Acoustical fishing lure
An improved fishing lure which produces, transmits and modulates high frequency vibrations. The high frequency tone wire vibration is actuated upon impact of a striker against the wall of an essentially watertight housing. As the striker oscillates within the housing, high frequency vibrations and sound waves emanate from the tone wire. This invention also includes a noisemaker component specifically designed using a tone wire and a striker which can be incorporated into existing fishing lures.
This invention relates generally to fishing lures. More specifically, this invention relates to fishing lures that attract fish using high frequency and percussion sound waves.
Fishing lures come in many sizes, shapes and colors. Sophistication among fishing lures varies greatly ranging from a simple hook and sinker, to sophisticated spinner arrangements, all designed to attract fish in their own way.
The purpose of any fishing lure is to attract a fish by imitating a creature which is a part of the normal diet of the fish, such as a worm, amphibian, or smaller fish. A problem associated with fishing lures is that, unlike live baits, fishing lures are unable to attract game fish by independent movement, except by continuous action imparted by rod, reel and line.
One set of prior art is based on the theory that different types of fish are attracted by different colors. This art consists of numerous lures of different, and sometimes quite exotic, colors, depending on the type of fish desired to be attracted. In a similar fashion, another set of prior art is based on the theory that fish are attracted by bright or shiny objects. This art includes lures of various configurations designed to reflect sunlight and to attract the attention of fish visually, by interplay of motion and light reflectance. Often the fish appear indifferent to the visual stimulation of these prior art lures and refuse to go after them. Moreover, by the nature of their environment, fish can not see very far. When the water is not very clear, the shiny reflection or bright colors of the lure are ineffective to attract the attention of the fish since they are unable to see them. Therefore, an improved scheme to attract fish is necessary.
Another set of prior art is based on the theory that fish are attracted by sound. As is well known, fish have a nerve system that is stimulated or activated by their lateral line response signals. The fish senses and picks up sound waves and high and low frequency vibrations by their lateral line, one of which is located on each side of their body, running from behind the gill to the base of the tail. These lateral lines roughly correspond to human ears. While it is understood that such organs do not hear sounds in exactly the same manner as humans, it is well known that such organs are sensitive to sound waves, particularly sound waves transmitted through the water. Likewise, as is well known, water provides an excellent medium for the transmission of sound waves. Numerous lures have been designed that include pieces and accessories that are positioned to physically contact each other and emit sounds with lure movement. Many presentations provide capsules or chambers that support rattles. Others provide metal weights and/or glass beads that are mounted to slide and to physically strike each other. Still others use a rapidly-vibrating spring for creating sound waves. In actual practice, however, water mutes sounds emitted from a lure by dampening movement of the sound making parts.
What is needed, therefore, is a fishing lure which not only provides visual stimulation, but also one which emits sound waves to attract fish that might otherwise be indifferent to the fishing lure that is merely visible for a short distance. Further, it is necessary that the fishing lure maintain the sound waves to attract fish not in the exact vicinity. There is therefore a need and market for a fishing lure which is both visible and audible over a sustained period of time with a suitable sound to attract fish which overcomes the shortcomings of the prior art.
It is an object of the present invention to provide a fishing lure apparatus which is capable of attracting fish based on their sensitivity to sound.
In accordance with this object, this invention is intended to provide a lure that can produce significant sound with less imparted motion or velocity of the lure, allowing longer exposure of the lure in the strike zone.
This invention is further intended to provide an improved fish lure which transmits sound waves through the water and produces sustained vibrations without requiring repeated operations such as tugging or jerking on the fishing line.
Additionally, this invention is intended to provide a lure which is of simple construction in which a single component replaces multiple internal weights or rattles, sound chambers and weight pockets.
This invention is also intended to provide a lure in which the range of voices far exceeds the sounds available with conventional internal weights and rattles.
This invention is also intended to create a lure in which a “family” of voices are available for any given lure body design, making it possible to produce each lure body in several voice variants.
Still other objects, advantages, distinctions and alternative constructions and/or combinations of the invention will become more apparent from the following description with respect to the appended drawings. Similar components and assemblies are referred to in the various drawings with similar alphanumeric reference characters. This description should not be literally construed in limitation of the invention. Rather, the invention should be interpreted within the broad scope of the further appended claims.
SUMMARY OF THE INVENTIONThe present invention is a fishing lure which produces, transmits and modulates high frequency vibrations. This unique-to-the-field design structure is the embodiment for producing, transmitting, and modulating high frequency vibrations directly off a tone wire. It is the only known noisemaker or lure voice component specifically designed using a tone wire with a reverberating or actuating striker to produce and transmit high frequency vibrations and sound resonating from, or off, the tone wire first, and then resonating to the surroundings. The high frequency vibration aspect of the tone wire produces a different resulting effect when compared to other noise making devices, and it improves upon the percussion and low frequency vibrations found in existing fishing lures. This invention is much different from the low frequency vibrations or secondary percussion rattles or clicks found in previous lures. This invention produces and transmits high frequency vibration tones or sounds. The tone wire is like a mechanical vocal cord from which the voice tone sounds off. The noisemaker mechanically produces sound that is perceived to be life-like because of the erratic change in modulation and fluctuation of the high frequency sound waves coming off the tone wire and then transmitted to the sensory reception of any subject having the ability to receive sound waves or feel their vibrations.
The high frequency tone wire vibration is actuated upon impact of a tone wire's reverberating striker against the wall of an essentially watertight housing. Inside the housing of the fishing lure, one end of the tone wire, or the foot, is affixed, while the other end, or head is equipped with a striker or weight that is free to move within the housing. When the housing is moved, the natural motion of the internal striker off balances, flexes, and bows the tone wire. In turn the striker is forced or pushed off axis center further flexing the tone wire. Such movement sends the striker into collision with the housing. This impact, an instantaneous striker stop and recoil, transfers the impact shock from the striker to the tone wire causing the tone wire to flex in the other direction, sending the striker to the other side of the housing. The continuous action of striker impacts, sudden stop of forward motion, and change of direction, instantaneously warps the wire from straight axis to arc, to wave shape, and simultaneously transfers its shock force, throwing high frequency vibrations and reverberation overtones onto the already vibrating tone wire. This continuous reverberation, upon reverberation modulates the tone wire vibrations. Also at each repercussion impact transfer to the wire, the wire can be in a different flex position and state of bend. This kind of action is what gives the high frequency tone vibrations such a distinct sound. While the striker reverberation action is going on, the vibration frequency and oscillation is continuously being interrupted by its own repercussion shock changing or modulating reverberation overtones upon the tone wire already in the action of transmitting high frequency vibrations set upon it. All the above described high frequency actions take place in microseconds.
The modulation of tone character can be distinguished by the choice of materials used in the construction of the lure. Each tone wire has its own unique voice characteristic by its certain component combinations design. In use, on retrieval through the water, the lure produces a different pattern of its character of sound on every retrieve. The voice housing and or lure body moves through the water differently on every retrieve. The actuating lure body movements produce a constant change in the degree of impact, or shock, the striker imparts to the tone wire by its movement, causing the life like modulation of vibration.
The primary function of the present invention as a component of a fishing lure is to mechanically produce and transmit modulating, fluctuating sound waves of high frequency vibrations emanating off the component tone wire, out and into the fields of physical environment it occupies. The tone wire simultaneously transmits high frequency post-axial vibrations onto its host acoustical housing, transmitting variable complex high frequency tones off the grounded foot of the tone wire, which sonicates residual energy to any surrounding receptors.
The tone wire housing is specifically designed for restricting the space in which the head of the tone wire is able to oscillate or move, without jamming or stopping the movement and vibration of the tone wire. Close tolerance space restriction is designed to control the striker orbit action against the housing wall to generate the tone wire's high frequency vibrations. The measurements for the housing are dependent on the size, shape and weight of the tone wire and the striker used in combination to produce an individually distinct voice print of identifiable modulating high frequency tones. The size and density of the chamber body also affects the high frequency vibration transmission to water.
In some cases, it is desired to use the present invention in a lure sized larger than the orbit of the striker provided by the length of the tone wire. In this situation, the striker weight can cause a bend back of the tone wire, devastating the production of high frequency sound waves. To prevent a bend back of the tone wire, a restrictor is installed in the housing based on the circumference size and shape of the housing near the striker. The restrictor is designed specifically to control the striker movement by restricting the containment space of the striker during oscillating hits to maintain the tone wire's effectiveness in producing high frequency sounds by preventing bend backs on the tone wire.
Another way to restrict the tone wire and prevent bend back in the tone wire is by the use of an open or closed noisemaker inserted into an existing fishing lure. The noisemaker consists of a shell or horn surrounding the tone wire and the striker. The tone wire is attached at its foot to the horn and the striker is free to move and hit the walls of the horn. A closed noisemaker has a substantially watertight horn, and when placed in any existing lure, it converts that lure to a high frequency vibration and sound producing lure. An open noisemaker does not have a essentially watertight horn, and when it is placed in a substantially watertight lure, it converts that lure into a lure with the high frequency vibration and sound producing qualities of the present invention.
This present design for a mechanical harmonic noisemaker or voice fishing lure is more effective in producing the high frequency sound waves to mimic natural live fluctuating sounds compared to any known electronic type of noisemaker because it produces different and constantly changing individual harmonic patterns of high frequency vibrations each and every time the apparatus is activated by movement. The lure's movement and, therefore its voice pattern is never exactly the same when in use. Each use of the lure produces a different voice pattern—but always within each individual voice character of tone range produced by the physics of its own individual components with its certain design combinations and material composition. This varying and modulating frequency makes the lure seem natural and alive to the predator. Also, depending on the choice of materials, the tones can be made to have a wide range of frequency sounds for different lures.
The present invention can be appropriated to every major category of hard baits to lure both fresh and salt water game fish. The noisemaker can fit in most lures, including surface lures, swimming lures, diving lures, stick baits, jig lures, spinner baits, and soft bait inserts. The size of the voice horn can be made to fit as small as one inch to large salt water sized chambers.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is actuated by the movement of the lure 10 through the water. With this design, two distinct types of fish-attracting noises are produced. These two sounds are complex harmonic high-frequency vibrations produced by the vibration of the tone wire 50 initiated to action by the percussion impact of the striker 40 oscillating on the end of a tone wire 50. The action of the striker 40 hitting the lure housing 20 transmits strong shock waves that are amplified by the housing 20. The same impact shock is also directly transmitted to the tone wire 50. The tone wire 50 is attached at its foot 60 to the lure body 20 to resonate and transmit strong, harmonic reverberating sound waves. These percussion and harmonic vibrations are the types of vibrations that affect and stimulate fish sensory organs.
The high frequency vibration is the result of the movement of the lure housing 20 through the water. Movement of the housing 20 acts to move the tone wire fixed foot 60, which results in the bending or bowing of the tone wire 50. By the tone wire 50 action, the striker 40 is pushed off axis center, further flexing the tone wire 50, which gains momentum by the increased forced oscillating movement of the striker 40 from the center of its moving housing 20. Such movement sends the striker 40 into contact with the housing 20. It is the sudden impact, an instantaneous striker 40 stop and recoil, that transfers the impact shock to the tone wire 50 to flexing high frequency vibrations upon the tone wire 50, displacing the air around the tone wire 50 in its housing 20, and producing the high frequency sound waves. The continuing action, as the lure 10 moves, of striker 40 impacts, sudden stop in forward motion and change in direction, instantaneous warp of the tone wire 50 from straight axis to arc, to wave shape, and simultaneous transfer of its shock force, throws high frequency vibrations and reverberation overtones onto the already vibrating tone wire 50. This reverberation upon reverberation modulates the tone wire 50 vibration. Also, at each repercussion impact transfer to the tone wire 50, the tone wire 50 is in a different flex position and state of bend. That kind of action is what gives the high frequency tone wire 50 vibration such a distinct sound. While the striker 40 reverberation action is going on, the vibration frequency and oscillation is continuously being interrupted by the striker's 40 own repercussion shock change or modulating reverberation upon the tone wire 50 already in the action of transmitting or sounding off the high frequency vibrations set upon it. All the above described high frequency actions take place in microseconds. In use, the lure 10 produces a different pattern of its character of sound on every retrieve because the lure 10 moves through the water differently on every retrieve. The actuating housing 20 movements produce the constant change in the degree of impact the striker 40 imparts to the tone wire 50 by its movement, causing the modulation of vibration.
High frequency vibration of the tone wire 50 is maintained by the sudden stop and start action of the oscillating striker 40 colliding against the housing wall 20 which is also moving and adding to the constant change of equilibrium of the tone wire 50. The vibration frequency is in constant change of speed and intensity because it is directly affected by the action of the striker 40 as it throws high frequency shock warps upon the varying lengths of the waving arcs on the flexing tone wire 50. The striker 40 action, with every move, adds more complex vibration frequencies. These high frequency vibrations received by the sensory organs and lateral line of predatory fish give them the perception of live bait feel, so they respond to complex vibrations of high frequency sound waves.
When the inside dimensions of the lure body 20 are large relative to the arc length of the tone wire 50, the weight of the striker 40 may cause the tone wire 50 to bend back on itself as the striker 40 swings between the lure housing walls 20, seriously diminishing the effectiveness of the tone wire 50 to produce high frequency vibrations. In developing a tone wire oscillating orbit restriction design, the circumference size and shape of the tone wire's acoustical housing near the striker is taken into account. The restrictor is designed specifically to control the striker movement on the tone wire, by restricting the containment space of the striker for hits during oscillation, to prevent fatal damage to the tone wire's action by preventing bend backs and jamming action.
For a variety of high frequency tone transmissions, it is absolutely necessary to physically employ specifically designed restricted space or acoustical housing for deflecting or controlling any striker that would be of sufficient sizes that it could, by inertia forces, overpower the tone wire's strength ability to hold it forward on its axis, so as to reverse or bend back upon the tone wire body, permanently bending the tone wire and/or jamming its striker between the tone wire and housing wall. This restrictive housing would be applicable to any combination of tone wire components that could be adversely affected by the great inertia force of a striker mass moving in one direction, then suddenly at high speed changing directions from forward to reverse while simultaneously oscillating around its axis side to side. These inertia forces are extremely powerful and will force the striker backward toward its attached end, when there is a sudden reverse in direction, sending, by force, the striker back upon its tone wire and behind its normal position or length of orbit contact with its housing wall.
An open noisemaker 70 as shown in
In
Location of the foot of the tone wire has some, but not tremendous effect on the high frequency sounds produced by the lure. Any position of the foot is acceptable, however, mounting the foot of the tone wire near the front of the lure seems to produce the most action on the tone wire, resulting in longer and louder high frequency sound vibrations.
Each tone wire has its own unique tone character by selection of its certain component combination design. Different combinations of striker weights, sizes and shapes, combined with different size, length, gauge, tensile strength of stainless steel wires or microbands (ultra-flat band or strip for high frequency vibration) provide a different family of tones the lure can produce. The striker and tone wire arrangement can be adapted to fit virtually any lure housing because it can be made as small or as large as necessary to fit the interior of most any fishing lure. In addition, a single lure housing can be adapted to produce any number of sounds by varying the striker and tone wire arrangement. If desired, one could create a set of lures, identical in shape and size on the outside, that produces an entire family of sounds by changing the striker and tone wire combinations inside the lures. Essentially, any changes to the striker, the tone wire, the restrictor, or the housing have some effect on the high frequency vibrations and sound waves produced by the fishing lure according to the present invention.
For example, a BB sized lead striker attached to a 1½″ wire length of 0.203 mm diameter stainless steel wire with the foot of the tone wire welded at the base of acoustical chamber 1⅝″ in length with the head wall restrictor and a deflector rim circumference at a 20 degree angle to the axis head's flexed position contact orbit on the chamber mouth wall would produce a distinctly different measurable high frequency tone than that would be produced by component assemblies that employed a combination of different sizes and or weights, tone wire sizes, and or striker shapes, or component compositions. Also significant is the housing rim deflector angle, and shape of the head restrictor acoustical chamber, its circumference size, length, and material composition. Varying these components will also affect the re-transmission of the high frequency vibrations off the originating tone wire.
Although the invention has been described in terms of specific embodiments and applications, persons skilled in the art can, in light of this teaching, can generate additional embodiments without exceeding the scope or departing from the spirit of the claimed invention. In addition, specific features of the invention are shown in some drawings and not in others for convenience only, as each feature may be combined with any or all of the other features in accordance with the invention. Accordingly, it is to be understood that the drawings and description in this disclosure are proffered to facilitate comprehension of the invention and should not be construed to limit the scope thereof.
Claims
1. A fishing lure that produces high frequency vibrations and sound waves as the lure moves comprising
- an essentially watertight cavity therein substantially devoid of aqueous liquid,
- an elongated flexible member with a free first end and a second end fixedly disposed within said essentially watertight cavity, said free first end extending and being movable within said essentially watertight cavity,
- a contact surface associated with said essentially watertight cavity, and
- a weighted portion along said elongated flexible member at a position to impinge said contact surface as the flexible member is flexed,
- movement of the lure effecting flexure of said flexible member and impingement of said weighted portion and said contact surface to produce high frequency vibrations and high frequency sound waves.
2. The lure of claim 1 wherein said contact surface is said essentially watertight cavity.
3. The lure of claim 2 wherein said second end of said flexible member is fixedly disposed within said essentially watertight cavity generally near the front end thereof.
4. The lure of claim 2 wherein said second end of said flexible member is fixedly disposed within said essentially watertight cavity generally near the rear end thereof.
5. The lure of claim 2 wherein said second end of said flexible member is fixedly disposed within said essentially watertight cavity generally near the center thereof.
6. The lure of claim 1 wherein said flexible member is a wire and said weight attached to said wire is a metallic member, said weight being moveable within said essentially watertight cavity when said essentially watertight cavity is moved in space or in water.
7. The lure of claim 1 wherein said contact surface is sized and shaped to restrict the movement of said weighted portion thereby generally maintaining the elongated shape of said flexible member.
8. The lure of claim 1 wherein said contact surface includes a material that differs from the material of said essentially watertight cavity.
9. The lure of claim 1 wherein said contact surface includes an electronic sound producing portion.
10. A method of attracting fish including the steps of
- affixing a weighted member along a flexible elongated member,
- attaching one end of the flexible elongated member inside an essentially watertight cavity defined by a housing such that said weighted member impacts said housing when said flexible member is in a state of flex,
- attaching said housing to a fishing rod and reel,
- casting said housing into said water containing fish and moving said fishing rod and reel in the water.
11. A noisemaking device that produces high frequency vibrations and sound waves in response to movement of the device comprising
- an essentially watertight housing defining an interior compartment with an inside surface,
- a flexible member with a first and a second end, said first end attached at said inside surface of the housing, said second end extending into said interior compartment defined by the housing,
- a contact surface within said interior compartment defined by the housing, and
- a weighted member fixedly attached to said flexible member, such that in response to movement of said device, said weighted member strikes said contact surface causing said flexible member to produce high frequency vibrations.
12. The noisemaking device of claim 11 wherein said contact surface is said inside surface of said housing.
13. A fishing lure including the noisemaking device of claim 11.
14. A fishing lure including the noisemaking device of claim 12.
15. A fishing lure having an elongated body portion with an outer surface and an inner surface, means at one end for attaching to a fish line, and means at spaced locations on the outer surface for attaching hook members thereto, said fish lure having means for generating noises from the lure when the body of the lure is moved in air or in water, said means for generating noise including an elongated relatively stiff but flexible member having a first end connected to the inner surface of the body of the lure and an opposite end spaced from the connected end, and a weight member attached adjacent to the opposite end of the flexible member for movement back and forth in the body of the lure to produce noises and vibration of said flexible member when the lure body is moved.
16. A fishing lure having means for producing noise, said lure including a body portion having a front end with a device for attaching it to a fishing line and a tail end with a device for attaching to a hook, said body having an external surface that is shaped to conform to the shape of a bait for catching certain kinds of fish, said body having an inner surface surrounded by the outer surface of the body, an elongated relatively flexible wire member, means for attaching one end of the wire like member to the inner surface of the body portion adjacent to one end thereof and extending therefrom along the inner surface of the body to a free end, a weight member attached to the wire-like member adjacent to the free end thereof in such a manner that the weight member can move back and forth across the inner surface of the body portion to contact the body portion and produce noises in doing so.
Type: Application
Filed: Jan 13, 2004
Publication Date: Jul 14, 2005
Patent Grant number: 7325357
Inventor: Darrell Wiskur (Harrison, AR)
Application Number: 10/756,230