTATTTGTTGGCGCTTGTTCATCGTTAGCTGTA ATGGTTTGGATTGTTCAGTGTAGGACCAGCCCGGGCCGTCGACCACGCGTGCCCT ATAGTAATCGAATTCCCGCGGCCGCCATGGCGGCCGGGAGCATGCGACGTCGGG CCCAATTCGCCCTATAGTGAGTCGTATTACAATTCACTGGCCGTCGTTTTACAACGT CGTGACTGGGAAAACCCTGGCGTTACCCAACTTAATCGCCTTGCAGCACATCCCCC TTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCGATCGCCCTTCCCAACAG TTGCGCAGCCTGAATGGCGAATGGACGCGCCCTGTAGCGGCGCATTAAGCGCGG CGGGTGTGGTGGTTACGCGCAGCGTGACCGCTACACTTGCCAGCGCCCTAGCGC CCGCTCCTTTCGCTTTCTTCCTTCCTTTCTGGCCACGTTCGCCGGCTTTCCCCGTC AAGCTCTAAATCGGGGGCTTCCTTTAGGGTTCCGATTTAATGCTTTACGGCACCCT CGACCCCAAAAAAACTTGATTAGGGGTGATGGGTCACGTAGTGGGCCATCGCCCT TGATAGACGGTTTTTCGCCCTTTGACGNTGGAAGTCCACGTTTNTTTAATAGNGGG ACTCTTGGTTCAAAATGGGACAACACTTCAAACCTTTTTTGGGGNTATTTTTTTGA TTATNAAGGGATTTTTGCCGNNTTTNGGGCCTTTTGG SEQ ID NO:331 Early LPS-101 ACTATAGGGCACGCGTGGTCGACGGCCCCGGCTGGTTTCAATAAATTCCTCCCGG ATTTTAGAGAAATTAGACCATAAAAACTCACGAAAAAAATTTTAGACCATAAAAACTC ACGAAAAAAACTTCCCCAAAATCACGCTAAAAACAACTAGATAAAAAAATACCCATC TTTGATGATGTGGATAGTGACAGCCTATTCCAAACTATCACCTAAATTGTAAGTTAC ATGCATAACACGATGACCTCATCTATACGTTGTGCCAAATAAAGGTATGACCGTTCA AACTAAAGAATCAACGAGCTCCAACGCATCTTTTGCTGTGAGGATTCTCACGGCTA ACATTCATGACCGATTACCTCCTACCAACAAGGCTTTAACTGAACAATCCAAACAAT TACAGCTAACAATCAACGAGCGCCAACGGATCATTTTGTCAGTCTCGAAGCAGCAT TGTATATGTATATGAATAGAATAGATCAATGTAACTTGGAGATGCTAATTGAAGC CCTTCTCTGAAGGTGGACAATTCCAGCACCAGTGGTCTAAAGCCTCAATATGGCTA TAGAAATTCTTCTGGGGGTTGCACCTATGGAAGAGGGTCGGAGAGGACGAAGCTG TGGATGCTCTTACCATCT SEQ ID NO:332 Early LPS-102 ATACTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCATATGGTCGACCTGCAG GCGGCCGCGAATTCACTAGTGATTAGATGGTAAGAGCGATCCACAGCTTCGTCCT TCCGACCCTCTTCCATAGGTGCAACCCCCAGAAGAATTTCTATAGCCATATTGAGG CTTTAGACCACTGGTGCTGGAATGTCCACCTTCAGAGAAGGGCTTCAAATTAGCA TCTCCAAGTTACATTGATCTATTCTATTCATATACATATAACAATGCTGCTTCGAGAC TGACAAAATGATCCGTTGGCGCTCGTTGATTGTTAGCTGTAATTGTTTGGATTGTTC AGTTAAGGCCTTGTTGGTAGGAGGTAATCGGTCATGAATGTTAGCCGTGAGAATCC TCACAGCAAAAGATGCGTCGGAGCTCGTTGATTCTTTAGTTTGAACGGTCATACCT TTATTTGGCACAACGTATAGATGAGGTCATCGTGTTATGCATGTAACTTACAATTTA GGTGATAGTTTGGAATAGGCTGTCACTATCCACATCATCAAAGATGGGTATTTTTTT ATCTAGTTGTTTTTAGCGTGATTTTGGGGAAGTTTTTTTCGTGAGTTTTTATGGTCTA AAATTTTTTCGTGAGTTTTTATGGTCTAATTTCTCTAAAATCCGGGAGGAATTTATT GAAATCACAAGTTTGATGGGTAACCCATCCATATATACAGTAAAAAGATCAGTTTAA ATAACACAATACCACACAATAACGAAGAGTCCAAAAAATGCACTATTTACAAGTCTT TTATTATATTGGCTTACATTTATTTTTTACTTTTATTCACTTGGATAGTAAAAGAGAAA TTAATTTTTAATATTTTATTATATCTATACTACATTAAATATTCTATATAATGTTAACTC TAAAAAACATTTAAGATTTATATATGGTCAATTACCCTTATATAATCTTTAACTTTAAA TCCCTGATGGGGGCCAATAANGGTNGGGAAACTAACGGAAN SEQ ID NO:333 Early LPS-103 ACTATAGGGCACGCGTGGTCGACGGCCCGGGCTGGTTTCAATAAATTCCTCCCGG ATTTTAGAGAAATTAGACCATAAAAACTCACGAAAAAAATTTTAGACCATAAAAACTC ACGAAAAAACTTCCCCAAAATCACGCTAAAAACAACTAGATAAAAAAATACCCATC TTTGATGATGTGGATAGTGACAGCCTATTCCAAACTATCACCTAAATTGTAAGTTAC ATGCATAACACGATGACCTCATCTATACGTTGTGCCAAATAAAGGTATGACCGTTCA AACTAAAGAATCAACGAGCTCCAACGCATCTTTTGCTGTGAGGATTCTCACGGCTA ACATCATGACCGATTACCTCCTACCAACAAGGCTTTAACTGAACAATCCAAACAAT TACAGCTAACAATCAACGGGCGCCAACGGATCATTTTGTCAGCCTCGAAGCAGCAT TGTTATATGTATATGAATAGAATAGATCAATGTAACTTGGAGATGCTAATTTGAAGC CCTTCTCTGAAGGTGGACAATTCCAGCACCAGTGGTCTAAAGCCTCAATATGGCTA TAGAAATTCTTCTGGGGGTGCACCTATGGAAGAGGGTCGGAGAGGACGAAGCTG TGGATCGCTCTTACCATCT SEQ ID NO:334 Early LPS-104 ATACTCAAGCTATGCATCCAACGCGTTGGGAGCTCTCCCTATGGTCGACCTGCAGG CGGCCGCGAATTCACTAGTGATTAGATGGTAAGAGCGATCCACAGCTTCGTCCTCT CCGACCCTCTTCCATAGGTGCAACCCCCAGAAGAATTTCTATAGCCATATTGAGGC TTTAGACCACTGGTGCTGGAATTGTCCACCTTCAGAGAAGGGCTTCAAATTAGCAT CTCCAAGTTACATTGATCTATTCTATTCATATACATATAACAATGCTGCTTCGAGACT GACAAAATGATCCGTTGGCGCTCGTTGATTGTTAGCTGTAATTGTTTGGATTGTTCA GTTAAGGCCTTGTTGGTAGGAGGTAATCGGTCATGAACTGTTAGCCGTGAGAATCCT CACAGCAAAAGATGCGTTGGAGCTCGTTGACTCTTTAGTTTGAACGGTCATACCTT TATTTGGCACAACGTATAGATGAGGTCATCGTGTTATGCATGTAACTTACAGTTTAG GTGATAGTTTGGAATAGGCTGTCACTATCCACATCATCAAAGATGGGTATTTTTTTA TCTAGTTGTTTTTAGCGTGATTTTGGGGAAGTTTTTTTCGTGAGTTTTTATGGTCTAA AATTTTTTTCGTGAGTTTTTATGGTCTAATTCTCTAAAATCCGAGAGGAATTTATTG AAACCAGCCCGGGCCGTCGACCACGCGTGCCCTATAGTAATCGAATTCCCGCGGC CGCCATGGCGGCCGGGAGCATGCGACGTCGGGCCCAATTCGCCCTATAGTGAGT CGTATTACAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGCG TACCCACTTAATCGCCTTGGAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGA AGAGGCCCGGACCCGATCGGCCCTTTCCAACAAATTGCGCAACCCTGAATNGGGA AATGGGCCCCCCCCTNTTACCGGNGCAATTAAACCCCGGGGGGGNGNGGGGGTT CCCCCCCCCGTGGACCT

TABLE II Clone SE1-SE2 SE3 SE4 SE5 SE6 SE7 SE8 SE9 LPS001 0 249.4 1400.9 827.6 1683.8 2019.4 189.2 4303.9 LPS003 701.2 555.9 2815.2 2445.1 3249.9 3094.7 227.1 3111.6 LPS004 466.1 335.5 2652 2701 2644 2329.6 218.5 2332.4 LPS006 753.1 332.7 3287.3 2964.5 2832.2 2688.9 182.1 1591.9 LPS007 685.2 226 2010.2 1911.3 2600.4 1730.1 181.5 2737.7 LPS008 652.8 274.8 2415 2219.3 2607.1 2294.9 155.7 1292.1 LPS010 558.3 356.1 2667.6 2881.1 2584.3 1573.4 161.7 1041 LPS011 3536.1 424.7 4021.5 3793.8 3590 3182 160.5 1471.7 LPS012 809 408.4 2206.7 2187.1 2282.2 2422.5 462.4 1483.2 LPS013 1211.1 391.6 2294.7 2652.6 2005.4 2167.8 166.8 1570.5 LPS014 2191.9 432.5 2651.8 3013.5 3341.2 3586.7 178.8 3527.1 LPS015 1197.9 306 5651.4 14828.6 20242.8 21558.2 1427.2 34472.3 LPS019 1830.2 334.5 3329 3954.4 4347.5 4658.2 312.1 4743.1 LPS020 675.2 327.8 2258.3 2284.7 2542.7 2321.4 171.9 1609.8 LPS023 451.3 337.5 1401.9 1106.8 1766.2 1842.6 109.6 1365.2 LPS024 4585.8 444.5 3006.3 3431.1 3548.8 3759 157.3 4062.3 LPS025 5102.3 397.1 4322.9 4699.6 5067 4973.2 262.4 5240.4 LPS026 1568.7 285.9 1809.9 1830.4 2829.9 2381.7 164.9 1404.9 LPS027 5499.9 458.4 4853.9 5218.6 2598.4 1756.6 457.9 2375.3 LPS028 4812.9 314.9 2368.8 2616.5 3113.3 3292.4 557 4146 LPS029 4464.6 251.2 2334.4 2058.1 2930.3 3219.3 472 3814.4 LPS030 1142.2 352.5 2519.8 2460.9 2499.8 2634.5 378.3 2147.8 LPS031 1067.7 481.6 3510.8 2799.2 3568.2 3257.2 287.9 2209.7 LPS032 1120.2 332.3 3153.1 3032.4 1769.2 1816.7 146.6 2689.9 LPS036 1498.2 1072.9 4633.6 5524.2 5465.1 6350.7 918 14058.5 LPS037 1890.3 320.9 3719.1 3618.9 4138 4518.1 513.4 5087.5 LPS038 2899.5 310.3 4530 4226.1 4491.6 3969 268.4 4245.3 LPS040 527.4 238.1 1433.4 1611.2 1984.5 1506.5 143.9 1988.7 LPS041 506.1 265.5 1958.9 2843.2 2065.3 2016.2 147.4 2781.7 LPS042 1432.1 1140.3 4379 4973.3 4525.4 4340.8 319.6 3009.6 LPS043 696.9 776.2 3933.1 4894.3 3512.2 3664.7 340.6 3098.4 LPS044 57.8 275.1 3365 4261.2 4773.5 4979.9 974.4 10645.5 LPS045 536.1 211.1 1559.5 1415 1498.5 1584.8 562.1 1912.3 LPS046 796.3 231.7 1023.9 306.4 1417.8 1328.2 83.8 946.4 LPS047 5029.9 518.2 3632.5 4262.1 4755.5 4087.9 386.3 4933.8 LPS050 6333.5 2620.8 5271.4 5242.1 5586.4 5560.1 980.1 11444 LPS051 1378 224.4 2328.8 2221.8 2260.5 2715.1 123.7 3670.4 LPS052 1526.4 267.5 2046 1856.2 2186.5 2416.3 99.3 2010.1 LPS053 4438.3 361.6 4087.6 3959.9 4786.5 3666.8 379.6 4256.7 LPS054 1992.9 269.9 2734.2 2388.1 3143.8 2337.7 177.6 2803.9 LPS055 4587.8 334.4 3488.6 3474 4018.3 3101.6 196.2 4309.4 LPS056 5960.7 1333.7 5338.8 5670.3 5674.4 5533.5 446.4 5593 LPS057 2219.9 301.9 2397.3 2356.1 2218.1 2085.6 184.4 2657.8 LPS058 4070.4 299.9 3485.4 3721.3 4113.8 4142.2 239.8 4945.6 LPS059 8729.3 279.2 3885.7 3636 2720.4 3346.7 165.7 3734 LPS060 4580.2 323.7 3027.8 4713.4 4929.1 5047.5 161 4704.8 LPS061 2831.9 366.8 2392 2327.7 2546.5 1991.8 177.9 3036.7 LPS062 1674.1 353 2711.2 2526.1 1847 1830.3 124.5 3584.2 LPS063 5514.4 419.8 5238.9 5020.3 5417.4 5041 250.1 4812.6 LPS064 7417 3166 5229.5 7497.4 7933.1 10261 1088.3 16829.6 LPS065 5634.9 343.5 5527.8 5099.4 7833.4 5356.6 237.5 4696.7 LPS066 1015.9 244.5 1702.6 1650.5 2895.1 2437.2 128 2514.1 LPS067 2796.8 240.4 3931.5 4810.3 5407.8 5418.3 202.5 9403.8 LPS069 533.4 189.9 1635.8 1816.4 2114.2 1646.8 119.8 3208.8 LPS070 2516.9 240.6 1909.5 2519.6 2156.7 1777.4 186.4 4362.1 LPS071 592.8 196.4 1789.2 2189.2 1981.1 1304.5 127.6 3430 LPS072 444.2 217.6 1422.9 1509 2065.3 2289.9 122.7 2678.8 LPS073 4362.8 273.1 3094.9 3348.1 3771.8 4075.3 137.7 4259.6 LPS074 32072.9 6816.3 33531 25258.9 38176.4 32687.7 14607.1 37529.6 LPS075 7013.9 472.7 4759.7 4933.9 5452.2 5408.7 409.4 5397.1 LPS076 4236.1 362.6 3131.9 2882 3368.5 3354.6 119.5 3141.9 LPS077 2958.7 276.6 4380.4 4862.5 4475.1 4958.7 218.9 4426 LPS078 23685.3 2642.5 35458.6 25869.6 42378.9 33047.1 25402.2 37189.8 LPS079 4794.3 547.8 4628.6 4821.8 5257.2 5277 829.5 5449.7 LPS080 30454 10527 33713.7 23785.4 32590.9 32210.7 16224.4 37659.2 LPS081 30405.9 28677 35358.3 25873 22338.1 31715.3 36436.4 36650.5 LPS083 5040.1 460.8 3251.7 3487.3 2688.9 2565.9 190.5 2979.7 LPS084 2031 298.9 2843.7 2718.4 2352.2 2165.5 164.9 3398 LPS086 3571.7 320.1 2715.8 2648 1989 2528.4 143.9 2969.7 LPS087 3302.3 337.4 4873.1 5695.8 5407.2 5450.6 670.8 18404.9 LPS088 826.8 302.1 2389.2 2871.1 3180.8 2635.2 138.6 3141.5 LPS089 796.4 321.2 1987.7 2640.6 3299.1 2285.1 143.7 3176.6 LPS090 4031 235.9 3867.3 4064.4 4503.3 4798.4 341.7 4697.7 LPS091 2423.3 196.5 2836.8 3101.3 4049.1 4172 295.2 4612.2 LPS092 2914.9 208.5 4005.3 3138.4 3911.6 4036.1 270.4 4842.9 LPS093 793 195.5 1619.2 1331.6 1909.3 1843 147.1 2772 LPS094 1374 221 2205.5 2028.5 2240.9 2632.2 163.3 2849.1 LPS095 728.7 174.1 2022.6 2112.1 2335.8 1264.6 117.5 2957 LPS096 333.3 168.5 1531.9 1393.4 1893.3 869.1 118.3 1691.1 LPZ001 2008.6 185.4 2535.9 2937.9 3472 1981.8 118.9 2421.7 LPZ002 3529.3 384.6 4579.3 4474.6 3236.7 3855.8 313.8 3237.5 LPZ003 4076.8 275.4 2651.2 2966.7 2829.2 4177.4 378.5 4369.7 LPZ004 5595 687.4 5468.2 5615.9 5243.6 5699.6 601.6 5889.9 LPZ005 5680.5 3353 34994.7 26121.9 42555.1 33144.5 16193.7 37798.2 LPZ006 1199.8 299.4 3013.7 3099.8 3517.3 3397.1 140.6 3370.8 LPZ007 1159.1 462.2 3292.7 2992.5 3121.4 2936.7 235.5 3238.6 LPZ008 1874.3 237.7 3110.8 3236.7 2516.5 3182.2 325.3 4330.1 LPZ009 3331.1 296.3 2348.5 3414 2478.2 3309.5 348 5658.1 LPZ010 3216.3 1186.8 4977.3 5024.7 4564.4 4992.4 442.6 4454.5 LPZ011 4613.4 910.9 4510.7 4515.7 3729 4357.3 371.4 4695.9 LPZ012 1531.5 469.5 2915.3 2611.1 2012.3 3481.4 270.3 3804.3 LPZ013 3495.1 268.8 2125.9 2584.7 3194.7 3787.4 125.1 4929.6 LPZ015 2040 257.6 1971.1 2966.7 2191.1 3056.7 227.1 4156.6 LPZ016 5307 2761.1 8451.7 17219.7 22792.7 15567.3 1073.6 35074.1 LPZ017 2476.4 354.3 3175.5 4330.8 4496.2 4061 273.2 5328.9 LPZ018 3929.4 417.5 12420.2 14916.1 18116 17637.5 2541.6 31981 LPZ019 5404.2 427.3 32190.3 24710.4 42102.7 32342.6 19528 36969.5 LPZ020 576.9 142.9 1451.4 1505.4 3534.8 2679.8 210.9 3046.2 LPZ022 1408.2 155.2 2406.7 2845.7 3042.5 3074.8 189.9 3829.2 LPZ023 562.1 152.8 2096.7 1710 2045.5 2078.9 200.8 2874.3 LP2024 496.7 158.1 1681.3 1264.7 2102.9 1857.1 132.1 1818.4 LPZ025 5431.3 464.1 13492.2 9726.2 11911.5 13462.8 1262.5 11780.6 LPZ026 1663.2 139.7 2464.8 2760.1 3113 2219.4 159.1 3183.5 LPZ028 5029 190.7 5367.2 5339.8 5483.9 5205.5 482.3 5565.9 LPZ029 961.3 119.2 1805.4 1989.6 2298.5 1998.4 126 2576.9 LPZ030 1457.4 177 2444.7 2687.5 1966.4 1857.2 178.5 3312.8 LPZ031 3092.8 361.7 3564 3925.3 4627.8 5171.4 506.7 5920.5 LPZ032 1906.5 156.8 5542.3 24342 42917.8 33386.1 30058 37998.6 LPZ033 12934.5 354.7 5280.1 7301.2 5638.9 9238.7 375.4 15843.5 LPZ034 1307.4 177.5 1737 2208.4 3213.1 1984.1 150.2 3228.3 LPZ035 556.5 201.9 880.2 1280.1 1654.5 915.1 74.1 1422.1 LPZ037 1356.8 269.7 2072 3110.5 2912.8 2488.2 211 4119.3 LPZ038 4027.9 426.9 5639.9 5872.3 5476.8 5614.6 796.8 5583.3 LPZ039 5059.1 550.6 3807.9 4393.8 3825.6 3889.8 342.2 5164.2 LPZ040 1226.1 236.5 1566.4 1889 1679.1 2263.6 140.6 3331.1 LPZ041 944.2 219.3 1629 543.1 1148.2 1416 90.2 2524.6 LPZ042 570.6 206.1 1129.5 806.5 1448.8 1423.1 75.1 2013.8 LPZ043 1190.2 236.7 1878.8 1024.4 2834.6 2767.4 241.7 3236.2 LPZ045 5315.3 465.7 4933.2 5580.2 5151.1 5205.1 557.3 10754.3 LPZ047 859.5 285.2 1606.2 2099.3 2059.4 1992.6 68.3 3054.8 LPZ049 3232.7 108 1278.6 2834.2 3657.8 3944 244.2 5459.6 LPZ051 3048.1 146.9 2373.2 2067.3 2745 2383.2 179.1 2837.6 LPZ053 2580.3 135.6 2625.8 2088.7 2468.5 2297.2 156.8 3001.4 LPZ054 1838.1 159.5 2657.8 2759.7 2658.1 2224.7 170.4 3444.2 LPZ055 2181.8 151.1 2381.2 2262.7 3228.3 2983.9 139.3 2673.9 LPZ056 4028.3 219.5 2884.6 3416.6 3779.6 3789.9 208 4518 LPZ057 1470 121 1676.5 1629.6 1702.7 1703 112.2 2272.1 LPZ058 1923.3 122.5 2453.5 2169 3127.3 2465.4 160.6 3319.6 LPZ059 1760.4 113.8 2180.6 1832.4 1997.2 1530.8 174.4 3366.6 LPZ060 3296.4 139.3 2571.1 2250.2 2721 2976.9 221.3 3896.5 LPZ061 2495.6 182.8 2663.9 2235 3265.9 4227.1 498.1 4915.1 LPZ062 1992.7 194.9 3296.7 3975.8 3861.5 5642.6 497.6 5606.2 LPZ063 2167.1 145.9 2733 1843.9 3066.6 4961 305.6 4773.2 LPZ065 5641.2 251.7 13690.3 9269.2 8562.8 13254 986.3 9554 LPZ066 6307.3 652.4 12630.8 6968.4 4918.9 5062.2 400.7 5456.8 LPZ067 10838 1548.1 16986 11776.8 5633.2 7054 1014 15262.2 LPZ069 1481.9 209.6 2239.8 1480.9 2496.7 2542.4 250.5 3717.2 LPZ070 1932.5 263.8 1895.1 2221 1555.9 1570.4 145.5 3471.3 LPZ071 3672.6 378.6 4185.5 3050.5 4166.8 4246.2 553.7 5333.4 LPZ072 744.5 210 1210 676.7 1420.2 1393.4 95.8 1997.1 LPZ073 1997.9 235.9 2275.1 2141.7 2613.2 1989.9 170 3489.4 LPZ074 1375.9 237.4 1899.1 1787.3 2472.9 1623.7 125.6 2435 LPZ075 831.4 247.9 1536.4 1773.1 1886.9 920 80.6 1053.5 LPZ076 345.7 251.8 854.8 564.6 1747.1 526.2 55.9 1058.3 LPZ077 2466.3 102.2 949.4 820.9 3093.9 3179.6 202.9 3314.8 LPZ078 3102.1 197.1 3654.2 3261 4204.3 4433.6 400.8 5559 LPZ079 1584.4 108.3 2389.2 2243.3 2624.8 2677.1 208.3 3675.6 LPZ080 12206.5 2043.1 25021.4 8579.5 11707.8 8717.6 1172 18663.9 LPZ081 1368.7 103.6 1902.8 1349.9 2166.1 1597.7 103.5 2709.6 LPZ082 2601.3 140.3 3264.3 2853.9 2799.6 1742.3 251.1 4288.2 LPZ083 1311.9 76.7 1622.4 1071.1 1733.9 1878 104 2007.7 LPZ084 9974.7 801.3 14255.3 8399.1 5763.9 8852.9 542.2 5714.3 LPZ085 4609.8 158.4 3923.3 3729.7 4082.8 3867.3 219.3 4075.1 LPZ086 10874.1 987.4 19189.5 8284.6 5646 9109.8 1116.4 14988 LPZ089 3505.8 211.6 4010 3430.6 3762.1 3770.8 224.3 5341.2 LPZ090 5780.9 581.8 13217.4 6303.4 4694.8 4779.9 425.2 5408.9 LPZ091 5316.1 148.4 2263.4 2139.8 2382.2 4067.2 256.8 14732.6 LPZ092 5448.7 209.4 3631.6 4152.7 2934.1 3403.7 174.9 4943.6 LPZ093 1169 159.4 2097.9 1187.4 2050.8 2350.7 109.4 2605 LPZ094 1245.5 139.7 1547.5 1650.5 1875.2 2009.9 80.2 2376.9 LPZ095 711.2 177.9 900.9 1253.3 1013.8 1395.3 48 1586.1 LPZ096 2122.2 249.7 2929.3 3271.3 2132.9 2224 232.8 4443.8 LPZ099 4306.4 211.2 2603.1 2144.4 3479.2 3488.5 138.1 4085 LPZ100 3373.5 297 3941.3 3149.6 3790.4 3857.5 443.8 5028.1 LPZ101 3007.7 272.4 3546.9 2291.3 4299 3232.1 306.1 4819.6 LPZ102 2092.7 324.7 3167.5 2109.3 3524.3 2829.4 279 4297.4 LPZ103 3602.1 285.7 2923.3 3112.9 2812.9 1318.3 87.9 1739 LPZ106 1359.7 305.1 2680.3 2391.6 2838.5 2097 173.7 3009.6 LPZ107 28560.8 4989.5 20821.7 17880.4 39173.1 27035.1 11973.3 36123.4 LPZ108 4136.8 179.4 4259.8 4978.2 5553.2 4862 837.2 5597.5 LPZ109 3708.3 202.4 3842 3510.4 4638.4 4453.7 469.5 5107.4 LPZ110 4557.2 291.4 5020.6 4801 4487.4 4481.1 552.3 5484.2 LPZ111 1625.6 130.9 2242.1 1982.7 2740.6 2455.4 164.6 3722.3 LPZ112 2887.4 195.8 3813.2 3759.4 3984.8 4167.1 409.7 5461.8 LPZ114 5029.5 213.4 5016.7 4678.8 5036.9 5168.1 302.1 4316 LPZ115 24434.4 2637.1 27958 23684.2 41104.3 30920.9 2153.9 36902.6 LPZ116 8682.9 235.7 5647.3 5316.6 5805.6 9313.7 466.6 16018.9 LPZ117 30879 4843.7 36277.1 24358 24673.1 20545.7 4669.9 5652.6 LPZ118 4023.6 171.1 3743.5 4568.2 3845.4 3783.9 254.3 4782.5 LPZ119 2580.4 114.1 2507.2 3114.1 2544.6 1963.8 127.6 3195.4 LPZ120 1998.8 157 1987.2 1503.1 2331.8 1805.1 131.5 3522.3 LPZ122 2041.4 119.6 2145.6 2430.9 1998.6 2171.8 101.3 2677 LPZ124 2795.6 185.4 2980.4 2672.5 2495.2 3459.4 173.1 3081.5 LPZ126 2559.7 181.8 2560.1 2349.8 3500.6 2362.1 224.9 3646.9 LPZ127 1993.5 169.1 3161 3180.8 3382.5 3321.3 180.6 4058.4 LPZ128 2866.7 263.2 3556.8 3597.4 3545.7 3813.8 306.7 4071.3 LPZ131 1993.5 171.7 1983.9 2069.6 2565 2607.2 80.3 2527.8 LPZ133 2446.7 290.4 3218.6 2847.2 3830.1 2889.5 245 4252.4 LPZ136 1952.3 281.1 2956.9 1870.6 3167.6 2680.6 215.9 4291.6 LPZ137 2833.8 281.9 3264.4 2350.2 3874.4 3532.8 420.8 4935.3 LPZ138 2932.9 1791 5211.5 4502.1 5409.9 4832.8 543.1 4741.3 LPZ140 2284.7 337.4 3680.2 2810.9 3196.1 3191.2 271 4613.6 LPZ141 4726.2 368.5 4792.5 4412.5 5368.1 5466.3 722.1 4956.4 LPZ143 25290.6 2692.2 35967.9 25679.9 43668.3 32612.1 25456.9 36344.4 LPZ144 2620.9 286.6 3948.7 3394.6 4505.7 4142.8 488.7 4776.7 LPZ145 3472.5 171 3949 3194.2 3430.5 3539.9 327.9 4487.2 LPZ146 2612.8 127.3 2482.4 2080 3000.8 2979.1 135.1 3391.3 LPZ147 2447 106.3 2855.1 2237.7 3134.2 2841.8 261.6 4388.1 LPZ148 2036.8 77.7 2559 1932.3 4296.1 4699 359.6 3982.3 LPZ149 5720.7 267.4 5377.3 5408.2 10999.7 5717.7 1078.9 13033.2 LPZ150 5861.7 772 35541.7 26314.8 44633 33238 13126 37853.6 LPZ151 5550.3 3499.3 9012.8 8380.4 11968.1 5716.5 715.8 5536.9 LPZ152 4746.6 352.8 5169.3 5647.7 5384 5394.2 408.5 5382.1 LPZ153 21881.2 2773.2 14738.2 15979.5 16996.8 15756.8 2388.5 30812.9 LPZ154 4869.8 265.9 3244.3 3497 3948.6 3703.3 303.8 4119.1 LPZ155 3904.2 1596.3 5078.5 5482 4631.7 5314.1 553.4 4112.9 LPZ157 4726.5 1732.8 5427.1 5369.5 5213.3 5705.9 756.4 5462.2 LPZ158 15297.4 3817.1 17993.9 17405.3 25168.8 22056.6 2337.4 22375.3 LPZ162 5725.8 4204.8 10380.1 11364 17948.2 14250.8 1934.6 10535.5 LPZ165 5615.2 666.7 5274.6 5486.6 5560.3 5310.9 637.1 5405.9 LPZ166 5889.1 2603 9503.5 10943.7 13743.3 14080.4 1772.5 5772.8 LPZ167 5347.2 1948 5708.9 6769.6 5742.3 5347.9 370 5279.7 LPZ169 3043.8 267.4 1976.6 2851 3451 2451.2 189.8 3420 LPZ170 3507.3 301.5 3532.3 3391.4 4481.4 3398.7 130.2 5604.2 LPZ171 3762.3 780.7 4554.8 4311.7 4936.4 4511.3 398.6 5030.5 LPZ172 5098.2 947.4 5550 6287.9 5135.4 5323.9 1242.5 8539 LPZ173 22580.5 3313.9 35486.9 24974.9 42874 31828.8 26531.8 36066.9 LPZ174 4115.7 221 5241.5 4262.4 5765.8 5554.9 872.5 4815.2 LPZ175 4388.3 1360.6 5563.7 5504.9 5165.3 5182.9 583.2 4602.3 LPZ177 1371.6 94.5 2119.4 2218.6 2730.7 2431.7 143.2 2893.2 LPZ179 3643 195.1 4409.9 4898 5458.3 5319.8 797.9 5677.7 LPZ181 5573.3 215.9 4799.6 5272.2 5825.3 5554.4 1573.5 13689.7 LPZ182 4118.9 107.6 3491.5 3182.1 4617.5 4543.6 478.1 5527.8 LPZ186 5792.2 325.5 4965.1 5182.6 12373.6 11191.4 1804.9 37336.4 LPZ189 33820.3 5188.5 30941.4 24955 43453.2 33115.2 17929.3 38055.6 LPZ194 2807 151.1 2915.9 2955.1 3306.8 3120.2 142.9 4101.6 LPZ195 5345.7 532.7 5597 5628.7 5540.4 5491 545.7 5756.7 LPZ196 4805.1 3512.9 5183.2 6968.6 5465.4 5052.4 786.4 5694.5 LPZ197 7268.6 153.8 5398.9 5673.5 13582.6 15111.9 3499.6 34684.8 LPZ198 7208.3 210.6 5800.8 8043 5439.2 5183.6 409.3 5042.7 LPZ199 3058.3 186.1 2749.6 2667 3713.6 3704.3 243.4 3917 LPZ201 7175.3 236.7 4827.6 5029.9 5523.4 5802.2 1981.9 14614.5 LPZ202 3603.3 1113.9 35531.5 26035.1 44762.8 33837.3 63521.8 38225.4 LPZ203 4325.4 424.4 5517 5387.3 9934.8 5662.1 2104.8 9370.7 LPZ204 32355.9 34690 36443.6 26004.3 44546.1 33680.5 55702.6 37890.3 LPZ205 4904.1 519.6 5162.4 5398.7 5427.6 5325.6 281.4 5770.2 LPZ206 3504.4 319.8 3124.8 4561.7 4192.2 3899.9 255.7 5489.9 LPZ207 32035 24978.7 34825 23371.8 42639.9 32686.4 30672.2 37674.8 LPZ208 25174.6 3118.6 14244.4 13906.3 16694.7 21111.9 2190.1 34542.4 LPZ210 3885.1 422.3 3895.8 4551.5 4205.7 5108.7 258.6 5514.3 LPZ211 2569 176.7 3689.2 2943.5 4001.9 3860.9 250.2 3113.1 LPZ212 5988.8 1244.3 32684.4 11154.1 19853.4 13654 618.3 10736 LPZ213 3406.9 106.8 3964.1 3876.6 4236.4 4294.4 274.2 4874.6 LPZ214 1668.3 55.3 2136.3 2394.8 2390 2269.3 105.8 3436.2 LPZ215 5019.8 139.3 5020.1 5024.8 11013.9 13747.1 1991.7 36930.6 LPZ216 3336.8 1085.4 35895.6 26245.3 44980.1 33834.4 64482.7 38238.1 LPZ217 23512.1 26363.3 36065.8 24685.4 43193.4 31422.4 21462.1 35990.6 LPZ219 4011 256.9 3193.5 3326.3 4509.5 5258.5 455.2 5841.9 LPZ220 8696.5 2383.3 5064.7 5171.3 4923.7 5340 951.7 17530.6 LPZ221 1221.4 83.1 1201.8 707.6 1556.5 2083.9 182.1 3948.8 LPZ222 1885 146.1 2834.7 2253.2 2557.7 3382 196.7 4225.1 LP2223 1048.5 121.2 2339.6 2642.1 2663.8 3573.5 383.5 4579.2 LPZ224 3190.6 118.8 3049.8 2833.2 4373.8 5139.9 858.6 5285.7 LPZ225 25428.2 4079.7 35724.5 25423.6 43300.5 32574.8 38888.3 37219.9 LPZ226 1044.9 130.4 1776.9 1210.8 2757.7 3388.5 326.6 3520.3 LPZ227 1078.3 133 1461.7 973.5 7032.1 9452.8 2043.5 4705.3 LPZ228 3961.6 213.5 3373 4050.7 5575.6 10714.4 2428.6 5928.9 LPZ231 3475.2 230 4096.3 3841.1 5009.3 5690.3 959.9 5514.3 LPZ233 2404 218.2 2170.9 1531.4 4362.7 4198.1 673.7 3350.1 LPZ234 1688.3 312.3 1887.6 1486.5 4228.6 4715.6 724.8 3170.1 LPZ235 2661.6 199.9 2422.2 1852.6 3078.9 2886.6 98.2 3143.5 LPZ237 3174.5 324.2 3032.5 2988.2 3931.1 4587.9 314.4 4588.3 LPZ239 4061.3 309.3 3175.1 2932.1 4131.7 3892.6 122.3 5083.5 LPZ240 3799 316 3730.6 3314.6 3379.8 3538.8 212.4 4784.5 LPZ241 2559.2 62.1 2610.4 1794.5 4165.6 3754.4 134.8 2915.1 LPZ242 29360.5 3262.9 35254.6 25196.9 43028.8 31468.2 7308.4 36768.4 LPZ243 3405.3 88.8 3015.7 2683.4 3678.7 2990.6 121 4001.4 LPZ244 4856.9 483.6 4842.2 5235.3 5317.6 5432.1 205.4 5712.9 LPZ246 1274.8 65.9 2301.7 1922.8 4332.2 4628.8 672.1 4232.4 LPZ247 3894 69.8 2522.8 3389.9 4451.4 4937.1 939.3 5522.8 LPZ248 3016.7 268.6 2883.2 3805.2 3791.7 3777.6 487.1 4585.6 LPZ249 5224.1 138.3 3524.5 4091.2 3022.4 3393.2 149.9 4101 LPZ250 1060.6 46.5 1400.9 1246.9 1419.5 1411.2 118.8 2908.4 LPZ251 1336.8 248.5 1354.6 1049.3 657.6 924.3 70.3 2064 LPZ255 3787.8 171.8 4801.8 5076.3 4608.1 4965 340 5636.6 LPZ256 536.6 61.6 865.5 971.6 1130.8 1327.7 82.7 936.9 LPZ257 844.5 112.6 1507.4 1537.8 2337.9 2745.8 341.5 1610.7 LPZ258 2588.5 142.3 3443.1 2902.2 4576 4976.4 1182.9 3619.6 LPZ260 837.7 113.7 1677.9 944.3 1217.6 1286.6 170 2928.2 LPZ261 981.3 132.1 1499.6 743.4 1590.8 1953 67.2 1652.1 LPZ264 4559.3 231.3 4348.5 2856.3 4869.2 5179.7 412.3 4698.3 LPZ265 21063 2793.9 26928.5 12365.5 13816.5 12134.4 691.6 17954.8 LPZ266 1642.4 130 1767.5 1463 1633.8 1410.5 59.4 1444.5 LPZ268 2451 114.2 2803.3 2495.4 3126.5 3433.7 79 4261.3 LPZ269 15670.7 3660.5 35782.4 21720 40375.2 31597.3 2024 35213.6 LPZ270 3541.2 240.8 3803 3132.4 4827.8 5213.6 79.9 5473 LPZ271 5590.7 677.2 5465.4 5197.1 5703.4 5615.2 309.2 5732.7 LPZ272 27369.6 3445.9 35824.6 22832.6 40684.8 27398.4 1732.9 37016 LPZ273 1107.3 46.1 456.7 336.3 1879.3 1654.1 65.4 971.9 LPZ274 3936.2 114.5 3192.3 3024.1 4983.3 4907 293.9 4933.5 LPZ275 2567.2 42.9 1760.4 2091.8 3656.5 3800.5 77 2585.4 LPZ276 560.9 32.9 1075.4 1878.9 1889.9 1766.2 66.8 1294 LPZ277 423.7 34.6 1199.1 1169.8 1376.8 1383.9 91.9 1123.7 LPZ278 323 39.7 937 382.9 770.1 935.2 66 1403.4 LPZ279 965.9 70.7 1907.5 1368.2 1783.7 1603.9 133.2 2438.8 LPZ280 390.7 19.6 175.4 42.3 464.9 631.5 29.9 2074.9 LPZ281 84.3 8.2 0 0 0 0 9.7 0 LPZ282 1849.7 28.4 315.1 34.2 664.3 1097.3 21.5 1229.5 LPZ283 10678.6 329.2 5134.7 5311.1 4772.3 8591.1 226 9633.6 LPZ284 996.1 39.8 236 147.2 2349.5 981.1 26 719.7 LPZ286 563.8 77.1 1031.1 945.9 1347.4 1601 81.2 1303.6 LPZ287 1045.7 123 2057 1475 1730.9 3003.6 149.9 2493.5 LPZ288 1201.7 116.2 1797 1448.8 1648.3 670.4 80.6 3700.4 LPZ289 1922.3 113.3 2515.4 3395.3 3460.7 3369.4 70.8 2183.8 LP2290 14629.5 3945.8 34659 24047.3 40474.8 27786.2 1348.2 27566.4 LPZ293 4364.8 385.4 4664.2 3170.9 4321.6 4789.8 74.6 5095.8 LPZ294 564.7 171.4 1257.5 705.2 1357.7 1610.2 18.6 2027.6 LPZ295 823.1 97.3 2102.7 1056.2 2899.7 2698.3 39.4 2448.2 LPZ297 5273.4 169.1 5229 5074.4 5727.8 11512.9 423.2 10966.8 LPZ299 1564 161.1 1743.9 1752.3 2764.1 2660.5 63.5 2791.9 LPZ300 3068.3 205.4 2406.8 1881.8 2898.6 2758.4 0.2 2007.2 LPZ301 1979.7 233.1 3207.1 2109.3 4343.5 3713.8 40.4 2690.6 LPZ303 509 32.7 281.3 877.7 893.1 751.5 30.1 1373.8 LPZ304 2531.1 289.3 3809.4 3406.7 3674.8 3517.4 158 2652.7 LPZ306 22632.7 2861.2 34933.8 25435.6 40453.9 30906.9 1505.9 34032.8 LPZ307 2604.4 1395.2 4780.6 6945.3 4419.2 4416.9 232.6 4299.8 LPZ308 1093.9 60.5 2028.1 1751.6 1770.8 1891.9 92.4 3245.8 LPZ309 286.1 26 480.4 378.4 589.6 731.4 38.4 1062.4 LPZ310 2284.1 129.5 1622.7 1091.7 1207.1 3089.4 101.2 3624.9 LPZ311 3309.9 43.6 2782.6 2956.3 2828.8 4446.7 95.8 5593.4 LPZ312 446.3 52.7 1577.7 1221.4 542.2 518 56.1 1952.6 LPZ314 378.6 26.9 333.9 355.8 682.2 701.2 61.7 732 LPZ315 3897.5 115.2 2611.9 3145.8 4296 5240.2 151.3 4499.3 LPZ318 9709.6 767.1 19964.9 15678.3 20611.8 19600.2 475 18079.9 LPZ320 1126.7 82.8 1215 1002.7 1502.5 1555.3 67.5 2964.4 LPZ321 2944.7 85.4 2590.7 2597.6 2550.3 2962.7 72.1 5481.4 Clone ZE1 ZE2 ZE3 ZE4 ZE5 ZE6 ZE7 ZE8 ZE9.1 LPS001 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 369.9 LPS003 600.3 363.9 0 243.7 1565.3 2624.5 1942.7 242 1892.5 LPS004 522.3 254 0 74.6 907 2638.8 1933.6 274.9 4209.2 LPS006 444.6 161.2 0 174.6 793.6 2651.4 1991.5 206.5 598.8 LPS007 528.9 136.3 0 244.9 1623.3 1202.1 2044.7 245.1 213.9 LPS008 534.5 215 0 281 1231.2 783.4 1760.3 178.5 832.4 LPS010 469 183.6 1.3 240.1 947.7 591.6 2208.3 161.2 482.6 LPS011 468.7 93.3 0 142.3 1544 1021.5 2334 254.6 1223.7 LPS012 511 278 17.7 197.2 2129.6 68.9 1362.7 478.9 960.4 LPS013 478.2 407.1 192.1 235.6 2470.6 9 1163.9 885.7 1109.4 LPS014 579.7 369.1 0 272.7 2799.6 1525.7 2222.4 606.9 2638.6 LPS015 419.7 254 0 2380.7 7188.1 4998.4 16519.6 5245.1 15550.4 LPS019 1068.4 279.6 0 396.2 3848.5 3074 3866.9 959.1 3664.7 LPS020 314.2 109.1 0 102.7 2036 234.4 1504.2 319.6 1053.2 LPS023 364.9 104.2 0 100.7 1151.8 0 1253 175.5 570.5 LPS024 804.7 213.8 0 346.3 3248.5 2523 2722.6 915 1987.4 LPS025 1374.7 407.8 0 857.1 4731.2 2584.2 4119 1138.4 2458.4 LPS026 337.6 86.1 0 100.2 1242 0 1052.9 242.9 988.9 LPS027 440.5 182.5 0 118.5 1318 691.2 1274.1 226.1 385 LPS028 369.5 166.2 0 168.7 2587.7 2597.8 4035.5 565.9 1883.1 LPS029 323.4 141.9 0 165.3 2524.3 2147.2 3031.3 567 2263.9 LPS030 362.3 226.5 0 169.6 1528.2 422.9 1236.7 239.2 1049.1 LPS031 591 536.7 4.9 383.6 1768.3 850.4 1013.3 399.8 781.4 LPS032 443.9 327.3 0 328.1 3200.9 1880.1 1832.8 265.6 1391.6 LPS036 1093 781.8 24.5 680.8 3911.3 3750.9 3746.7 661.8 3856.4 LPS037 501.6 180.4 0 200.9 2664 2369.8 1960.5 339.9 2892.9 LPS038 1180.1 471 155.9 1679.7 4392.3 2103.5 3019.9 800.3 2819 LPS040 398.8 108.6 0 103.9 1030.7 195.9 1566.1 144.4 682.1 LPS041 384 153.8 0 149.7 989.2 1257.5 2235.4 143.3 1228.4 LPS042 1381.9 951.7 44.9 716.1 3682.1 2755.7 4011.7 508.5 2963.4 LPS043 1211.6 704.8 74 613.6 3494.4 2435.3 3362.1 391.4 1544.7 LPS044 361.3 100.2 0 142.1 2244.4 3031.8 2653.5 393.4 1620.1 LPS045 285.7 75.2 0 64.4 856.5 223.5 1616.1 216.8 609.7 LPS046 325.8 217.2 0 70.2 1758.6 0 1280.9 284.9 1115.5 LPS047 2041.3 1347.8 768.4 1080.5 4169.9 3927.9 4263.5 1831.6 4804.9 LPS050 3226.4 3356.4 6064.5 3347.5 9841.4 3046 5362.2 2924.8 5821.2 LPS051 377.1 96.4 0 156.8 2452.6 2286.5 3035 396 2238.1 LPS052 330.1 80.1 0 162.6 2418.1 0 2097 352.5 1677.3 LPS053 402.6 160.1 0 146.3 2249.5 56.9 1986.1 464.3 1349.6 LPS054 497.4 147.5 0 184 2188.4 379.1 1976.1 308.6 1558.9 LPS055 1168.2 645.7 0 354.9 3901.1 1476.5 2607.5 774.8 3026.1 LPS056 1549.5 1243.3 37.9 752.6 4770.9 3403.7 4086.8 1204.2 4958.4 LPS057 387.5 154.3 0 262.7 2612.2 502.6 2317.5 365.1 1418.8 LPS058 671.2 198.9 0 434.8 4189.9 2258.6 3366.3 586.3 2190.5 LPS059 726.2 207.5 0 304.6 2974.8 2054.3 2712.8 395.1 1331.6 LPS060 534.2 215.8 0 221.7 2896.9 718.3 2693.3 477 2474.9 LPS061 530.8 369.4 0 204.3 1801.1 1286.4 1533.6 298.7 1327.2 LPS062 407.4 305.2 0 226.4 1509 0 1413.1 212.5 954.6 LPS063 619.4 280.8 0 282 3987.4 1805 2589.9 642.1 1650.4 LPS064 3689.2 4982.4 10201 3080.3 8359.8 3622.3 8304.6 2997 13781.1 LPS065 466.4 189.7 117.3 817.1 4336.3 2332.6 4393.4 1092 3866.8 LPS066 269.5 104.6 0 131.4 1006.2 76.7 1834.6 185.9 668.5 LPS067 426.4 179.7 49.3 341.3 4153 4077.7 5101.3 1195.9 3894.1 LPS069 367.8 136.7 0 128 1456.6 0 2685.6 308.7 1234.3 LPS070 438.5 137.3 0.4 111.6 1932.5 25 3005.3 210.4 721.5 LPS071 283.9 83.2 8.5 109.2 1831.5 0 3634.2 302.8 708.3 LPS072 301 147.2 5.7 132.9 1600.8 592.3 3051.5 331.5 1173.5 LPS073 692.1 485 251.5 497.9 4205.3 2827.4 3777.9 740.1 3882 LPS074 36280.3 66359.2 63362.2 44047.1 47176.9 20938.9 64534.5 33666.4 78457.8 LPS075 3204.8 1250.6 650.9 1033.7 4976.3 4377.1 4632.6 1617.1 5570.9 LPS076 434.7 127.9 0 204.7 1731.3 419.1 2737.8 298.8 2175.1 LPS077 416.6 107.6 0 327.2 3360.7 1950.5 4020.1 609.1 3713.9 LPS078 5164.5 1194.3 906.3 6556.7 20779.8 7364.3 28847 8680 22339.1 LPS079 1317 501.9 304.2 893.4 5047.6 3196.6 4887.5 1058.8 4992.1 LPS080 27721.4 56038.2 70896.6 26826.4 43426.4 20557.3 47819.2 16935.5 68145.5 LPS081 36397.3 66337.3 48195.9 41685.3 46187.5 20628 66138.1 31620 78253.7 LPS083 844.6 534.2 123.6 305.3 3724.2 1699.7 2524.6 583.8 3266.4 LPS084 665 249.4 0 334.5 2570.6 1491.7 2893.2 342.8 2061.7 LPS086 456.6 155.8 0 165.1 1962.7 754.5 1931 130.2 2176.5 LPS087 967.5 450.7 17.2 633 4238 3720.3 5373.9 1754.7 19094.1 LPS088 468.4 276.1 0 151.1 1109.4 0 1779.7 302.8 2497.2 LPS089 329.2 316.9 0 133.6 988.7 0 1619.6 320.7 1616.9 LPS090 478.9 272.3 0 218 4486.4 2182.3 2923.1 584.6 2640.7 LPS091 385.7 177.9 0 290.7 2923.3 2008.6 2453.2 441.5 2246.6 LPS092 396.3 164 0 345.2 2249.1 1219.1 2906.7 413.9 1589.3 LPS093 308.3 164.5 24 98.7 262.3 427.8 2140 175.4 661.4 LPS094 331.6 179 54.2 146.4 773.3 948.2 1729.1 116 1030.7 LPS095 363.7 157.7 46.3 142.5 967.7 341.4 2639.7 199.3 1055.4 LPS096 266.9 90.6 0 59.3 676.5 0 2616.2 136.5 215.6 LPZ001 270.9 49.7 21.1 121.2 1958.2 496.8 4495.7 325.6 557.7 LPZ002 491.7 231.8 157.9 345.8 1929.4 1183.4 3243.9 305.5 932.6 LPZ003 632.6 407.2 342.3 343.5 2630.6 2108.3 3212.8 423 4663 LPZ004 2034.4 2260.7 1487.4 1442.5 5730.7 2135.4 5424.1 1804.4 5786.1 LPZ005 6301.3 4683.6 2801 10127.5 31972.9 7747.5 51335.5 17767 52067.8 LPZ006 471.7 131.2 0 179.4 1964.1 1552.2 2977.9 333.5 2954.9 LPZ007 584.6 383.7 69.3 294.3 1424.1 531 2664.9 265 3021.7 LPZ008 325.4 87.5 14.4 176.8 1966.6 1588.5 2420.1 199.5 3481.2 LPZ009 451.3 281.6 143.4 362.3 3149.2 4280.4 3006.5 357.5 4395.9 LPZ010 1324.5 1442.8 621.8 931.8 4310.4 3238.7 3926.9 617.4 4912.5 LPZ011 1740.9 2073.5 1436.2 1075.8 4631.4 5232.7 4563.3 1080.6 5456.6 LPZ012 424.4 217.8 50.1 271.8 2286.7 713.5 1791.4 390.6 3209.9 LPZ013 395.4 123.8 33.1 181.1 3456.8 2121 2898.4 428.9 2673.3 LPZ015 490.7 210.7 60.8 130.8 2889.2 330.5 2123.4 230.2 2680.6 LPZ016 2411.9 710.9 346.5 1201.2 6897.9 4057.6 13340.1 3246.1 16664.2 LPZ017 635 257.4 36.2 247.2 2797.3 1219.1 3508 558.7 3953.8 LPZ018 1405.4 474.9 214.9 3188.7 8143.7 4992.8 12908.9 4208.2 14318.9 LPZ019 3487 975.9 698.4 8916.5 23680.5 15131 31656.3 14191 45343.3 LPZ020 251.9 195.6 0 40.9 1448.5 860.4 1113 305.5 971.2 LPZ022 250.1 112.4 0 133 2085.9 1282.5 2538.5 532 613.2 LPZ023 355.5 122.6 22.9 47.8 224 879.4 1419.1 132.3 605.4 LPZ024 366.5 108.9 45.7 94.8 225.3 723.1 1276.8 81 319.5 LPZ025 705.4 278.6 202.1 716.7 5145.5 4563.4 7215.5 1581.9 4195.8 LPZ026 268 100.6 9 92.1 1164.5 750.4 3973.6 275.5 642.3 LPZ028 386 174.2 96.8 374.9 4188.4 2733.8 7024.6 1186.8 2375.6 LPZ029 221.9 86.8 0 47.8 225.3 264.4 2172 162.4 957 LPZ030 319 166 67.6 146.9 801.6 1385.4 2283.4 145.8 1189.4 LPZ031 2010.6 881.7 538.1 754.3 4625.8 3395 4051.7 1327.9 5202.1 LPZ032 36097.5 35972.1 13659.1 19975.4 45544.5 20035.8 63759.8 31117.4 78268 LPZ033 1813.8 433.6 243.7 1171 7402.4 2278.7 10670.5 2204 5643.8 LPZ034 332.6 97 34.6 181 1097.2 0 2704.1 262.6 3481.4 LPZ035 248 60 0 71.4 1188.8 0 1332.5 153.6 3028.4 LPZ037 375.8 133.8 0 114.6 3024.3 909.1 2350.6 248.2 3546.8 LPZ038 577.7 237 44.3 370.7 4484.6 3572.5 4266 907.9 4571.4 LPZ039 965.6 406.7 361.2 537.9 4020 2304.1 4269.9 816 3717.5 LPZ040 399.9 127.4 0 88.3 1200.5 365 2123.2 244.3 1955.4 LPZ041 318.4 105.1 0 136.6 856.3 716.6 1528.5 245.6 1538.5 LPZ042 289.3 77.6 0.9 189.5 441.5 365.4 1007.7 239.2 1212 LPZ043 417.3 166.7 57.4 158.2 1197.2 1617.9 793.5 569.1 2018.7 LPZ045 754.8 310.3 152 691.5 4810.4 3305.3 4043.7 1476.3 3925.7 LPZ047 270.5 155.4 53.1 39.1 2165.6 579.6 980.9 361.7 1036.3 LPZ049 809.6 381.9 0 461.4 4406.4 2277.4 4764.6 2257.8 5528 LPZ051 333.1 121.5 0 56.6 1597.8 1677.8 891 270.7 1134.6 LPZ053 271 119.7 0 16 1662.4 2447.8 1202.4 201.1 827.1 LPZ054 345.4 131 61.7 79 1181.1 2238.5 1426.5 156.5 627.5 LPZ055 291 78.1 102.9 63.5 551.3 2343.8 1433.5 193.6 814.2 LPZ056 364.6 167.9 83.6 130.3 1816.9 2580.4 2589.4 343 1579.8 LPZ057 250 76 0 11.9 426 457.6 2589.6 113.4 709.8 LPZ058 231.1 40.8 6.2 44.4 454.7 163.4 3403.4 208.5 1300.4 LPZ059 239.2 78.6 0 15.7 189.7 267 3272.7 141 1439.2 LPZ060 235.1 26.7 29.4 35.6 524.8 1238.2 2231.2 182.5 1908.8 LPZ061 402.1 268.4 141.6 254.6 1694.1 3088 2343.5 557.3 4157.7 LPZ062 727.7 146.8 0 203.3 2873.3 2418.9 3109.6 926.6 5812 LPZ063 316.7 108.2 25 190 1837.3 1025.1 2727.2 421.8 4195.9 LPZ065 512.5 59.9 94.9 583.5 5694.4 3741.6 5366 1221.6 3911 LPZ066 622.2 66.8 23.8 405.6 6932.1 3089.5 4804.9 642.2 4079.9 LPZ067 883.7 218.7 0 358.7 4518.2 2342.9 5200.8 1318.4 5539.6 LPZ069 335.6 100.2 0 46.8 0 0.7 1736.5 255.4 2910.4 LPZ070 422.6 143.3 49.6 168.8 1231.5 1170.6 2432.2 262.7 2122.5 LPZ071 356 71.9 0 299.7 2303.6 1909.8 2575.9 447 2827.6 LPZ072 206.5 32.6 0 71.7 0 0 1362 189.6 907 LPZ073 374.2 129.6 32.1 125.8 307.4 691.8 1617.6 282.4 1306.9 LPZ074 434.7 86.5 0 76.6 1671.1 0 1112.5 232.7 663.5 LPZ075 298.5 173.5 0 53.5 4083.2 0 1143.9 113.7 335.1 LPZ076 209.9 83.1 7.2 7.4 2185.9 0 490.5 226.6 362.9 LPZ077 813.4 558.3 0 339.1 3733.4 4279.8 1115.9 671.7 4136.8 LPZ078 532 349.8 0 265.8 4460.1 3290.7 2776.8 686.3 3283.3 LPZ079 347.8 183.6 11.6 53.3 2115.4 1191.7 1451.2 160.5 1233.2 LPZ080 948.1 264.9 178 455.1 4633.9 2869.1 4230.5 1378.5 5566.5 LPZ081 313.7 96.1 100.2 59.7 1161.6 1470.2 1119.7 98.5 710.9 LPZ082 260.9 120.3 18.4 68.3 1734.5 1430.6 1581.6 160.1 379.4 LPZ083 284.9 134.6 12.6 7.8 1067 906.1 1482.7 107.2 790.5 LPZ084 1493.3 437.1 0 788 4497.3 4608.3 5078.9 2267.8 5087.7 LPZ085 468.1 139.4 0 62.1 1618.8 1355.9 4314.9 340.5 2421.5 LPZ086 601.3 91.6 11.9 332.9 3540.3 3354.6 6675.2 781.2 5545 LPZ089 457.1 124.1 26.2 267.7 2378.1 3364.6 3390.2 448.7 2930.7 LPZ090 436.6 50.7 0 149.1 3135.3 2087.8 3090.4 483.8 3408.1 LPZ091 350.2 91 96.2 99.2 1524.3 1976.3 3215 315.9 4532.8 LPZ092 387.6 33.6 0 114.4 2386.7 2600.9 2845.7 274.6 2036.7 LPZ093 195.6 25.8 0 27.1 2343.1 321.7 2875.2 252.7 1428.2 LPZ094 274.8 42.8 0 35.2 886.9 0 2502 152.6 1571 LPZ095 288.6 91.5 0 14.1 3.5 0 2317.2 144.4 1427.4 LPZ096 475.4 138.7 13.1 199.2 1690.8 1415.2 3939.2 207.2 1889.7 LPZ099 428.1 73.8 0 185 2531.8 2596.6 3925.9 399.8 1967.5 LPZ100 474.3 131.1 24.6 266.6 2710.6 2276.7 3358.6 503.5 2245.1 LPZ101 492.1 101 81.9 233 2341.4 2076.1 2199.9 423.1 2022.4 LPZ102 477.3 133.2 0 167 3722.9 1604.4 2432.1 386.5 1199.8 LPZ103 353.5 90.7 0 108.9 4756.8 214.4 1447.5 203.9 760.7 LPZ106 534 199.4 58.6 117.6 3052.4 1259.2 1610 277.6 1224.3 LPZ107 29718.3 56194.4 31132.5 35651.5 44972.5 20589.6 38396.3 32828.7 75965.1 LPZ108 852.4 433.1 161.4 417.4 4354.8 2259.1 3536.9 1168.5 3161.8 LPZ109 554.2 248.6 83.8 254.6 3303.4 2521.1 1972.8 608.5 2858.5 LPZ110 614 203.3 166.1 182.1 3236.7 2792.6 2764.1 455.5 3139.2 LPZ111 349.5 167.7 77.4 82.9 1407 1386.1 1469 200.9 1397.5 LPZ112 497.3 279.2 65.3 242.6 3553.5 2504.1 2454.6 328.3 2182.2 LPZ114 890.2 346.7 0 399.3 4520 3367.9 2902.7 1229.6 3474.1 LPZ115 24782.8 12016.1 1401.9 12188 32718.2 17087 38203.9 17191.1 25318.5 LPZ116 1388.1 392.7 0 884.6 8895.4 3131.2 15554.1 2195.7 5401.6 LPZ117 6228.4 4810.2 389.7 1298.8 4199 2671 5473.5 1488.2 3911 LPZ118 424.5 267.3 39.9 196.2 2507.4 2210.1 2856.3 370.3 2640.4 LPZ119 295.1 183.4 0 59.8 2443.3 1153.2 2040 158.7 1132.1 LPZ120 213.5 88.4 49.2 185.9 1336.6 1390.4 1604.5 186.7 1360.8 LPZ122 317.6 120.3 0 92.1 1390.2 2045.1 1701.2 112.5 1307.5 LPZ124 346.6 173.2 38.9 119.4 2097.9 543.9 2679.2 221 1941.7 LPZ126 436.1 185.4 0 142 1762.2 0 2164 283.2 2343.6 LPZ127 455.7 208.6 0.1 109.8 1091.7 1925.5 3143.4 345.4 2565.8 LPZ128 421 602.3 25.1 651.1 4496.3 2712.3 5456.8 1177.7 3875.7 LPZ131 287.1 401.2 0 58 1931.2 422.4 3510.2 232.2 1275.8 LPZ133 377.8 399.9 141.9 139.5 2396.5 1989.9 4287.5 388.9 1119.6 LPZ136 455.2 191.7 103.3 239.9 2289.7 1775 2586.1 322.4 1429.8 LPZ137 398.1 123.1 0 214.7 2480.2 1118.7 2138.5 411.3 1935.9 LPZ138 1987.8 1102.2 11.9 1112.7 4785.6 4242.8 3044.7 1298.3 2786.7 LPZ140 401.4 205.9 115 316.7 2737.2 1950.6 1491.6 414.2 2031.4 LPZ141 917 621.2 0 726 4938.4 3889.9 3237.4 1109 4165.8 LPZ143 4702.9 1483.9 774.8 6791.2 20187.4 6913.4 23175.5 10795.1 26322.7 LPZ144 529.7 392.6 25.7 303.5 2644.9 1902.4 2380.9 486 2422.7 LPZ145 410.2 206.5 25.4 152.3 1618 2219.1 2012.8 357.8 2494.3 LPZ146 294.2 152.3 0 125.3 1063.5 1142.1 1129 215.1 1927.1 LPZ147 366.5 238 0 246.5 2120.4 956.1 1343.4 260.2 1539.3 LPZ148 390.6 212.9 0 170 2107.1 2195.4 1832.6 1240.9 3839.8 LPZ149 1872.8 1139.7 218.5 1748 6204.2 1641.3 5144.7 3526.5 5193.6 LPZ150 1958.1 1284.1 645.6 10615.2 29419.9 2976.7 52052.2 21478.7 41125.9 LPZ151 3477.3 1936.4 155.4 1423.9 5253.1 1925.1 5434.9 2248.3 5180.5 LPZ152 963.2 481.9 42.2 658.9 4770.8 3607.7 4661.8 1003 4661.9 LPZ153 13685.9 27883.7 11205.9 13827.1 24872.9 15412 26204.7 12163.3 41713.9 LPZ154 621.9 470.5 45.6 381.1 2965 2584.3 2802.2 416.8 2738.4 LPZ155 2004.5 1513.1 388.4 1358.9 4265.3 4159.3 4386.4 1022.6 4543.9 LPZ157 2978.4 1332.8 407.8 1400.6 4650.6 3692.3 4760.8 1195.9 5002.5 LPZ158 12352.4 18933.2 12155.7 9376.4 23120 15280.6 18384 10293.8 50995.4 LPZ162 3778.2 4069.3 426.4 2285.5 6458.4 3004.6 5794.3 4161.4 13171.9 LPZ165 1181 805.1 0 756.4 4641.9 2702.4 5464.6 1470 4822.6 LPZ166 4624.9 5016.4 0 2508.8 9907.8 1939.3 5655.3 2999.9 5667.6 LPZ167 3339 1655.9 319.8 1101.8 4807 4980 4678.8 1968.2 4248.1 LPZ169 787.5 556.1 226.4 461.9 2830.2 2225.4 3549.7 684.4 3249 LPZ170 851.1 501.5 0 589.6 4405.2 4440.6 4652.4 1622.7 4556.9 LPZ171 1325.6 612.2 0 697.6 3647.5 3148.7 3446.8 1053.8 4043.4 LPZ172 748.6 490.4 0 802.4 3953.2 2939.1 3550.9 848.3 3809.5 LPZ173 4460.6 3415.7 1050.1 5769.8 16078.4 6658.8 16861.6 8623.4 21007.1 LPZ174 501.9 308.6 36.2 358.6 3054.1 1731.2 1954.9 862.9 2773.9 LPZ175 1476.5 1057.1 181.6 836.9 3731.4 3120.9 3879.4 755.9 3687.2 LPZ177 302.3 228.3 18.6 107.1 753.6 1430.4 941 165.4 1411.2 LPZ179 616.8 314.9 8 379.4 4544.7 2954.4 3425.3 1361.5 5310.3 LPZ181 1103 430.7 0 671.3 4917.1 3821.3 4976.3 2646.1 5785.8 LPZ182 992.8 435.1 0 468.1 3930.1 4177.6 3287.5 909.9 4820.2 LPZ186 2455.7 1428.7 760 2414.4 9679 4431.1 5537.9 3859.3 5921.7 LPZ189 40770.3 68311.4 75133.7 45673 47303.1 21072.6 66542.7 34849.1 78485.4 LPZ194 612.8 572.1 155.6 376.3 3673.5 2240.2 3365.2 469.5 3608.6 LPZ195 676.9 346.6 32.5 459.9 4278.1 4622.4 4442 1006.8 4754.3 LPZ196 2923.1 1787.1 448.6 1537.1 4490.3 3684 4875.6 1426.9 4447.8 LPZ197 592.3 177.5 343.1 629.4 5825.4 3639.7 4308.7 649.9 2838.2 LPZ198 801.7 295 8.2 511.1 4384 3156.4 4823.8 1125.6 3947.2 LPZ199 402.5 165.1 62.7 265.9 2158.3 2363.7 3531.7 423 2360.1 LPZ201 1338.5 361.2 209.6 1053.7 4997.8 4565.6 5107.6 2350.9 5882.2 LPZ202 8178.9 2795.3 2359.9 12950.9 39890.9 20247.9 62085.4 31826.4 78541.6 LPZ203 1983.5 1083.8 1146.8 2044.1 9173.9 2174.8 11135.5 4073.8 19571.3 LPZ204 38154.8 66241.1 88440.7 45372.1 47166 21054.3 65826.6 33875.6 78581.7 LPZ205 1079.5 521.7 589.1 758.4 4742.5 3837.7 5220.2 1453.2 4888.6 LPZ206 947.6 700.1 505.1 697.8 4089.6 2774.1 5242.9 1190.3 4578.7 LPZ207 39899.6 60813.3 95637.5 45997 47123.6 21073.2 63996.4 35149.4 73080.5 LPZ208 27268.6 27230.4 39428.3 29579 40216.5 20480.2 42465.8 26526.9 76872.4 LPZ210 683.8 538 429.6 439.8 2402.5 3285.4 2419.1 636 3965.6 LPZ211 603.1 530.3 87.2 434.6 3653.3 2234.5 1744.1 359.8 1644.7 LPZ212 1018.4 580.7 155.2 1734.1 9212.3 2338.9 5061.9 2257.3 4303.3 LPZ213 465.6 327.1 33.1 296.6 3012.3 2419.4 2198.4 570.9 2013.9 LPZ214 245.6 267.4 0 160.5 912.5 756.5 880.7 133.9 936.8 LPZ215 981.1 492.8 52.3 828.3 5390.6 4771.4 4868.1 2893.1 15622.6 LPZ216 9410.5 3834.8 1843.2 14492.9 43137.1 21097.9 63778.6 34830.7 78538.8 LPZ217 31119.9 47126.3 30689.1 28515.4 38695.3 19884.5 37913.9 21282.9 69590.2 LPZ219 1300.2 886.5 475.3 946.3 4898.3 4361.6 3705.4 1784.6 5810 LPZ220 5695.5 7233.6 9375 4579.9 6540.8 4340.1 5612.6 2993.6 5852.3 LPZ221 242.6 209.5 0 186.3 2553.4 2132.5 1632.9 258.2 3202.9 LPZ222 186.9 130.5 0 163.4 2138.4 1386.3 1855.4 223.3 2407.6 LPZ223 289.9 168.4 0 164 2019 1582.7 2374.4 250.3 2309.2 LPZ224 308.3 114.3 20.5 333.9 2467.7 2535.2 2722.9 518.9 3054.9 LPZ225 5540.8 1287.2 919.3 7087.6 18926.6 9277.7 20292.9 8705.5 19974.7 LPZ226 179.1 111 9 136.8 1049.8 2071.1 3332.8 463.4 2517.8 LPZ227 243.5 136.2 0 341.4 2502.5 2597.6 4869.5 3226.2 16356.7 LPZ228 470 249.6 0 349.2 4062.6 3388.6 5688.3 2586.2 15112.1 LPZ231 480.4 296.3 87.4 326.6 3832.4 2343.1 5557.3 1542.5 5679.2 LPZ233 468.6 332.9 161.7 350.3 2519.3 1967.1 5201.8 996.1 4833.8 LPZ234 525.8 368.6 287.8 380.3 1626.6 1285.8 4231.8 1235 5329.5 LPZ235 310.7 233.3 0 370.2 1746.3 1474.1 4135.8 541.1 3382.9 LPZ237 683.5 468.8 487.2 506.9 3683.2 2108.7 3966.8 1369 5254.5 LP2239 546 192.6 339.2 331.5 2584.8 2384.8 3215.7 754.4 4041.1 LPZ240 353.7 280.8 163.9 274.8 2281.8 1696.4 2345.8 319.2 2180.8 LP2241 283.3 260.2 0 206.4 2481.1 1787.8 775.1 426 1729.3 LP2242 7478.4 2664.4 1039.1 7024.1 22393.3 11120.5 20928.9 8581.6 22951.9 LPZ243 242.4 167.1 0 157.2 2175.8 182.4 806.9 237.7 977.2 LPZ244 350.3 206.1 0 409.4 4522.7 3997.1 4486.3 1022.8 3387.1 LPZ246 260.9 200.9 0 251.8 1930.9 1335.1 995.1 1033.7 4712.9 LPZ247 438.3 274.4 0 341.4 2994 2325.3 2926.7 1508.7 5494.3 LPZ248 748.4 714.1 291.3 878.4 3814.2 2737.7 3489 1155.1 4689.5 LPZ249 373.3 375.6 0 613.1 4798.1 2088 3560.8 433.5 2486.3 LPZ250 159.5 201.7 0 317.6 2037.8 2085.9 1721.8 220.5 2051.7 LPZ251 141.7 157.9 0 178.9 1377.4 1723.8 1136.8 91 1271.1 LPZ255 220.8 176.1 0 646.5 4160.8 2725.5 5110.3 1217.2 5217.7 LPZ256 94.6 101.7 0 149.5 821 812.6 1989.5 65.4 432.2 LPZ257 147.9 118.4 0 135.1 1206.9 1208.1 2197.2 207.9 745.8 LPZ258 168.3 124 0 174.7 2264 2172.4 2672.8 532.8 2245.2 LPZ260 213.5 172.9 0 141.3 1172 2974.6 4118.3 232.4 1057.4 LPZ261 147.2 78.5 0 126.6 1212.5 2349.9 4604.9 139.4 741.6 LPZ264 318.3 174.1 0 201.7 3104.4 2387.6 5505.8 582.7 3775.1 LPZ265 1566.8 449.9 129.7 646 4992.3 3477.7 5635.5 988.7 4307.2 LPZ266 92.8 287.2 0 132.5 931.4 0 4689 190 726.3 LPZ268 171.3 217.2 0 206.8 2142 2135.8 5156.3 296.8 1912 LPZ269 1530.1 571.5 419.3 2333.1 11130.7 4947.4 13881.5 5155.2 5755.6 LPZ270 162.3 291.4 0 450.4 3822 3736.4 4342.8 978.4 2987 LPZ271 454.6 266.6 45.9 381.8 3194.7 2859.7 3598.7 1277.5 4054 LPZ272 2943.2 763.9 613.2 1451.3 7894.9 2900.8 5222.6 3222.4 16317.5 LPZ273 215.5 178.7 0 112.2 1288.3 908.3 145.5 182.5 544.8 LPZ274 271.5 189.3 0 322.8 3311.7 1141.5 1301.4 620.8 3182.2 LPZ275 174.5 152.8 0 99.6 1052.3 0 0 109.3 887.1 LPZ276 146.8 139 0 129.4 1165.3 123.5 505.4 82.6 461.9 LPZ277 201.8 137.5 1.8 57.1 761.5 931.9 497.5 106.1 1427.3 LPZ278 177.9 152 0 76.6 588.2 1424 311.2 107.3 1178.8 LPZ279 183.3 179.3 0 304.9 2458 1032 524.7 276 1530.9 LPZ280 142.1 125.5 0 125.6 1116.5 623.5 1147.9 125.4 770.5 LPZ281 18 109.8 0 58.9 563.4 850.5 564.6 11.5 317.8 LPZ282 54.3 164.1 48 95.5 1493.6 1874.9 1033.3 54.7 844 LPZ283 1607.8 392.6 48.4 1220 6358.1 2922.6 5552.8 1970.3 5032.3 LPZ284 42.5 119.4 0.3 48 804 748.4 1365.8 66.6 0 LPZ286 34.3 164.5 0 74.8 973.6 1463.4 1205.7 81.2 329.3 LPZ287 118.8 186.4 0 116.4 1573.7 1568.6 2124 252.9 884.4 LPZ288 103.4 162.8 0 78.3 1328.1 2890.4 4192.3 196.9 598.1 LP2289 137.1 87 0 113.6 2096 2101 5147.9 332.3 913.7 LPZ290 1598 425.5 186 1782.8 10543.9 4598.5 16706.4 3923.8 5648.6 LPZ293 155.8 225.7 0 129.9 3228.2 2291.5 4891.2 316.9 2001 LPZ294 65.5 180.6 0 66.6 2237.5 527.7 4397.4 127.5 688.2 LPZ295 119.9 258.8 0 149.7 1964.6 560.6 5062.1 141.5 897.3 LPZ297 333.9 277.6 59.4 830 5667.2 3950.7 5680.5 1452.6 3614 LPZ299 102.6 225 12.2 268.1 734.7 898.2 4025.5 371.2 913 LPZ300 231 271.7 97.1 42.6 113.2 1713.7 3264.5 4295.2 631.1 LPZ301 272.7 378.2 155.6 97.2 77.2 2110.4 1733.8 485.6 1392.8 LPZ303 145.6 184.3 641.8 52.8 1562.5 1072.8 365 55.5 358.3 LPZ304 422.5 346.5 108.2 350.8 3262.7 2215 1102.8 264.1 1534.7 LPZ306 2207.6 484.7 609 3182.2 9671.4 3639.8 17157.3 3556.4 15015.7 LPZ307 1761.1 1119.4 454.7 846.1 4114.9 2673.3 4082.5 554.8 2983.5 LPZ308 153.5 213.5 85.5 113.3 1369.9 1433.3 133.8 123.2 1146 LPZ309 132 192 14.3 49.2 1137.6 1626.7 126.9 85.1 805.1 LPZ310 325.9 353.6 311.3 253.1 4210.4 2703.3 1846.5 513.3 3102.9 LPZ311 176.9 217.7 72.3 245 3652.2 4352.6 4175.7 734.7 4625.7 LPZ312 70.4 177.2 139.4 53.2 2094.2 1461.1 945.5 57 274 LPZ314 247.5 221.2 217.2 66.9 1767 753.8 872.4 93.1 751.2 LPZ315 167.6 220.4 322.5 172.9 3442.4 1985.7 2505.1 698.5 3667.7 LPZ318 912.5 297.8 441.9 957.6 7473.1 2682.6 6826.4 2471.8 5148.9 LPZ320 7.3 212.8 154.8 55.8 1682.1 1548.5 1038.5 111.1 822.5 LPZ321 199 259.6 157.2 96.8 2588.8 2465.4 3436.8 409.2 3989 LPS001 369.9 656.8 1322 4095.5 4733.4 7892.2 3248.2 5064.2 6260.9 LPS003 442.5 392.9 262.1 648.7 2035.7 570.6 4524.4 1332.8 543.9 LPS004 811.4 552.2 515.2 1694.9 2438.2 425.1 1218.8 714.3 86.8 LPS006 271 141.2 200.2 0 662.1 1245.1 261.5 1282.6 405.7 LPS007 212.1 91.8 139 47.7 243.4 0 929.2 568 267.1 LPS008 197.6 196.8 224.7 0 235.1 2144.5 1034.5 985.2 307.3 LPS010 152.7 133.4 253.8 241 299.5 1667.7 242.1 1218.8 1170 LPS011 186 136.1 257.9 816.5 257.4 2372.2 77.7 1377.7 1346.8 LPS012 317.2 238.4 236.4 817.5 1316.7 1626.1 0 1324.1 564.7 LPS013 349.5 403.6 412.9 1840 1582.6 2769.8 215.4 1196 1328.8 LPS014 511.4 1574.1 257.3 4169.4 5035.7 4543.5 1016.4 3744.8 3779.2 LPS015 2495.9 3076.7 1720.8 7899.3 3640.5 7103 1228.1 5376.7 11989 LPS019 1028.2 604.5 239.7 3074 2189.3 2161.1 1239.9 2955 2426.7 LPS020 324.1 222.9 120.5 1214.3 1056.8 676.2 872.7 916.8 1058.1 LPS023 160.9 116.3 50.3 623.9 1984.1 0 640.7 349.7 694.3 LPS024 359.3 324.3 198.9 1596 2789.8 1253.1 1212.2 2644.1 3158.3 LPS025 614.7 616.8 493.6 3452.4 3736.3 3726.5 1796.1 4133.4 5569.5 LPS026 153.7 494.7 0 3053.4 3077.5 2157.2 806.2 3886.5 2133.1 LPS027 132.2 267.1 0 1309.2 2323.4 1330.2 1501.6 1931.3 1355.1 LPS028 214.3 446.5 155.7 2472.5 3336.1 2467.9 2987.9 4507.5 3530.8 LPS029 202.7 384.3 223 2040.4 2060.5 2600.8 7214.8 4150 3867.7 LPS030 113.5 132.5 0 515.6 2793.9 110 2158.7 2684.7 1237 LPS031 168.7 123.5 11 557.6 3086 812.5 6212.6 2534.1 3290.9 LPS032 145.2 160.9 1.7 650.5 2144.2 1070.8 1474.2 2819 3561.4 LPS036 582.6 616.4 200.9 2224.2 2656.4 1723.6 3073.1 1866.1 2955.4 LPS037 502.6 620.4 219 1626.6 3359.2 2705.7 2125.3 2456.9 2004.1 LPS038 962.6 216.5 375.7 0 1256.5 930.9 1492.9 1578.3 1406.9 LPS040 228.9 86.1 158.6 0 256.8 0 245.1 758.3 1.7 LPS041 222.7 149.2 123.3 0 252.4 0 965.1 1065.9 553.4 LPS042 447 661.1 489.9 1672.8 2520.7 492 1046.8 2834.7 1940 LPS043 333.7 264.6 407.3 656.8 1046.4 546.5 1412.3 1097.9 948.4 LPS044 249.8 277.8 652 1327.3 907.5 1110.5 1892.3 1353.4 1674.8 LPS045 250.7 107.2 177.9 302.6 231.9 944.7 1881.7 0 485.4 LPS046 232.4 285.6 224.5 1302.1 1872.6 1104.6 2610.7 1128 1744.2 LPS047 2649.2 6969.7 2792.6 14436.1 10141 5428.8 4057.3 2999.2 13647.7 LPS050 2428 7502 3442.1 12204.8 7385.4 9850.6 3395 8052.4 14726 LPS051 478.2 219.7 175.1 1861 2222.1 1876.9 1922.5 800.9 2052.9 LPS052 328.2 196.2 138.3 984.6 1458.3 1324.4 1585 1112.9 1726 LPS053 264.2 111 0 1370.2 1524.9 1548 2692.1 2941.5 3096.1 LPS054 285.4 231.1 8.5 1370.4 2138 1273.8 2930.8 2762.2 2604.2 LPS055 1192.2 1118.8 180.5 5840.8 4203.1 3690.8 1865.1 3205.9 4824.3 LPS056 1541.6 2959.9 1354 9519.2 8084 6331.3 1820.6 5902.8 11668.9 LPS057 214.5 406.9 0 2028.8 2744.4 756.5 2136.1 1844.8 2454.6 LPS058 277.4 244.5 70.8 1623.9 1826.1 1626.5 2708 2514.4 4077 LPS059 115.3 135.2 1.5 996.9 1194.7 1022.8 1723.1 1265.3 2390.7 LPS060 163.3 268.5 0 1866.5 1707.3 1953.7 2184.7 2422.6 2990 LPS061 222.7 255.6 53.4 1448.5 2146.6 1600.7 1956.2 2511.7 3332.5 LPS062 136 228.5 99.1 627.1 863.2 467.7 1610.3 2304.9 2842.2 LPS063 299.7 251.8 226.3 796.8 1427 1771.5 1174.1 930 1433.9 LPS064 3079.8 4014.9 3039.3 7349.2 10807.8 7372.1 10515.8 4426.8 13038.7 LPS065 434.1 644.6 313.7 1147 1456.3 3097.5 2632.9 3695.2 1575.1 LPS066 214.7 171.7 134.2 0 69.3 249.7 726.1 871.9 586.6 LPS067 706.6 686.2 488.8 3013.5 2498.9 4522.1 4844.3 4782.1 5775 LPS069 199.6 172.1 123.9 75.4 19.4 269 874.1 854.6 0 LPS070 143.6 186.9 117.9 289.4 685.5 222.6 528.3 582.6 322.6 LPS071 180.4 170.2 187.2 157.2 183 882.3 326.7 508.4 310.2 LPS072 235.9 170.8 169.6 449.9 290.5 777.5 456.3 283.3 479.2 LPS073 900.4 1318.7 629.3 3416.1 4420.4 3894 4010.1 3367.3 4106.8 LPS074 27858.2 33812.3 32162.2 44513.2 111430.2 87262.8 47575.8 18233.4 66903.6 LPS075 2119.6 3296.9 1347.3 9540.3 5518.1 6367.8 10437.2 4054.1 9821.4 LPS076 347.6 336.3 218.5 2343.7 2326.5 1569 2415.2 1580.7 1990.4 LPS077 568.1 612.4 550.1 2908.9 1727.9 1660.2 2164.5 1798.6 2588.1 LPS078 3174.9 3137.6 3222.6 7616.1 6945.1 9024.5 11397.6 7995.6 26362.3 LPS079 1049 1066.4 302.2 4400.8 4126.8 4404.7 8203.7 4645.6 9377 LPS080 21208.7 28180.7 9065.4 39068.1 63741.1 37523.8 35948.5 11444.8 57266.6 LPS081 27381 33419.5 10292.3 43529.2 63629.5 28119 42128.9 15984.6 62043.4 LPS083 711.4 825 64.8 3306.9 3733.1 1898.2 3688.2 3407.5 3959.9 LPS084 216.4 211.2 21 1350.5 1724.2 1394.5 1965.6 2089.4 3604.5 LPS086 185.6 214.1 0 1808.2 1476 2915.6 2342.5 932.2 3339.1 LPS087 3404.7 5840.3 4144.1 12101.2 12860.9 14601.5 24953 5018.8 19643.5 LPS088 165.2 224.6 62.5 1497.7 2813.8 1593.8 3740.9 4017.3 3934.9 LPS089 223.8 213.7 0 1318.9 1574.5 2141.4 2443.5 3799.4 4185.6 LPS090 398.7 693.2 142.2 2593.7 2695.2 3465 3755.9 3638.7 3587.8 LPS091 391.2 700.6 270.7 1469.2 2092.2 3047.2 3754.2 3524.1 3149.7 LPS092 286.1 376.1 254.9 235.2 433.1 1353.8 1747.8 2658.1 3246.6 LPS093 185.6 273.7 126.3 114.7 296.8 254.7 412.1 1076.9 483.7 LPS094 232.8 261.8 151.7 274.3 249.9 641.1 891 577 1102.1 LPS095 199.3 191.7 91.4 25.7 169.9 433.7 813.4 1394.3 807.7 LPS096 97.9 139.2 63.2 0 162.4 159.2 504.6 752.3 150.6 LPZ001 150.8 207.8 257.7 202.6 485.5 704.2 555.2 1924.3 528.5 LPZ002 154.6 167.7 323.6 937.4 717.4 755.6 1068.8 1089.8 1107.7 LPZ003 1348.1 1781.1 609.3 5019 4261.6 6148.5 5600.4 3419.6 4858.4 LPZ004 2798.4 5533.1 2921.8 10703.8 8020.5 9958.4 10424.8 4135.9 14742.8 LPZ005 8403.4 19547.7 8589.6 32699.4 31426.9 21580.2 19437.9 8059.6 14660.3 LPZ006 360.6 2106.1 1173.8 7812.9 7966 11310.2 10516.8 4661.6 4618.2 LPZ007 272.5 409.9 454.7 2038.3 1107.6 2043.7 2073.5 2249.9 2751.3 LPZ008 207.7 258.2 212 1939.1 1482.6 1926.1 2243.5 1036 3324.9 LPZ009 745.1 496.5 633.9 4276.8 7474.5 9130.4 9814 5721.3 14116.8 LPZ010 893.7 1464.1 326.6 3759.5 4034 4261 4672.2 4388.6 9625.3 LPZ011 1829.5 2488.7 350.4 5922.7 4285.4 2984.2 5579.8 4236 9972.7 LPZ012 227.8 289.9 28.6 1885.9 1660.5 843.6 1913 1434.5 2785.5 LPZ013 247.7 213.8 84 1553 2015.3 1547.3 2567.6 3196.5 4347.7 LPZ015 261.7 315.8 55.6 2254.3 2409.8 2190.1 2562.4 1291.2 3237.3 LPZ016 2750.3 2151.8 3003.8 8316.2 6689.1 9147.4 9444.8 3349.6 8167.8 LPZ017 582.2 701.3 227.4 3830.1 3650.3 3828.2 4552.3 4574.5 4476.8 LPZ018 2867.6 6184.2 2746.8 10513.4 9443.1 10880.7 12748.3 5491.2 19422 LPZ019 7551.3 15875.3 9232.8 20440.4 22870.4 31026.1 33842 12823.6 38075.4 LPZ020 293.1 896.2 143.1 1661.8 2519.9 2987.1 4132.4 4022 3145.1 LPZ022 213.3 493.5 173.5 82.5 467.8 1355.1 1041.1 1481.9 1035.5 LPZ023 191.2 616.7 118.1 78.4 184 955.2 516.3 1254.6 574.4 LPZ024 142.6 321.7 118 0 81.9 826.8 195.8 763.9 491.7 LPZ025 661.9 764.4 536.9 1885.6 1791.8 3200.6 3017.8 4028.4 3897.8 LPZ026 194.7 221 150.4 1102 513.6 1714.4 1291.2 1625.6 980.7 LPZ028 301.3 424.2 210.9 1467.7 1654.3 2848.4 1937.1 4092.7 3086.2 LPZ029 132 151 124.8 319.5 644.1 478.7 452.4 564.8 709.3 LPZ030 305.3 616.6 170.6 2800.7 2572 2485.4 1960.4 1425.4 2381.1 LPZ031 1945 3098.6 3636.7 12422.3 7673.2 8643.5 11552.7 4295.4 4600 LPZ032 26761.5 33518.4 33623.2 45482.1 106536.1 114284.5 46968.1 16371.6 42282.1 LPZ033 2068.3 1779.5 6651.8 7887.8 5249.8 9848.7 7632.1 4500.7 7710 LPZ034 221.4 363.3 216.3 2503 1949.2 1674 2078.9 1428.3 1774.9 LPZ035 110.7 156.8 85.2 836.6 512.1 1355.7 1217.4 294 1525.3 LPZ037 229.5 206.2 186.5 1422.1 1962.7 2742.9 3023 614.1 2895.5 LPZ038 605.7 722.8 352.5 3551.8 3072.2 3614.2 3266 2494.6 4039.7 LPZ039 366.4 964.6 177.1 3755.2 2744.9 4599.4 3589.7 2407.8 3925.2 LPZ040 185.6 278.3 100.8 2131.2 1321 1479.7 1654.6 773.7 2087 LPZ041 119.9 120.8 5 1199.8 1220.8 1090 1431.2 630 2206.1 LPZ042 61.9 121.9 2.6 731.4 1897.5 986.4 1366.1 458.4 2625 LPZ043 357.9 355.1 0 3236.5 2746.8 2960.1 3138.2 911.1 3345.6 LPZ045 738.6 1003.7 565.3 3866 3168.1 6406.2 4028.7 4526.2 4573.4 LPZ047 139.7 133.1 0 481.3 857.9 831.8 954.1 1926.3 3129.6 LPZ049 1396.5 2125.5 1496.9 4514.4 3629.8 5942.4 6898.6 3610.7 9214.2 LPZ051 264.6 610.7 205.1 826.3 1819.9 2243.8 3000.9 3400.7 2810.3 LPZ053 174.9 827.9 152 161.2 563.8 1149.7 1277.9 1243 1383.5 LPZ054 205.7 951 128.4 976.1 1901.4 1626.6 1265.8 1437.6 1328.8 LPZ055 135.2 389 168.5 420.2 524.3 1650.6 848.4 1200.6 914.2 LPZ056 190.2 323.3 229.5 439.9 664.2 1613.1 1014.2 1727.3 1126.2 LPZ057 87 199.9 180.1 2154 863.7 3059.1 2994.9 2696.3 2990 LPZ058 139.3 227.5 55.3 1695.1 902.5 2426.6 2195.6 1925.4 1598.2 LPZ059 173.4 289.6 189.4 891.7 759.7 1835.3 1332.9 962.5 1286.6 LPZ060 301 464.8 114.1 2296.5 2860.4 2786.6 2974.4 1629.6 2301.9 LPZ061 1212.2 1711.1 794.4 7468.5 5190.1 7957.5 5857.5 2819.8 3922.3 LPZ062 2078.9 3648.3 2499.3 14932.7 7691.9 9294.1 9213.3 3077.8 4850.3 LPZ063 641.6 984 2114.2 5547.2 3688.6 6191.3 4844.5 4058.7 4162.4 LPZ065 520.2 443.3 332.3 2720.4 1816 2848.5 3320.4 4501 3948.4 LPZ066 663.7 357 356.6 3458.6 2196.3 3567.6 3081.4 1325 2388 LPZ067 1469.5 2582.6 3152.4 8674.9 8080.1 9367.6 8556.2 4135 7240 LPZ069 211.4 283.6 0 1921.6 913.1 1567.5 1866.5 1043.3 2269.1 LPZ070 229.6 334.9 2.8 1659.3 1254.6 1681.6 1883.6 1360.7 2442 LPZ071 332.3 633 15.7 3126 2729.9 3290.2 2998 2011.7 2744.8 LPZ072 39 38.9 0 581.2 1401.7 1307.1 1089.7 710.4 1866.3 LPZ073 131.3 250.9 4.4 1176.4 2903.2 2356.7 1718.3 985.9 2700 LPZ074 92 116.5 0 355.6 1643 1041.3 1027.4 1042 2553.6 LPZ075 195.9 0 0 0 474.7 488.1 847.6 1488.4 2755 LPZ076 232.4 134.5 730.7 0 268.9 0 568.3 1007.4 2624.4 LPZ077 1143.1 2350.7 187.5 6551.1 5960.9 5520.2 7189.6 3483.6 7931.5 LPZ078 851.5 1021 873.3 3011.7 4619.7 5273.6 6408.3 3950.1 8831 LPZ079 281.6 779.7 315.9 1296.6 2065 2090.8 2287 2271.9 1824.5 LPZ080 1653.5 3124.5 3778.7 8321.1 7987.7 10470.3 8085.7 4454.9 8067.4 LPZ081 92.6 292.7 161.8 746.8 903 1558.5 1410.8 746.1 1230 LPZ082 123.2 430.5 240.1 1907.9 1283.9 2707.5 1801.7 948.9 1634 LPZ083 77.8 183.2 120.2 4010 2437.2 4390.6 3649.7 3983.1 7032.5 LPZ084 1272.3 956.1 1297.2 5881 4505.3 10642.2 9798.6 3938.5 8446.3 LPZ085 321 466.2 457.6 4324.8 4008.4 6890.5 4599.7 5672 10082.2 LPZ086 1529.6 3587.2 3236.8 10729.4 10010.2 10739.2 10634.9 4674.2 11980.7 LPZ089 614.3 500.4 601.9 4196.2 3890.5 4405.8 4331.9 3066.9 3960.3 LPZ090 643.8 1177.5 1315 4017.8 4456.2 6394.5 4824.4 3000.1 3538.3 LPZ091 1006.7 1754.2 4090 11615.8 11728.5 16837.8 14461.9 5005.1 14726.4 LPZ092 419 528.6 1336.8 4158.4 3568.1 8393.4 8192 4638.4 3939.4 LPZ093 162.2 453 90.9 1436.5 899.2 2218.6 1798 741.8 1789.8 LPZ094 123.1 197.1 0 1355.7 779.4 1360.5 1713.8 794.4 1597.8 LPZ095 94 130.6 3.5 1099.9 737.4 558.3 1473.4 871.4 1809.3 LPZ096 314.3 327.5 22.1 2574.2 1620.9 2748.1 2533.9 1858.4 2979.9 LPZ099 231.7 359.8 6.2 1456.9 1335.7 1672.4 2170.8 2160.8 2755.8 LPZ100 375.6 650.4 136.7 2834 2518.6 3053.2 3159.8 2841.2 3453.7 LPZ101 217.1 425.7 11.8 2769.3 3312.6 2556.3 5262.5 1501.2 2947.3 LPZ102 294.3 289.2 55 1803.6 2764.5 2532.5 2613.4 2447.6 3377.6 LPZ103 224.2 92.8 17 989 1850.6 1643.7 2303.4 3729.5 4029.5 LPZ106 328.4 158 57.5 912.5 1239.6 1214.5 1669.6 2062.3 4720 LPZ107 25137.4 28865.6 19438.9 43316.7 75674.1 58296.4 45927 3332.1 64391.6 LPZ108 1132.8 2084.1 330.6 4299.2 3629.8 4480 6406.5 3235.2 9993.6 LPZ109 548.8 1356.1 417.7 3237.9 2581.9 3177.5 3977.1 1874.2 4107.7 LPZ110 379.7 1132.3 220 3941.9 2720.7 4103.6 3563 2245.7 3031 LPZ111 157.5 383.2 200.3 1188.3 749.8 1675.7 1926.1 1685.1 1655.3 LPZ112 332.1 522.9 220.7 2950.9 2223.9 2257.5 2856.4 2632.8 2711.8 LPZ114 590 151.8 217 4659.6 3824.5 6848.2 7228.9 2831.3 9446.9 LPZ115 6268.6 3368.3 8724.6 25695 19481.5 33011.8 32267.9 2903.4 52760.4 LPZ116 891.2 766.7 1481 6455.1 3684.7 5597.5 8456.7 1682.9 10139.2 LPZ117 529.8 826.6 126.5 3706.8 2663 2897.5 3996.1 1807.3 2635.2 LPZ118 437.8 628.1 122.1 3903.5 3245.2 3529.9 3500.1 3506.1 2867.9 LPZ119 331.3 755.1 83.1 3761.2 4072.6 4024.9 3449.9 3742.2 2533.9 LPZ120 196.5 796 181.4 4219.4 3297.7 4322 4539.3 2622.7 3763.6 LPZ122 154.4 208.4 158 2332.3 1468 3044 2838.8 2112.5 2323.6 LPZ124 172.9 420.1 136.6 2319.5 1539.3 1722.7 2453.6 3109.1 2297 LPZ126 446.5 604.2 187.3 3859.4 3120.8 2816.9 3324 2181.4 3237.7 LPZ127 439.3 499.4 53.5 3781.8 3083.3 3769.8 3848.4 1729.6 2902.2 LPZ128 1022.3 1063.8 447.9 3904.9 3753.5 5579.6 4534.2 2133.1 5843.6 LPZ131 249.6 373.8 27.3 2170.1 1551.6 1611.4 3077.3 2946 2409.5 LPZ133 325.3 328.7 42 2706.9 2358.1 2131.3 3257.2 2598.7 2144.3 LPZ136 263.6 384.1 0.9 2377.3 3386.4 2044.7 2726.4 2398.2 2570.6 LPZ137 351.6 402.6 91.9 3435.9 3122.8 2406.9 3054.7 3392.1 3216.6 LPZ138 1047.7 936 530.3 3920 3091.2 2507.9 4249.5 3109.9 4758.4 LPZ140 379.9 456.6 105.6 1936.7 3674 2908.4 3678.1 3663.2 4481.7 LPZ141 715.4 1341.8 536.4 4712.8 3615.6 3746 4815.5 4533 8229.3 LPZ143 3251.1 4810.8 2848.5 9675.1 8289.6 9486.6 12270.6 4424.9 28251.9 LPZ144 386.2 1338.3 294.1 3433.8 3015.7 3333.7 4618.9 3699.7 6825.1 LPZ145 277.5 1064 536.5 3072.3 1155.6 2977.7 3188.2 7388.2 3013.6 LPZ146 128.5 362.8 139.5 2224.4 1364 2125.6 2428.3 3465.8 2351.1 LPZ147 266.5 544.2 241.3 3318.1 2241.9 2162.6 2908.8 3252.6 2525.6 LPZ148 725.8 725.5 290.2 5002.2 3682.1 6542.3 6927.9 2903.1 10410.9 LPZ149 2492.7 3102.7 1052.7 8980.9 7669.2 7185.3 9921 7375.4 12848.8 LP2150 5257.3 7586.3 3221.3 15156.2 12776.8 7401.2 14686.5 1570 20635.9 LPZ151 1384 2049.2 1128.3 5576.7 3853.7 3780.3 7227.3 3206.7 7702.7 LPZ152 975.8 1300.2 546.4 5096.1 4344.9 4302.5 4960.3 1566.2 4223.4 LPZ153 13378.6 22235.1 10073.1 33495.1 50802.7 28291.5 29602.5 3224.1 40232.7 LPZ154 663.3 738 430.3 3847.3 3880.2 6253.9 4707.7 5341.9 3393.8 LPZ155 1121.7 612.7 748 3902.3 4289 4676 5328 6964.2 5353.5 LPZ157 1157 957.9 762.2 4218.8 4266.6 3777.2 4583.7 5017.5 4396.6 LPZ158 13278.5 17582.9 9898.7 32456.5 42805.1 24534.6 31442.6 4152.5 36015.3 LPZ162 3407.5 5943.1 5126.6 10324 11710.9 7727.6 7572.2 2312.6 9394.1 LPZ165 1419.4 1550 693 4519.9 3692.9 6102.1 5617.1 3061.3 4706.4 LPZ166 2642.1 3504.9 1288.6 7134.8 6994.5 5170.5 10453.3 4932.9 15993.7 LPZ167 980.4 1518.1 564.7 4902.6 4803.7 3343.6 4869.5 4421.2 6582.2 LPZ169 621.8 792.7 93.4 3562 4266.3 1794.9 3496.3 4238 3143.7 LPZ170 1009.3 1405.3 695.2 5793.7 4469.2 4952.7 6239.7 3914.1 6782.3 LPZ171 1064.6 968.6 1050.7 4110.8 3903.7 5467.2 5659 3164.1 6795.3 LPZ172 1233.3 1113.3 401.8 4207.9 7922 8417.5 10419.2 7983.5 15065.2 LPZ173 3333.8 5236.8 6072 9552 8880 8653.2 13461.6 2408.7 25719.1 LPZ174 486.7 1263.6 143.3 3318.2 2027 3632.3 4245.3 6086.4 8781.2 LPZ175 594.7 1487 520.8 3051.5 3610.8 1846.4 3642.9 4048.5 4329.5 LPZ177 167.3 481.7 234.5 1955.9 1139.2 907.8 1452.9 4462.5 1762 LPZ179 1231.4 1583.2 835.8 5029.7 3654 3871.7 3248.8 2741.9 2853.2 LPZ181 2259.5 4282.9 774.8 8911.6 8788.6 6833.3 5825.5 3398 3922.8 LPZ182 1194.7 2289.6 673.8 8220.3 5601.2 5869.3 5572 1808.4 7607.9 LPZ186 6255.6 6866.5 6841.1 24861.8 16742.4 23502.2 17304.6 1750.4 27328.9 LPZ189 27581.8 34787.4 31889 45673.7 106688 95043.9 46998.5 3548.1 67943.9 LPZ194 673.9 904.9 528.7 4064.5 3530.2 3160.6 5095.2 4531.1 3492.1 LPZ195 898.9 889.6 675.7 5606.3 4004.3 5230.5 5721.4 4908.1 4940.9 LPZ196 1073.7 1935.1 558.2 3941.1 3672.6 3681.6 5977.8 3059.7 5050.3 LPZ197 488.4 522.5 386.6 2613.4 1684.4 3541.4 3507.4 4980.8 2763.1 LPZ198 575.6 733.1 299.6 4152.3 2411 2916.8 3872.4 6530.7 2931.8 LPZ199 390.7 442.5 222.4 2704 2176.2 3159.7 2957.1 5357.6 2983.4 LPZ201 2255.7 3876.6 347.6 10222.9 6897.7 6294.3 7324.7 3549 3857 LPZ202 25939.2 34864.8 28937 43395.9 85136 71116.8 38688.5 2676.2 14449.1 LPZ203 4917.3 4458.1 2603.2 10348.3 6571.1 8325.7 11034 5453.1 6598 LPZ204 27637.2 31853.9 22475.7 43983.9 89520.6 46504.2 44333.5 7963.8 58054.1 LPZ205 1184 1084.2 327.7 3901.8 4402 3125 4598.2 4501.5 4714.2 LPZ206 1309.8 1509.5 367.3 3961.5 3983.3 3079.6 4196.2 3641.4 3247.6 LPZ207 27569.1 30446.2 27094.6 45211.6 90196.1 58153.8 46488.1 9879.3 64709.2 LPZ208 22722 28208.9 30019.5 40314 74354.1 37339 33919.6 3989.8 56683.6 LPZ210 1015.1 1789.8 196.8 5006.3 6159.7 3067.8 4944 4347.5 6846.4 LPZ211 277 327.3 519.4 2540.7 1788.5 3048.6 1110.8 2577.4 3506.6 LPZ212 1095.5 865.5 930.6 4051.6 4491.6 2857.6 6348.1 4078.7 16174.9 LPZ213 376.6 539.3 339.6 2503.1 1540.8 1333.7 3082.2 6024.3 4163.1 LPZ214 137.5 306.1 190.1 1915.6 866.1 1280.9 1240.8 6372.4 2111.8 LPZ215 3519.4 3120.9 3300.9 16939.5 15489.1 10948.6 12502 3515.1 16236.4 LPZ216 26761.3 34226.4 28477.9 42274.8 67630.3 41420.3 36331.4 1433.8 17109.4 LPZ217 15563.1 21739.4 12259 26824.9 34266.3 9429.4 28156.7 1339.2 41568.4 LPZ219 2404.9 3704.5 2084 8575.1 8573.2 6237 11757 3255.4 13484.9 LPZ220 3617.2 6998.6 7957.2 13960 9400.8 3432.3 10805.5 3551.7 12867.4 LPZ221 482.6 478 1405.6 3296.5 3079.8 3312.5 4143 4429.4 3267.3 LPZ222 318.3 524.5 406.6 3011.7 2309 3811.8 4199.4 5319.9 3292.3 LP2223 367.7 633.2 437.7 2752 1970.3 3767.4 2514.2 3672.3 2163.1 LP2224 337.9 1030.2 317.2 2701.2 1798.7 7393.6 2962.5 7876 3353.7 LPZ225 3288.1 3590.3 2912 8781.8 7400.7 2317.1 11370.2 3186.6 22244.6 LP2226 325.6 361.4 128 2467 1263.7 10190.1 1636.3 3808.8 1166.9 LP2227 2175.5 6375.8 458.8 6316.2 6632.1 9013.9 6614.3 3901.2 2588.2 LPZ228 2638 3701.7 500.1 5991 4819.8 5747.8 7102.5 3182.5 4185.4 LPZ231 1631.7 2090.4 260.7 5811.5 4749 2530.8 5033.1 3191.3 3810.5 LPZ233 1596.6 1223 296.6 4355.6 3818.9 2988.8 3749 3324.7 3855.2 LPZ234 1734.3 1479.2 219.6 5058.5 4614.4 2034.9 4992.1 1979.9 5152 LPZ235 626 635.9 185.9 4066.8 3255.5 4035.7 3368.7 2880.8 3643.5 LPZ237 1677.8 1385.3 847.4 4536 3702.8 2943.6 4886.5 2307.8 5136.8 LPZ239 673.4 407.8 245.8 2981.9 3199.2 2781.6 4235.6 2342.6 4863.7 LPZ240 387 247.4 254.8 2075.8 2317.4 2894 2721.7 2054.5 4317.9 LPZ241 258.3 337.8 110.9 3503.1 3829.6 22593.5 1889.5 1315.9 8842.6 LPZ242 4315.9 2560.2 22.5 12510.2 12605.3 2345.2 16197.1 1114.8 39684.4 LPZ243 174.8 274.4 23.1 2193.6 346.2 2395.7 1366.5 2568.2 3103.8 LPZ244 417.5 269.1 3458.5 3545.1 1831 2834.7 1781.1 7589.2 5662.7 LPZ246 889.5 918.7 2302.7 3920.3 3228.9 4409.3 3536 1258.8 2645.3 LPZ247 1203 2088.9 46.7 4956.9 4253.2 3559.7 4570.8 1702.6 3350.6 LPZ248 973.3 1338.1 86.2 3977.4 4392.8 2033 4094.9 2062.6 4279.9 LPZ249 361.3 324.3 206.7 1948.6 1764.3 2098.7 2762.1 1643 2862.4 LPZ250 267.6 487.8 118.7 2690.4 1522 2989 3121 1928.9 1809.7 LPZ251 245 279.7 168.5 1409.9 555 9932.3 2552.5 3050.3 1371.1 LPZ255 2021.3 2488.5 334.1 7289.5 7773.7 1269.1 9020.3 4492.4 10134.6 LPZ256 67.1 72.2 296.7 412.2 229.8 922.7 570.3 5040.6 1263.9 LPZ257 167.3 146.9 482.6 521.8 102.5 2699.4 599.8 2362.1 1553.4 LPZ258 247.5 236.5 69.7 1429.8 974.6 971.9 2668.7 2990.8 3445.9 LPZ260 98.1 188.8 463.1 377.1 337.2 880 808.9 1552 1084.6 LPZ261 73.7 20.5 386.3 1143.6 50.3 4443.8 903.3 2309 1341.6 LPZ264 482.7 528.5 1151.3 3659.7 1972.6 9892.4 2831.4 1584.4 3208 LPZ265 534.6 647 457.6 4473 4089.9 656 5899.6 2972.2 5649.8 LPZ266 16.9 61.2 1062.3 876.1 1183.4 1624.3 663.3 622.4 1609.7 LPZ268 143.7 142.9 255 1983.5 810.3 9809.8 1293.5 1757.3 2177 LPZ269 1747.5 1271.8 1636.4 7364.1 5108.7 6903.3 11401.2 3774.1 14643.8 LPZ270 373.8 77.9 1901.2 5015 3872.6 3485.9 5621.1 4284.8 5197.8 LPZ271 705 473.1 315.6 2863.8 2625.4 2120.5 4048.2 1424.9 4291.1 LPZ272 2809.4 2423.8 300 5056.2 2463 3534.6 3496.9 609.7 3996.8 LPZ273 219.8 162.4 242.4 90.2 130.2 3251.3 166 1193.5 1836.5 LPZ274 489.2 367.7 284.6 991 1104.2 395.9 2282.3 747.2 4535.7 LPZ275 93.5 140 156.8 433.3 217.1 0 837.9 1056.2 2352.3 LPZ276 53 109.7 106.8 0 0 0 369.1 1303.6 1897.6 LPZ277 105.9 159.4 68.7 0 0 230.1 236.2 706.1 1337.9 LPZ278 65.7 48.3 156.4 0 0 1788.2 406.3 1442.3 1564.1 LPZ279 214.7 212.2 75.3 1356.3 790.8 5213.3 1722.4 496 2426.2 LPZ280 156.2 247.7 1553.6 3510.5 2515.1 289.7 3182.1 612.7 3123.7 LPZ281 34.6 92.1 73 0 0 1648.3 565.5 522.8 543.3 LPZ282 200.9 187.7 218.1 536.6 205.9 7324.8 1145.4 2977.5 957.5 LPZ283 1833.5 1880 775.8 3303.2 5113.2 527.6 5281.2 324.5 3806.8 LPZ284 215 0.6 148.8 0 29.6 848 408.4 148.8 1294.3 LPZ286 219.7 21.9 13.6 234.9 78.6 2703.6 198.4 947.9 1233.2 LPZ287 112.6 126.2 36.5 1170.3 459.9 306.3 157.5 1173.7 1821.3 LPZ288 23.6 62.2 37.5 774.1 639.3 792.6 715.8 1422.6 1169 LPZ289 44.1 13.1 107.4 323.4 95 9975.4 889.5 2240.6 1894.9 LPZ290 1324.7 1572.4 1838 6941.6 4616.9 2995.3 11538.8 407.1 12699.5 LP2293 45.2 246.3 145.6 2785.5 1923.1 0 3185.6 0 3550.4 LPZ294 0 19.8 0 403.3 280.4 89.1 785.9 551.6 1378.4 LPZ295 40 24.5 0 169.9 26 1324.9 1058 848.8 1406.5 LPZ297 385.6 127.6 17.4 1238.5 941.5 0 2680.9 2084.3 4065.3 LPZ299 106.9 36.2 0 0 926.2 0 1060.7 1854.9 1575.9 LPZ300 73.2 93.2 80.2 0 1143.6 1053.3 1034.5 2304.9 2120.8 LPZ301 126.2 0 5.8 161.2 1245.7 516.3 1612 761.3 2826.1 LPZ303 83.1 488.8 98.6 0 73.5 979.9 538.7 510.7 1214.7 LPZ304 213.7 498.3 137.6 1028.6 0 5405.8 860 2212.1 2201 LPZ306 1439.4 1735.3 2526.4 4212.7 3140.4 2090.1 8128.5 4874.6 14413.9 LPZ307 534.1 710.5 515.5 2785.3 734 0 2137.3 1692.8 3540.3 LPZ308 116 304.4 137.7 151.8 28.2 364.2 621.1 631.4 851.2 LPZ309 80.1 137.2 92.7 0 0 2648.1 529.4 192.6 735 LPZ310 430.8 584.9 799.2 1887.2 1887.1 6161.2 2974.3 3575 2426.6 LPZ311 690.5 995.7 208.4 3725.8 2843.8 0 4329.3 3620.8 4170.1 LPZ312 109.8 334.2 34 72.5 4.5 1489.3 140.1 431.6 744.8 LPZ314 26.5 200.1 3.3 181.2 0 1231.5 331.5 440.1 804.6 LPZ315 305.8 211.3 147.5 811.2 1008.1 3797 2231.8 1438.8 1881.8 LPZ318 621.3 715 337 3488.2 2480.9 781.9 4326.1 4824.7 6969.2 LPZ320 214.8 92.2 9.9 1170.9 54.5 4501.5 1122.3 1169.4 1696.6 LPZ321 880.4 755.2 1899.3 6166.2 5105.8 411.6 6096.5 4853.6 6057.2

TABLE III LSC Media Multiplication Media Maturation Media Components (mg/L) 16 1133 923 NH4NO3 603.8 603.8 200.0 KNO3 909.9 909.9 454.95 KH2PO4 136.1 136.1 136.1 Ca(NO3)2.4H2O 236.2 236.2 59.05 MgSO4.7H2O 246.5 246.5 246.5 Mg(NO3)2.6H2O 256.5 256.5 256.5 MgCl2.6 H2O 101.7 101.7 101.7 Kl 4.15 4.15 4.15 H3BO3 15.5 15.5 7.75 MnSO4.H2O 10.5 10.5 10.5 ZnSO4.7 H2O 14.4 14.4 14.4 NaMoO4.2 H2O 0.125 0.125 0.125 CuSO4.5 H2O 0.125 0.125 0.125 CoCl2.6 H2O 0.125 0.125 0.125 FeSo4.7 H2O 6.95 6.95 41.7 Na2EDTA 9.33 9.33 55.9 Sucrose 30,000 30,000 Maltose 20,000 myo-Inositol 1,000 1,000 100 Casamino acids 500 500 500 L-Glutamine 450 450 450 Thiamine.HCl 1.0 1.0 1.0 Pyridoxine.HCl 0.5 0.5 0.5 Nicotinic acid 0.5 0.5 0.5 Glycine 2.0 2.0 2.0 2,4-D 1.1 1.1 BAP 0.45 0.45 Kinetin 0.43 0.43 Polyethylene glycol 130,000 ABA 5.2 5.2 Gelrite 2,500* 2,500* 2,500 pH 5.7 5.7 5.7
*For solid media only

TABLE IV Description of clones used in hybridization study shown in FIG. 9. ID with Clone # Homology Description Arabidopsis Score E-value PC04B12 Lotan et al.. 1998. Arabidopsis Required for embryo 79% ID, 171 7e−44 (‘LEC’ in LEAFY COTYLEDON 1 is maturation & Cotyledon 93% + ve figure) sufficient to Induce Embryo identity. Ectopic over 96aa Development in Vegetative expression induces Cells. Cell 93: 1195-1205 embryonic differentiation traits in transgenic seedlings. ST17B05 PICLKE/CDH3, Chromatin The pickle mutants 50% ID, 166 1e−41 (‘PLK’ in remodelling. Ogas et al. 1999. express embryonic traits 74% + ve figure) PICKLE is a CHD3 chromatin- after germination. over 155aa remodeling factor that Represses lec regulates the transition from expression embryonic to vegetative development in Arabidopsis. PNAS. 96(24): 13839-13844 PC08C06 FIE, fertilization-independent Fie mutants initiate 61% ID 92 8e−20 (‘FIE’ in endosperm protein. Ohad, et al endosperm development 75% + ve figure.) 1999. Mutations in FIE, a WD w/o fertilization over 67aa polycomb group gene, allow endosperm development without fertilization. Plant Cell 11 (3), 407-416

TABLE V 488 499 499 500 500 (Liquid (Liquid (Liquid (Liquid (Liquid) Cell Line Suspen- Suspen- Suspen- Suspen- Suspen- (Stage of sion sion sion sion sion Develop- Culture: Culture: Culture: Culture: Culture: 260 260 ment) Stage 1-3) Stage 1-3) Stage 1-3) Stage 1-3) Stage 1-3 (Stage 7) (Stage 9) Media 1133 16 1133 16 1133 Maturation maturation # Embyros 118.5 187.75 Na na ‘FIE’ ++++ + +++ +++ +++ +++ +++ ‘LEC’ ++ ++ + + ‘PKL’ ++++ + +++ +++ +++ +++
Table 5. Table of data from Fig. 9a & b. Numbers (488, 499, 500, 260) refer to different cell lines Liquid Suspension Culture contains early-stage embryos (stage 1-3) Embryo number refers to the number of late-stage (stage 8-9) embryos
# produced by each cell line when matured according to Pullman and Webb (1994). + = low expression, ++ medium level of mRNA, +++ = high level of mRNA, ++++ = very high level of mRNA. Circles # around certain + signs, see text. Na = not applicable. Levels of mRNA are relative and refer to the experiment depicted in Fig. 9a & b.

Claims

1. A relational database comprising the data of Table I.

2. A method of staging embryos comprising:

a) providing at least one embryo;
b) detecting the expression in the embryo of at least one RNA transcript of Table I; and
c) correlating the expression of said transcript to one or more embryonic stages.

3. The method of claim 2 wherein at least two RNA transcripts are detected or determined and correlated to one or more embryonic stages.

4. The method of claim 2 wherein expression of the at least one RNA transcript is analyzed by hybridization with at least one probe of Table I.

5. The method of claim 2 wherein expression of the at least one RNA transcript is analyzed by hybridization with a variant of at least one probe of Table I.

6. The method of claim 5 wherein said variant hybridizes to at least one probe of Table I under conditions of high stringency.

7. The method of claim 5 wherein said variant hybridizes to at least one probe of Table I under conditions of moderate stringency.

8. The method of claim 2 wherein expression of at least one RNA transcript is detected or determined by at least one member of the group consisting of PCR, Northern Analysis, and in situ hybridization.

9. The method of claim 2 wherein expression of said at least two RNA transcripts are detected by a DNA array.

10. A database comprising a multiplicity of nucleotide sequences shown in any one of Table I, including variants thereof, wherein said variants hybridize under conditions of high stringency to either strand of a denatured, double-stranded DNA comprising any of SEQ ID NOS: 1-327.

11. The database of claim 10 wherein said variants hybridize under conditions of moderate stringency.

12. A DNA array comprising a multiplicity of nucleotide sequences shown in Table I, including variants thereof, wherein said variants hybridize under conditions of high stringency to either strand of a denatured, double-stranded DNA comprising any of SEQ ID NOS: 1-327.

13. The DNA array of claim 12 wherein said variants hybridize under conditions of moderate stringency.

14. A method for staging plant embryos comprising:

a) selecting total RNA from a multiplicity of embryos of known developmental age;
b) correlating the embryonic expression pattern to the developmental age to develop a relational database;
c) determining levels of expression from embryos of unknown developmental age by hybridization to a DNA array comprising a multiplicity of the nucleotide sequences shown in any one of SEQ ID NOS: 1-327;
d) correlating the expression pattern from step 3 to the relational database to determine developmental stage for the unknown embryo.

15. The method of claim 14 wherein the embryos of step 1) are zygotic embryos.

16. The method of claim 14 further comprising the step of altering the embryonic growth conditions to approximate the expression pattern of zygotic embryos.

17. An isolated nucleic acid variant of the nucleotide sequence shown in any one of SEQ ID NOS: 1-334, wherein said variant hybridizes under conditions of moderate stringency to either strand of a denatured, double-stranded DNA comprising any of SEQ ID NOS: 1-334.

18. An isolated polypeptide encoded by a nucleic acid molecule of claim 17.

19. An isolated nucleic acid encoding the polypeptide of claim 18.

20. Antibodies that specifically bind to the peptide of claim 18.

21. The antibodies of claim 20, wherein said antibodies are monoclonal.

22. A recombinant vector that directs the expression of a nucleic acid of claim 17.

23. A host cell transformed with the vector of claim 22.

24. The host cell of claim 23, wherein the host is a somatic pine embryo.

25. A method for staging plant embryos comprising:

a) selecting total RNA from at least one embryo of known developmental age;
b) determining the level of expression of a multiplicity of genes which hybridize to one or more of SEQ ID NOS: 1-327;
c) correlating the known developmental ages of the embryos from step 1) with the profile of expression measured in step 2);
d) applying the correlation of step 3) to a sample of embryo RNA from embryos to be staged; and
e) determining the embryo stage.

26. The method of claim 25, wherein the measurement of gene expression is by RT-PCR.

27. The method of claim 25, wherein the measurement of gene expression is by nucleic acid hybridization.

28. The method of claim 25, wherein the measurement of gene expression is by determining the level of protein expression.

29. The method of claim 28, wherein protein expression is measured by antibody binding.

30. A method for selecting advantageous plant clones comprising:

a) selecting one or more samples of embryonic RNA from multiple clones of plants;
b) determining that at least one sampled clone has an advantageous characteristic;
c) comparing the embryonic levels of expression of genes which hybridize to one or more of SEQ ID NOS: 1-327 in samples from the advantageous clone with expression levels in at least one clone that does not show the advantageous characteristic; and
d) selecting additional clones which show an embryonic gene expression pattern more similar to that of the advantageous clone than to the pattern of at least one clone that does not show the advantageous characteristic.

31. Method of claim 30 where the clones to be sampled or compared are from about the same developmental age.

32. Method of claim 31 where the development age is visually detected.

33. The method of claim 30, wherein the measurement of gene expression is by RT-PCR.

34. The method of claim 30, wherein the measurement of gene expression is by nucleic acid hybridization.

35. The method of claim 30, wherein the measurement of gene expression is by determining the level of protein expression.

36. The method of claim 35, wherein protein expression is measured by antibody binding.

37. A method of determining embryo fitness comprising:

a) creating a relational database with RNA expression values for genes listed in Table I for embryos of known developmental stages;
b) isolating total RNA from embryos of unknown stage development;
c) measuring expression levels of genes identified in Table I from the solated total RNA; and
d) correlating the database of step 1) with the pattern of expression determined in steps 2) and 3) to assess proper embryo development.

38. The method of claim 37, wherein the measurement of gene expression is by RT-PCR.

39. The method of claim 37, wherein the measurement of gene expression is by nucleic acid hybridization.

40. The method of claim 37, wherein the measurement of gene expression is by determining the level of protein expression.

41. The method of claim 40, wherein protein expression is measured by antibody binding.

42. A method for selecting advantageous growth conditions for embryo development comprising:

a) determining RNA expression profiles for staged embryos under control culture conditions;
b) altering culture conditions;
c) determining RNA expression profiles for staged embryos under altered culture conditions; and
d) correlating culture change to developmental effect in embryo.

43. The method of claim 42, wherein conditions are selected which produce RNA expression profiles most closely approximating late-stage embryo profiles.

44. The method of claim 42, wherein the culture conditions are altered by operatively linking one or more stage-specific embryo promoter(s) to one or more sense or antisense nucleic acid molecules.

45. The method of claim 42, wherein the culture conditions are altered by operatively linking one more stage-specific embryo promoter(s) selected from SEQ ID NOS: 328-334 to one or more sense or antisense nucleic acid molecules.

46. The method of claim 42, wherein the change in expression profiles is correlated by a relational database.

47. A recombinant nucleic acid molecule encoding a product during embryo development comprising:

a) a first nucleic acid sequence which is the LP2-3 promoter; and
b) a second nucleic acid sequence encoding a product,
wherein the first nucleic acid is operatively linked to the second nucleic acid molecule whereby its expression is directed by the promoter sequence.

48. The recombinant nucleic acid molecule of claim 47 wherein the second nucleic acid sequence encodes for GFP, or a variant of GFP.

49. The recombinant nucleic acid molecule of claim 48 wherein the second nucleic acid sequence is linked to one or more additional nucleic acid molecules.

50. The recombinant nucleic acid molecule of claim 49 wherein the additional molecule encodes a protein product normally expressed, by a developing embryo at a known stage.

51. The recombinant nucleic acid molecule of claim 47 wherein the second nucleic acid sequence encodes an embryo-derived molecule.

52. The recombinant nucleic acid molecule of claim 51 embryo-derived molecule is stage-specific.

53. A plant cell comprising the recombinant nucleic acid molecule of claim 47.

54. A method for producing a protein product during embryo development comprising:

a) operatively linking one more stage-specific embryo promoter(s) to one or more nucleic acid molecules that encode a protein product,
b) delivering construct to developing embryos.

55. The method of claim 54 wherein the operatively linked nucleic acid molecule is a reporter or indicator gene.

56. The method of claim 54 wherein the operatively linked nucleic acid molecule is GFP, or a variant of GFP

57. The method of claim 54 wherein at least one stage-specific promoter is selected from SEQ ID NOS: 328-334.

58. A method for staging embryos comprising:

a) providing one or more stage-specific embryo promoter(s) operatively linked to one or more nucleic acid molecules that encode a protein product to developing embryos,
b) monitoring expression of the protein product as the embryo matures through stage in which promoter functions.

59. The method of claim 58 wherein the operatively linked nucleic acid molecule is a reporter or indicator gene.

60. The method of claim 58 wherein the operatively linked nucleic acid molecule is GFP, or a variant of GFP.

61. The method of claim 58 wherein at least one stage-specific promoter is selected from SEQ ID NOS: 328-334.

Patent History
Publication number: 20050125161
Type: Application
Filed: Sep 2, 2003
Publication Date: Jun 9, 2005
Applicant:
Inventors: John Cairney (Decatur, GA), Nanfei Xu (Wildwood, MO)
Application Number: 10/651,991
Classifications
Current U.S. Class: 702/20.000