Physical and mechanical properties of fabrics by hydroentangling
Methods for reducing the surface pilling tendency and improving abrasion resistance of a pillable fabric are disclosed. The methods include providing a pillable fabric including fibrils extending from the surfaces thereof, supporting the fabric, and exposing the fabric to a hydroentanglement process that imparts an energy in the range of at least about 4000 to 5000 KJoules/Kg of fabric using pressures of 200 bars or greater. The presence of fibrils on the fabric surface are reduced to an amount wherein the pilling production on the fabric is less than about 20% after 5,000 cycles of abrasion on a Martindale device according to ASTM D4970 testing standard and the fabric remaining mass is at least about 80% to 90% after 50,000 cycles of abrasion on a Martindale device according to ASTM D4966 testing standard.
Latest Patents:
This application claims the benefit of U.S. Provisional Patent Application Ser. No. 60/529,490, filed Dec. 15, 2003; the disclosure of which is incorporated herein by reference in its entirety.
TECHNICAL FIELDThe subject matter disclosed herein relates generally to fabrics having antipilling properties. More particularly, the present subject matter relates to methods for reducing the pilling tendency and improving abrasion resistance of a pillable fabric through the use of a hydroentanglement process.
BACKGROUND ARTCotton and cotton blend woven and knitted fabrics have a great tendency to be subjected to pilling or generate so-called “pills”. Many other staple fibers and blends thereof when formed into woven and knitted fabrics also have a tendency to pill. Pills are small bunches or balls of interlaced fluff caused by small bundles of entangled fibers clinging to the cloth surface by one or more surface fibrils. Pilling is typically preceded by fuzz formation and when the material is subject to physical stimulation such as friction, the fuzz or fluff clumps together and is gathered by the fibrils. This undesirable pilling effect occurs with the lapse of time and wear and the tendency to pill generally lowers the commercial value of the fabrics.
Given the undesirable nature of a fabric that is subject to pilling, several industrial means have previously been employed in order to prevent such generation of pills. For example, U.S. Pat. No. 3,975,486 to Sekiguchi et al. is directed to a process for producing an antipilling acrylic fiber wherein the steps of coagulation, stretching and relaxing heat treatment are conducted under particular conditions. Likewise, U.S. Pat. No. 4,205,037 to Fujimatsu is directed to acrylic synthetic fibers highly resistant to pilling and having good dyeability produced by specifying the composition of the acrylic polymer, the condition of the primary stretching step, the internal water content of the water-swollen gel fibers, and the conditions of the steps of the drying-compacting, secondary stretching and relaxing heat treatment. Additionally, U.S. Pat. No. 6,051,034 to Caldwell is directed to a method for reducing pilling of cellulosic towels wherein a composition comprising an acidic agent, and optionally a fabric softener, is applied to a pillable cellulosic towel, preferably to the face yarns of the towel. The towel is then heated for a time and under conditions sufficient to effect a controlled degradation of the cellulosic fibers, thereby reducing pilling.
While these prior art antipilling techniques have included various methods of reducing the pilling tendency of a fabric using chemical or other process modifications, the need exists for a simpler and more effective finishing method for producing fabrics that have a lower tendency to pill as well as having improved abrasion resistance.
As is well known to those skilled in the art, hydroentanglement or “spun lacing” is a process used for mechanically bonding a web of loose fibers to form fabrics directly from fibers. This class of fabric typically belongs to the nonwovens family of engineered fabrics. In conventional hydroentangling processes, webs of nonwoven fibers are treated with high pressure fluid jets while supported on apertured patterning screens. Typically, the patterning screen is provided on a drum or continuous planar conveyor. The underlying mechanism in hydroentanglement is the subjecting of the fibers to a non-uniform pressure field created by successive banks of fine, closely spaced, high-velocity water jets. The impact of the water jets with the fibers, while they are in contact with their neighboring fibers, displaces and rotates the fibers with respect to their neighbors and entangles these fibers with the neighboring fibers. During these relative displacements, some of the fibers twist around others and/or interlock with the neighboring fibers to form a strong structure due to fiber-to-fiber frictional forces. The final outcome is a highly compressed and uniform fabric composed of entangled fibers that is characterized by relatively high strength, flexibility, and conformability.
In the past, various efforts have been directed to improving the dimensional stability and physical properties of woven and knitted fabrics through the finishing step of hydroentanglement. In such applications, warp and filling fibers in fabrics are hydroentangled at crossover points to effect enhancement in fabric cover.
For example, U.S. Pat. No. 4,695,500 to Dyer et al. is directed to a loosely constructed knit or woven fabric that is dimensionally stabilized by causing staple length textile fibers to be entangled about the intersections of the yarns comprising the fabric. The stabilized fabric is formed by covering one or both sides of the loosely constructed base fabric with a light web of the staple length fibers, and subjecting the composite material to hydraulic entanglement while supported on a porous forming belt configured to direct and concentrate the staple length fibers at the intersections of the yarns comprising the base fabric.
U.S. Pat. No. 5,136,761 to Sternlieb et al. is directed to an apparatus and method for enhancement of woven and knit fabrics through the use of dynamic fluids which entangle and bloom fabric yarns. The process includes a two stage enhancement process wherein top and bottoms sides of the fabric are respectively supported and impacted with a fluid curtain included high pressure jet streams. The controlled process energies and use of the support members having open areas which are aligned in offset relation to the process line produces fabrics having a uniformed finish and improved characteristics including edge fray, drape, stability, abrasion resistance, fabric weight and thickness.
U.S. Pat. No. 5,761,778 to Fleissner is directed to a method for hydrodynamic entanglement or needling, preferably for binder-free compaction, of fibers of a fiber web, especially a nonwoven fiber web, composed of natural or synthetic fibers of any type, wherein the fibers of the fiber web are entangled and compacted with one another by a plurality of water streams or jets applied at high pressure, with a large number of the water streams or jets striking the fiber web not only in succession but also several times on alternate sides of the web for optimum twisting of the fibers on the top and bottom on the fiber web.
Finally, U.S. Pat. No. 6,557,223 to Greenway et al. is directed to improvements in hydroenhancement efficiency obtained by operating a manifold in relative movement to fabric transported under the manifold so as to deliver a low energy to the fabric per pass in multiple passes on the fabric. This process results in greater enhancement efficiency and reduction in wasted energy, and also improves fabric coverage and reduces fabric shrinkage.
While these prior art hydroentanglement finishing processes have been directed to improving dimensional stability and physical properties such as edge fray and drape and abrasion resistance, there remains a need to better reduce the pilling tendency and better improve abrasion resistance of a pillable fabric utilizing a physical finishing method that can be employed based upon specific process parameters for generation of an antipilling fabric.
SUMMARYIn accordance with one embodiment of the present subject matter, a method for reducing the surface pilling tendency and also improving abrasion resistance of a pillable fabric is disclosed.
The method includes the step of providing a pillable fabric, the fabric having a top surface, a bottom surface, and side edges and comprising yarns which intersect at crossover points to define interstitial open areas in the fabric and further comprising fibrils extending from at least one of the top and bottom surfaces thereof. The fabric may comprise a woven fabric or a knitted fabric and the fabric yarns may include cotton, polyester, nylon, or blends thereof. The fabric is supported on a support member wherein the support member may comprise a belt, a drum, or a belt/drum combination and may include a pattern of closely spaced fluid pervious open areas to affect fluid passage therethrough. At least one of the surfaces is exposed to a hydroentanglement process to cause entanglement of the fibrils into the interstitial open areas of the fabric. The hydroentanglement process preferably includes imparting an energy in the range of at least about 4000 to 5000 KJoules/Kg of fabric using pressures of 200 bars or greater and includes the use of banks of one or more high pressure water jet manifolds that apply high pressure water jets to the fabric top and/or bottom surfaces.
The method further includes reducing the presence of the fibrils on the at least one fabric surface to an amount wherein the pilling production on the fabric is less than about 20% after 5,000 cycles of abrasion on a Martindale device according to ASTM D4970 testing standard. The fibrils are also reduced to an amount wherein the remaining mass of the fabric is at least about 80% to 90% after 50,000 cycles of abrasion on a Martindale device according to ASTM D4966 testing standard.
It is therefore an object of the present subject matter to provide a method for reducing the pilling tendency and improving abrasion resistance of a pillable fabric utilizing a finishing hydrointanglement process that results in the removal or entanglement of pilling-causing fibrils such that the tendency of the fabric to pill is greatly reduced, as gauged by pilling production calculated or remaining mass calculated after a set number of abrasion test cycles.
An object of the present subject matter having been stated hereinabove, and which is addressed in whole or in part by the present subject matter, other objects will become evident as the description proceeds when taken in connection with the accompanying drawings as best described hereinbelow.
BRIEF DESCRIPTION OF THE DRAWINGS
The subject matter disclosed herein relates to methods for reducing the pilling tendency and improving abrasion resistance of a pillable fabric through the use of a hydroentanglement process. Hydroentanglement finishing at specified process parameters results in the complete removal or entanglement of surface yarn fibrils into the body of the fabric thereby improving the fabric strength while making the surface more smooth. Since the fibrils are no longer available on the fabric surface, they cannot entangle other fibers to form fluff balls or pills. The present subject matter is directed to the use of a high energy hydroentanglement process that has lead to significantly improved physical and mechanical properties of fabrics.
Referring to
Yarns 12, 14 of fabric 10 may be selected from cotton, polyester, nylon, and other yarn compositions known to those of skill in the art. Additionally, blends of various fiber types may be used to form the fabric yarns.
Referring now to
The amount of energy imparted to the fabric during hydroentanglement can be very significant. Energy calculation is based on Bernoulli equation that ignores viscous losses throughout the system. Having the hydroentangling manifold's pressure as P1, the water jet velocity can be calculated as:
V1={square root}{square root over (2P1/ρ)}
Where ρ=998.2 kg/m3 (the density of water at room temperature), P1 is the pressure in Pa, and V1 is in m/s. (Note that 1 bar is equal to 105 Pa.)
Rate of energy transferred by the water jet is calculated as follows:
Where d is the diameter of the orifice capillary section in millimeters (assumed in a Hyrdocalculator to be 0.127 mm), Cd is the discharge coefficient, and E is energy rate in J/s.
Specific energy is calculated based on the following formula:
Where M is the mass flow rate of the fabric in Kg/s and is calculated as follows
-
- M=Samplewidth[m]×Basisweight[kg/m2]×Beltspeed[m/s]
Therefore, SE will be obtained in Joules per kg of fabric.
With reference to
Since knitted fabric has a tendency to shrink during exposure to water processes, it is further envisioned by the present subject matter that the side edges of the knitted fabric may be restrained during the hydroentanglement process in order to reduce the potential for shrinkage during processing (not shown). The restraining of the fabric edges may be accomplished by clamps along the conveyor system or by other mechanisms known to those of skill in the art.
Hydroentanglement system 30 further includes preferably two banks 36A, 36B of one or more high pressure water jet manifolds 38 oriented in a perpendicular direction relative to movement of fabric 10. Manifolds 38 may typically be spaced several inches apart and include a plurality of closely aligned and spaced nozzles 20. Hydroentanglement system 40 also preferably includes two banks 46A, 46B of one or more high pressure water jet manifolds 38. It is envisioned that banks 36A, 36B (
Each manifold 38 may comprise approximately 1600 to 2000 fluid nozzle orifices 20 per meter, wherein each nozzle 20 has an orifice diameter of approximately 80-300 microns, preferable 120 microns. Water pressure in each manifold 36 may be between 10 bars and 1000 bars depending on the amount of nozzle orifices 20 present and the size of the particular orifices. For optimum results in pilling reduction and abrasion resistance, it has been discovered that hydroentanglement systems 30 and 40 should each impart an energy in the range of at least about 4000 to 5000 KJoules/Kg of fabric using pressures of 200 bars or greater during processing of fabric 10.
EXAMPLES Test Methods and Standards Reporting Experiments were conducted on sample fabrics using hydroentanglement system 40 (see
The samples exposed to hydroentangling were subjected to the hydroentangling process as described hereinabove. The hydroentangling process system comprised one bank of three (3) water jet manifolds that enhanced the top surface (face) of the fabric and one bank of two (2) water jet manifolds that enhanced the bottom surface (back) of the fabric. The manifold pressures of the systems were as shown in Table 1.
The determination of the resistance to the formation of pills, abrasion resistance, and other related surface changes on textile fabrics is governed by testing standards ASTM D4966 for abrasion resistance and ASTM D4970 for pilling. The testing procedures utilize the Martindale tester and is generally applicable to all types of fabrics.
In general, under the ASTM D4966 test, abrasion resistance is measured by subjecting the specimen to rubbing motion in the form of a geometric figure under known conditions of pressure and abrasive action. Resistance to abrasion is evaluated by the determination of mass loss as the difference between the masses before and after abrasion (expressed as a percentage of the before abrasion mass) and an end point when a hole appears in the fabric sample.
In general, under the ASTM D4970 test, resistance to pill formation testing involves mounting the fabric on the Martindale tester wherein the face of the test specimen is rubbed against the face of the same mounted fabric in a geometric pattern. The test specimen is compared with visual standards of actual fabrics or photographs of fabrics showing a range of pilling resistance in order to gauge the degree of fabric pilling or surface appearance change. The observed resistance to pilling is reported using an arbitrary scale from 5 (no pilling) to 1 (very severe pilling) as described in more detail hereinbelow.
Example I The Effect of the Tightness Factor Referring to
Effect on Thickness
Effect on Surface Properties
As shown pictorially in
Effect on Abrasion Resistance (Mass Loss)
With reference for
Specifically,
Specifically,
The markedly improved abrasion resistance of fabric samples exposed to the hydroentangling process of the present invention can be attributed to the entanglement or removal of the surface fibrils. This effect leads to a smoother fabric surface and a reduction in mass loss of the fabric during abrasion testing.
Effect on Pilling
Tests were conducted to determine the resistance of the fabric samples to form pills on the fabric surface. The Martindale tester was used to run through approximately 6000 cycles, wherein the samples were intermittingly inspected and a standard pilling rating was assigned to the samples according to the rating scale shown in Table 3.
With reference to
As shown in
Referring now to
Effect on 100% Cotton Fabrics
Specifically,
Effect on 50/50 Cotton/Polyester Fabrics
Specifically,
Effect on 100% Polyester Fabrics
Specifically,
The present subject matter reflects a use of specific ranges of hydroentanglement energies to produce a fabric containing unexpectedly and surprisingly advantageous properties of reduced surface pilling and improved abrasion resistance.
It will be understood that various details of the invention may be changed without departing from the scope of the invention. Furthermore, the foregoing description is for the purpose of illustration only, and not for the purpose of limitation, as the invention is defined by the claims as set forth hereinafter.
Claims
1. A method for reducing the surface pilling tendency and improving abrasion resistance of a pillable fabric, the method comprising the steps of:
- (a) providing a pillable fabric having a top surface, a bottom surface, and side edges and comprising yarns which intersect at crossover points to define interstitial open areas in the fabric, and the fabric further comprising fibrils extending from at least one of the top and bottom surfaces thereof;
- (b) supporting the fabric on a support member;
- (c) exposing at least one of the surfaces to a hydroentanglement process to cause entanglement of the fibrils into the interstitial open areas of the fabric, wherein the hydroentanglement process includes imparting an energy in the range of at least about 4000 to 5000 KJoules/Kg of fabric using pressures of 200 bars or greater; and
- (d) reducing the presence of the fibrils on the at least one fabric surface to an amount wherein the pilling production on the fabric is less than about 20% after 5,000 cycles of abrasion on a Martindale device according to ASTM D4970 testing standard and the fabric remaining mass is at least about 80% to 90% after 50,000 cycles of abrasion on a Martindale device according to ASTM D4966 testing standard.
2. The method of claim 1 wherein the fabric is a woven fabric.
3. The method of claim 1 wherein the fabric is a knitted fabric.
4. The method of claim 3 further comprising the step of restraining the side edges of the knitted fabric to prevent shrinkage during the hydroentanglement process.
5. The method of claim 1 wherein the fabric yarns are selected from the group consisting of cotton, polyester, nylon, and blends thereof.
6. The method of claim 1 wherein the support member is selected from the group consisting of a belt, a drum, and a belt/drum combination.
7. The method of claim 6 wherein the support member includes a pattern of closely spaced fluid pervious open areas to affect fluid passage through the support member.
8. The method of claim 1 wherein both surfaces of the fabric are exposed to the hydroentanglement process.
9. The method of claim 1 wherein the hydroentanglement process is accomplished by the use of a hydroentanglement system comprising at least one bank of one or more high pressure water jet manifolds.
10. The method of claim 9 wherein the hydroentanglement system comprises two banks of high pressure water jet manifolds that apply high pressure water jets to the fabric top and bottom surfaces.
11. The method of claim 10 wherein the hydroentanglement system comprises one bank of three manifolds that apply high pressure water jets to the fabric top surface and one bank of two manifolds that apply high pressure water jets to the fabric bottom surface.
12. The method of claim 9 wherein the water pressure of the one or more manifolds is between 10 bars and 1000 bars.
13. The method of claim 12 wherein each of the one or more manifolds further comprises approximately 1600 to 2000 fluid jet orifices per meter, wherein each orifice has a diameter of approximately 80 to 300 microns.
14. A fabric produced according to the method of claim 1.
15. A method for reducing the surface pilling tendency and improving abrasion resistance of a pillable cotton knitted fabric, the method comprising the steps of:
- (a) providing a pillable cotton knitted fabric having a top surface, a bottom surface, and side edges and comprising yarns which intersect at crossover points to define interstitial open areas in the fabric, and the fabric further comprising fibrils extending from at least one of the top and bottom surface thereof;
- (b) supporting the fabric on a support member;
- (c) restraining the side edges of the knitted fabric;
- (d) exposing at least one of the surfaces to a hydroentanglement process system comprising at least one bank of one or more high pressure water jet manifolds to cause entanglement of the fibrils into the interstitial open areas of the fabric, wherein the hydroentanglement process system imparts an energy in the range of at least about 4000 to 5000 KJoules/Kg of fabric using pressures of 200 bars or greater; and
- (e) reducing the presence of the fibrils on the at least one fabric surface to an amount wherein the pilling production on the fabric is less than about 20% after 5,000 cycles of abrasion on a Martindale device according to ASTM D4970 testing standard and the fabric remaining mass is at least about 80% to 90% after 50,000 cycles of abrasion on a Martindale device according to ASTM D4966 testing standard.
16. The method of claim 15 wherein the support member is selected from the group consisting of a belt, a drum, and a belt/drum combination.
17. The method of claim 16 wherein the support member includes a pattern of closely spaced fluid pervious open areas to affect fluid passage through the support member.
18. The method of claim 15 wherein both surfaces of the fabric are exposed to the hydroentanglement process system.
19. The method of claim 15 wherein the hydroentanglement system comprises two banks of high pressure water jet manifolds that apply high pressure water jets to the fabric top and bottom surfaces.
20. The method of claim 19 wherein the hydroentanglement system comprises one bank of three manifolds that apply high pressure water jets to the fabric top surface and one bank of two manifolds that apply high pressure water jets to the fabric bottom surface.
21. The method of claim 15 wherein the water pressure of the one or more manifolds is between 10 bars and 1000 bars.
22. The method of claim 22 wherein each of the one or more manifolds further comprises approximately 1600 to 2000 fluid jet orifices per meter, wherein each orifice has a diameter of approximately 80 to 300 microns.
23. A fabric produced according to the method of claim 15.
24. A pill and abrasion resistant fabric comprising:
- (a) a top surface, a bottom surface, and side edges;
- (b) multiple yarns intersecting at crossover points to define interstitial open areas in the fabric;
- (c) fibrils extending from at least one of the top and bottom surfaces which have been entangled into the interstitial open areas of the fabric by exposure of at least one of the top and bottom surfaces to a hydroentanglement process including imparting an energy in the range of at least about 4000 to 5000 KJoules/Kg of fabric using pressures of 200 bars or greater; and
- (d) wherein the pill and abrasion resistant fabric possesses a reduced pill production potential of less than about 20% after 5,000 cycles of abrasion on a Martindale device according to ASTM D4970 testing standard and possesses an increased abrasion resistance potential wherein the fabric remaining mass is at least about 80% to 90% after 50,000 cycles of abrasion on a Martindale device according to ASTM D4966 testing standard.
25. The fabric of claim 24 wherein the fabric is a woven fabric.
26. The fabric of claim 24 wherein the fabric is a knitted fabric.
27. The fabric of claim 24 wherein the fabric yarns are selected from the group consisting of cotton, polyester, nylon, and blends thereof.
28. The fabric of claim 24 wherein both surfaces of the fabric have been exposed to the hydroentanglement process.
29. A pill and abrasion resistant cotton knitted fabric comprising:
- (a) a top surface, a bottom surface, and side edges;
- (b) multiple yarns intersecting at crossover points to define interstitial open areas in the fabric;
- (c) fibrils extending from at least one of the top and bottom surfaces which have been entangled into the interstitial open areas of the fabric by exposure of at least one of the top and bottom surfaces to a hydroentanglement process including imparting an energy in the range of at least about 4000 to 5000 KJoules/Kg of fabric using pressures of 200 bars or greater; and (d) wherein the pill and abrasion resistant fabric possesses a reduced pill production potential of less than about 20% after 5,000 cycles of abrasion on a Martindale device according to ASTM D4970 testing standard and possesses an increased abrasion resistance potential wherein the fabric remaining mass is at least about 80% to 90% after 50,000 cycles of abrasion on a Martindale device according to ASTM D4966 testing standard.
30. The fabric of claim 29 wherein both surfaces of the cotton knitted fabric have been exposed to the hydroentanglement process.
Type: Application
Filed: Dec 15, 2004
Publication Date: Jun 16, 2005
Applicant:
Inventor: Behnam Pourdeyhimi (Cary, NC)
Application Number: 11/013,299