Wireless control for creation of, and command response to, standard freight shipment messages
A freight management arrangement includes a monitor system that communicates over wireless with a large number of freight assets by land and with smaller number of users each associated with a fleet of the freight assets. The monitor system polls sensed ambient data in the freight assets on the basis of requests from the users. The requests may be stored as data in the monitor system or occur on a real-time basis.
This application claims the benefit of the following copending applications and their filing dates: U.S. 60/480,980 filed 24 May 2003; U.S. 60/582,258 file 25 Jun. 2003; and U.S. 60/482,889 file 26 Jun. 2003.
FIELD OF THE INVENTIONThis invention relates to remote control of freight assets during transit or other states.
BACKGROUND OF THE INVENTIONCondition of freight assets such as refrigeration temperatures, locations, etc, have in the past been detected by sensors, and various alarms and signals alerted attendants and managers of adverse conditions. Such systems have been cumbersome and presented difficulties for remote managers and attendants because of limitations of the communication systems.
SUMMARY OF THE INVENTIONAn embodiment of the invention involves transmitting sensed conditions of freight assets via one format suitable for the sensors to a monitoring system, which sends the data to a user utilizing another, user compatible, format.
Another embodiment involves the monitoring system comparing the sensed conditions with requirements from a user and sending the discrepancy to the user.
Another embodiment involves the monitoring system commanding devices of the freight asset to correct discrepancies.
These and other aspects of the invention are pointed out in the claims. Objects and advantages of the invention will become evident from the following detailed description when read in light of the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The wireless monitor system MS1 communicates over various communication links such as satellite, cell phone, radio, etc. with fleets of freight assets FA1, FA2, . . . FAn. The number of freight assets FA1, FA2, . . . FAn may for example be one thousand for each user US1, US2, . . . USn, for a total one hundred thousand freight assets.
The wireless monitoring system MS1 responds to signals from the users US1, US2, . . . USn, and in turn sends signals to the users, and also communicates with the freight assets FA1, FA2, . . . FAn to furnish wireless monitoring and tracking of the freight assets. The wireless monitoring system MS1 provides services to the multiple users simultaneously and retains database information regarding a fleet of freight assets associated with each of the users. The wireless monitoring system MS1 serves as a communications platform for sending polling inquires to the individual freight assets FA1, FA2, FAn over the multiple communication networks, such as satellite, cellular, and radio frequency networks. The wireless monitoring system MS1 communicates via EDI standards in multiple communication platforms to a collection of freight assets FA1, FA2, . . . FAn for multiple system users. The wireless monitoring system MS1 makes use of the economy of scale for supporting different communications networks in different system users for similar application.
The communications may be carried out over multiple frequencies, using time division multiplexing where desired. The monitoring system MS1 maintains a database which determines the particular ones of the freight assets FA1, FA2, . . . FAn that are owned or belong to or are associated with the particular users US1, US2, . . . USn. The system MS1 also maintains information concerning the particular event or condition within the freight asset that the user desires to be controlled. Each of the freight assets FA1, FA2, . . . FAn includes an intelligent electronic device ED1 that serves to communicate one or more of a number of monitored conditions within the freight assets. Such conditions may for example include any one or more environmental or ambient circumstances such as temperature, location, speed, direction of movement, vibration, load, humidity, ambient gas, illumination, radiation, etc.
This arrangement utilizes wireless intelligence on a freight asset to evaluate status conditions that automatically trigger transmissions and generate industry standard freight industry messages, which may be used for tracking and monitoring of freight assets and shipments. A corollary of the invention utilizes industry standard freight shipment messages that are evaluated against wireless messages transmitted from a freight asset with wireless intelligence to send command actions to the asset, which change or alter a monitored freight condition. Another corollary involves a method that permits a user to create an industry standard freight message by sending a wireless notification to an asset, which responds to the notification with a wireless transmission, and results in an industry standard freight message.
A detailed embodiment of the invention appears in
The device ED1 on the asset FA1 automatically evaluates a particular condition to provide information that is normally derived from other sources (i.e. wayside monitoring systems that tell when an asset passes by and human creation of events that occur at under specific conditions). One example of this embodiment of the invention involves the local knowledge of location of the asset FA1, by use of a geographic positioning system (gps) sensor or equivalent, when the asset FA1 moved into a user designated location, where the asset FA1 would generate a wireless message, formatted into an industry standard message by the translator TR1 for delivery into the user system US1 and its database DB2. The newly formatted message from the translator TR1 contains information delivered from the asset FA1, including for example, gps location, time of arrival or departure, and the condition of the freight (door position, temperature, set point temperature, presence of auxiliary equipment, etc.).
Another example of this process involves a laborer changing the temperature set point on the asset FA1, such as a refrigerated trailer or railcar, which causes the device ED1 to generate an encoded wireless message that the translator TR1 ultimately delivers as a standard industry message FM1 to the user at user system US1 with its database DB2. With these given messages, the user may compare the wireless generated information from equipment located on the asset to shipping records and provide immediate context to the shipment without the need for local reading devices or operator inputs.
Another embodiment appears in
Yet another embodiment appears in
In these embodiments, the standard freight messages FM1 involve, for example, bills of lading (404), waybills (417), Terminal Operations and Intermodal Ramp Activity (322) messages and car location messages, which contain relevant information about freight shipments. These messages, and related messages, are created from encoded wireless messages via satellite, cellular or radio frequency communications in the first embodiment,
The invention permits real time transmission of freight asset conditions, freight control signals, and confirmation signals between wireless, e.g. satellite, transmission formats and standard message formats EDI or XML.
The database DB1 stores all incoming and outgoing messages to and from the wireless monitor system MS1. If the monitor system MS1 receives a message from the user system US1 with its database DB2 to alter the status of the freight asset FA1, the database DB1 stores the command as the translator TR1 transmits the message to the electronic device ED1. When the latter effects the requested change in the status of the freight asset FA1, it sends back a confirmation to the monitor system MS1 which compares the resulting change with the command stored in the database DB1 to assure compliance. The translator TR1 the sends the result via standard message formats EDI or XML to the user system US1 with its database DB2.
The database DB1 also stores contact information for alarms, as well as user preferences. The user may for example be a freight forwarding company, a railroad company, a truck company, a refrigeration company, etc.
The term freight assets may refer to a freight cars, motor trucks, the freight carried, their temperatures, destinations, and/or other conditions of operations. The freight assets can also include freight equipment, and its weights, loads, and pressures.
In
The electronic device ED1 may from part of the fr4eight assets FA1, FA2, . . . FAn, and may vary in the form from freight asset to freight asset.
While embodiments of the invention have been described in detail it will be evident to those skilled in the art that the invention may be embodied otherwise.
Claims
1. A freight management method, comprising
- sensing a condition on a freight asset;
- transmitting the information concerning the sensed condition over a wireless system to a monitor system in one format;
- translating the information concerning the sensed condition into a second format;
- transmitting the information concerning the sensed condition from the monitor system in the second format to a user capable of receiving in the second format.
Type: Application
Filed: Jun 24, 2004
Publication Date: Jun 16, 2005
Inventors: Arthur O'Toole (Bedminster, NJ), Thomas Robinson (Mendham, NJ)
Application Number: 10/877,954