CLOSURE AND VENT SYSTEM FOR CAPLESS FILLER NECK
A filler neck closure assembly includes a housing formed to include a vent chamber arranged to receive a fuel-dispensing pump nozzle therein during fuel tank refueling. A flow control valve assembly is provided to regulate flow of ambient air and/or fuel vapor through the vent chamber.
This application claims priority under 35 U.S.C. § 119(e) to U.S. Provisional Application Ser. No. 60/536,608, filed Jan. 15, 2004, which is expressly incorporated by reference herein.
BACKGROUNDThe present disclosure relates to a filler neck closure assembly for a vehicle fuel tank, and particularly to a filler neck closure for use in a capless fuel tank filler neck. More particularly, the present disclosure relates to closure seals and to pressure/vacuum-relief valves for use in a filler neck closure assembly.
A removable fuel cap with a sealing gasket is typically used to close the open end of a fuel tank filler neck. After an attendant fills the fuel tank and withdraws the pump nozzle from the filler neck, the fuel cap is attached to the filler neck so that the sealing gasket forms a seal between the fuel cap and the filler neck. Thus, the fuel cap closes the open end of the filler neck to block discharge of liquid fuel and fuel vapor from the fuel tank through the filler neck. Some fuel caps are provided with pressure-relief and vacuum-relief valves to permit some controlled venting of fuel vapors in the filler neck, while the fuel cap is mounted on the filler neck.
It has been observed that fuel caps are often lost or damaged over time and, as a result, the open end of the filler neck might not be closed and sealed in accordance with original equipment specifications during operation of the vehicle. Accordingly, a filler neck configured to “open” automatically as a fuel-dispensing pump nozzle is inserted into the filler neck during refueling and “close” automatically once the pump nozzle is withdrawn from the filler neck without requiring an attendant to reattach a fuel cap to the filler neck would be an improvement over many conventional capped filler neck systems. Although conventional fuel caps function to close filler necks in a satisfactory manner, it is thought that a capless filler neck could make vehicle refueling more convenient for consumers because no action other than inserting a pump nozzle into the outer end of the filler neck would be required to begin refueling a vehicle.
SUMMARYAccording to the present disclosure, a filler neck closure assembly includes a nozzle-receiving housing associated with a vehicle fuel tank filler neck. The assembly also includes a partition arranged to create two vent chambers in the housing and a flow control valve assembly for regulating flow of ambient air and/or fuel vapor through the vent chambers.
Additional features of the disclosure will become apparent to those skilled in the art upon consideration of the following detailed description of illustrative embodiments exemplifying the best mode of carrying out the disclosure as presently perceived.
BRIEF DESCRIPTION OF THE DRAWINGSThe detailed description particularly refers to the following figures in which:
As shown in
Filler neck closure assembly 10 is assembled as shown, for example, in
As suggested in
In the illustrated embodiment, housing 36 comprises a base 38, an outer body 40 coupled to base 38, and an outer shell 42 coupled to outer body 40. Assembly 10 also includes a partition 44 mounted, for example, in a cavity 46 formed in base 38 to lie in an interior region 48 formed in housing 10 between base 38 and outer body 40. Partition 44 is arranged as shown, for example, in
As suggested in
As suggested in
As suggested in
As also suggested in
Partition 44 is arranged to divide interior region of 48 into outer and inner vent chambers 52, 50. Outer vent chamber 52 communicates with both outer and inner nozzle-receiving apertures 58, 64 as suggested in
Outer shell 42 includes an annular skirt 68 and an upper portion 70 having an L-shaped cross-section and interconnecting top wall 56 and skirt 68 as suggested in
Outer body 40 includes an outer side wall 78 sized to fit in and mate with annular skirt 68 of outer shell 42, a lower rim 80 including an annular inner side wall 82 extending upwardly toward top wall 56 of outer shell 42, three small fasteners 84 extending downwardly from lower rim 80, and one large fastener 86 extending downwardly from lower rim 80 as suggested in
Appearance door 59 is shown, for example, in
As suggested in
Seal member 61 is over-molded onto appearance door 59 to produce outer closure 60 using, for example, an injection mold 120, as suggested in
Upper mold portion 122 is formed to define an appearance door-receiving cavity 128 as shown in
Once cavities formed in upper and lower mold portions 122, 124 have been filled, the liquid plastics material 130 in those cavities is allowed to cool. After the liquid plastics material 130 has cooled to a solid form, a mechanical bond is established between seal member 61 and appearance door 59. Once cooled, upper and lower mold portions 122, 124 are moved to the opened position and outer closure 60 is removed.
Seal member 61 is made of an electrometric material and, as shown, for example, in
As shown best in
Torsion spring 96 is used to bias outer closure 60 normally and yieldably to the closed position. As shown, for example, in
Partition 44 includes a funnel 164 formed to include an outlet aperture 166 in alignment with inner nozzle-receiving aperture 64 formed in bottom wall 62 of housing 36. An upper surface 168 of funnel 164 defines a lower boundary of outer vent chamber 52. A lower surface 170 of funnel 164 defines an upper boundary of inner vent chamber 50. Partition 44 further includes a funnel support 172 coupled to an upper portion of funnel 164 and arranged to engage a portion of side and bottom walls of base 62 to support funnel 164 in interior region 48 of housing 36. As suggested in
At least one of funnel 164 and funnel support 172 is formed to include vent channel means 53. As suggested in
Fasteners 94, 96 are used to couple outer body 40 to base 38 in the embodiment illustrated in
As shown in
A torsion spring 210 is provided to bias flapper door 66 normally and yieldably to the closed position. As shown in
Base 38 of housing 36 includes first and second shaft mounts 285, 385 as shown, for example, in
Each shaft mount 285, 385 includes a slot 400 adapted to receive pivot shaft 185 therein so as to provide a “shaft receiver.” In the illustrated embodiment, slot 400 is L-shaped and includes a horizontally extending entry portion 401 and a vertically extending shaft-retainer portion 402 as shown, for example, in
Vacuum-relief apparatus 30 includes a spring retainer 220 including a floor 222 carrying an upstanding spring post 224 and a pair of upstanding spaced-apart side walls 226, 228 formed to include fastener receivers to mate with fasteners 230, 232 included in housing 36 and depending from bottom wall 62 of base 38 as suggested in
Owing to the modularity of partition 44, assembly 10 can be configured easily to accept small-diameter unleaded fuel-dispensing pump nozzles or larger-diameter diesel fuel-dispensing pump nozzles. Assembly 10 can be adapted to work with either style of pump nozzle by manufacturing assembly 10 to include a partition 44 configured to work with the desired style of pump nozzle. During manufacture, partition 44 is selected from a group comprising a first partition including a funnel formed to include a narrow-diameter outlet aperture associated with an unleaded fuel-dispensing pump nozzle and a second partition including a funnel formed to include a relatively larger large-diameter outlet aperture associated with a diesel fuel-dispensing pump nozzle.
As shown in
A flow control valve assembly 316 is configured normally to close vent port 314 to regulate pressure of air and fuel vapor in outer vent chamber 52. In the illustrated embodiment, several vent ports 314 are provided. By using flow control valve assembly 316, it is possible to control and regulate pressure conditions in outer vent chamber 52 more precisely in a way that is useful in certain vehicle emission regulatory environments.
Flow control valve assembly 316 includes an umbrella vacuum-relief valve 318 having a stem 320 coupled to upper portion 312 of the side wall and a valve member 322 located in interior region 48 of housing 36 and movable from a normally closed position closing vent port 314 as shown in
Umbrella vacuum-relief valve 318 is useful when used with a particular vapor-recovery fuel-dispensing pump nozzle which draws a vacuum on the filler neck while sealing the upper end. The umbrella valve provides make-up air to prevent excessive vacuum and premature nozzle shut-offs. The duck-bill pressure-relief valve 330 in the center provides a vent passage when outer closure 60 is closed and the pressure-relief valve is activated.
Alternative annular seals and flapper door designs are shown in
Claims
1. A filler neck closure assembly for a vehicle fuel tank filler neck, the assembly comprising
- a housing adapted to be coupled to a fuel tank filler neck to receive a fuel-dispensing pump nozzle during fuel tank refueling, the housing including a top wall formed to include an outer nozzle-receiving aperture, a bottom wall formed to include an inner nozzle-receiving aperture adapted to open into the fuel tank filler neck when the housing is coupled to the fuel tank filler neck, and a side wall arranged to extend between the top and bottom walls to define an interior region of the housing, the housing including an outer closure mounted for movement relative to the top wall to open and close the outer nozzle-receiving aperture and a flapper door mounted for movement relative to the bottom wall to open and close the inner nozzle-receiving aperture, the housing further including a vent passage having an outer end opening into the interior region and an inner end adapted to open into the fuel tank filler neck when the housing is coupled to the fuel tank filler neck,
- a partition arranged to divide the interior region of the housing into an outer and inner vent chamber, the outer vent chamber communicating with the outer and inner nozzle-receiving apertures and defining a pump nozzle-receiving passageway adapted to receive the pump nozzle therein during movement of a pump nozzle through the outer and inner nozzle-receiving apertures to move the outer closure and flapper door to opened positions during fuel tank refueling, the inner vent chamber communicating with the vent passage, the partition is formed to include a vent channel to place the outer and inner vent chambers in fluid communication, the housing being formed to include a vent port to admit ambient air outside of the housing into the outer vent chamber when the outer closure and flapper door have been moved to closed positions, and
- a flow control valve assembly yieldably biased normally to close the vent passage to regulate flow of a gas through the vent passage.
2. The assembly of claim 1, wherein the partition includes a funnel formed to include an outlet aperture in alignment with the inner nozzle-receiving aperture formed in the bottom wall of the housing, an upper surface defining a lower boundary of the outer vent chamber, and a lower surface defining an upper boundary of the inner vent chamber.
3. The assembly of claim 2, wherein the partition further includes a funnel support coupled to an upper portion of the funnel and arranged to engage a portion of the side and bottom walls in the housing to support the funnel in the interior region of the housing.
4. The assembly of claim 3, wherein at least one of the funnel and funnel support is formed to include the vent channel.
5. The assembly of claim 1, wherein the housing includes a base including the bottom wall and a lower portion of the side wall and an outer body including an upper portion of the side wall and the vent port is formed in the upper portion of the side wall.
6. The assembly of claim 5, further comprising a flow control valve assembly configured normally to close the vent port to regulate pressure of air and fuel vapor in the outer vent chamber.
7. The assembly of claim 6, wherein the flow control valve assembly includes a vacuum-relief valve having a stem coupled to the upper portion of the side wall and a valve member located in the interior region of the housing and movable from a normally closed position closing the vent port to an opened position opening the vent port upon development of a negative pressure in the interior region that is below a selected pressure threshold level.
8. The assembly of claim 7, wherein the upper side wall is formed to include a mounting hole alongside the vent port, the stem is arranged to extend through the mounting hole and is formed to include a pressure-relief passageway having an opening formed in the valve member, and a pressure-relief valve is coupled to the stem and configured normally to close the pressure-relief passageway to block discharge of fuel vapor from the outer vent chamber through the pressure-relief passageway until pressure of the fuel vapor extant in the outer vent chamber exceeds a selected threshold level.
9. The assembly of claim 6, wherein the flow control valve assembly includes a vacuum-relief valve and a pressure-relief valve.
10. The assembly of claim 5, wherein the partition is mounted in a cavity formed in the base.
11. The assembly of claim 5, wherein the partition includes a funnel formed to include an outlet aperture in alignment with the inner nozzle-receiving aperture formed in the bottom wall of the housing and a funnel support coupled to the funnel and to the base to cause the outer vent chamber to lie above the funnel and the inner vent chamber to lie below the funnel.
12. The assembly of claim 11, wherein the lower side wall of the base and at least one of the funnel and funnel support cooperate to define the vent channel therebetween.
13. The assembly of claim 1, wherein the housing includes a base including the bottom wall and a lower portion of the side wall and an outer body including an upper portion of the side wall and the vent port is formed at a junction between the base and the outer body.
14. The assembly of claim 13, wherein the lower portion of the side wall included in the base is formed to include a fastener receiver opening, the outer body further includes a fastener extending downwardly away from the upper portion of the side wall included in the outer body, and the fastener extends into the fastener receiver opening to retain the outer body in a fixed position on the base without occluding the fastener receiver opening to cause an unoccluded portion of the fastener receiving opening to define the vent port.
15. The assembly of claim 1, wherein the housing includes a base including the bottom wall and a lower portion of the side wall and an outer body including an upper portion of the side wall, and wherein the partition is mounted in a cavity formed in the base before the lower portion of the side wall included in the base is welded to the upper portion of the side wall included in the outer body to define the interior region formed in the housing and containing the partition.
16. The assembly of claim 15, wherein the partition is selected from a group comprising a first partition including a funnel formed to include a narrow-diameter outlet aperture associated with an unleaded fuel-dispensing pump nozzle and a second partition including a funnel formed to include a relatively larger large-diameter outlet aperture associated with a diesel fuel-dispensing pump nozzle.
17. The assembly of claim 1, wherein the outer closure includes an appearance door coupled to the side wall for pivotable movement about a pivot axis between opened and closed positions and an outer seal coupled to the appearance door, the appearance door including an interior surface, an exterior surface, and a plurality of holes extending between the interior and exterior surfaces, the outer seal is made of an elastomeric material and includes a base on the interior surface, an annular door seal on the exterior surface, and tethers extending through the holes to interconnect the base and the annular door seal and retain the annular door seal in place on the exterior surface to mate with the top wall upon movement of the appearance door to the closed position to establish a sealed connection between the appearance door and the top wall.
18. The assembly of claim 17, wherein the top wall is formed to include an annular lip extending in an axially inward direction toward the bottom wall, the annular door seal includes an annular foundation and concentric inner and outer annular rims extending in an axially outward direction from the annular foundation to define an annular channel therebetween, and the annular lip extends into the annular channel to mate with the annular foundation and the concentric inner and outer annular rims to define a portion of the sealed connection between the appearance door and the top wall.
19. The assembly of claim 18, wherein the appearance door includes a top wall, an annular upright wall depending from a perimeter edge of the top wall and engaging a radially inwardly facing surface of the inner annular rim, and an annular lateral wall extending radially outwardly from a perimeter edge of the annular upright wall and engaging an underside of the annular foundation.
20. The assembly of claim 17, wherein the appearance door includes a top wall, an annular upright wall arranged to depend from a perimeter edge of the top wall and formed to include the plurality of holes receiving the tethers, and an annular lateral wall extending radially outwardly from a perimeter edge of the annular upright wall and engaging an underside of the annular door seal.
21. The assembly of claim 1, further comprising an annular seal including concentric first and second seal rings arranged to contact the flapper door upon movement of the flapper door to the closed position to establish an annular seal between the housing and the flapper door and a seal retainer coupled to the housing and arranged to retain the annular seal in sealing engagement with the bottom wall of the housing in a position surrounding the inner nozzle-receiving aperture.
22. The assembly of claim 21, wherein the flapper door includes a pivot arm mounted to pivot on a pivot shaft associated with the base, a raised dome including a top wall facing toward the bottom wall of the base and an annular side wall extending in a direction away from the bottom wall of the base, and a dome support interposed between the pivot arm and the raised dome, and wherein the first seal ring is arranged to contact the top wall of the raised dome and the second seal ring is arranged to contact the annular side wall of the raised dome when the flapper door is moved to assume the closed position.
23. A filler neck closure assembly for a vehicle fuel tank filler neck, the assembly comprising
- a housing formed to include an interior region, an outer nozzle-receiving aperture opening into the interior region, an inner nozzle-receiving aperture aligned with the outer nozzle-receiving aperture and opening into the interior region, a vent port arranged to allow gas flow into and out of the interior region, and a vent passage having an outer end opening into the interior region and an inner end adapted to open into the fuel tank filler neck when the housing is coupled to the fuel tank filler neck, the housing including an outer closure mounted for movement to open and close the outer nozzle-receiving aperture and a flapper door mounted for movement to open and close the inner nozzle-receiving aperture, and
- a partition configured to include funnel means for guiding a moving fuel-dispensing pump nozzle admitted into the interior region through the outer nozzle-receiving aperture into the inner nozzle-receiving opening to move the flapper door to open the inner nozzle-receiving aperture, the partition being arranged to divide the interior region into an inner vent chamber communicating with the vent passage and an outer vent chamber communicating with the outer and inner nozzle-receiving apertures and the vent port, the partition also being formed to include a vent channel to place the outer and inner vent chambers in fluid communication.
24. The assembly of claim 23, further comprising a flow control valve assembly yieldably biased normally to close the vent passage to regulate flow of a gas through the vent passage.
25. The assembly of claim 24, wherein the flow control valve assembly includes a vacuum-relief valve located in the vent passage and a spring arranged to move the vacuum-relief valve normally to block flow of gas from the inner vent chamber into the vent passage.
26. The assembly of claim 25, further comprising a pressure/vacuum relief valve assembly yieldably biased normally to close the vent port to regulate flow of a gas through the vent port to regulate pressure of air and fuel vapor in the outer vent chamber.
27. The assembly of claim 24, wherein the flow control valve assembly includes pressure-relief means for normally blocking flow of pressurized fuel vapor from the vent passage into the inner vent chamber until the pressure of the pressurized fuel vapor in the vent passage exceeds a selected threshold level so that once the selected threshold level is exceeded pressurized fuel vapor flows from vent passage through inner vent chamber, channel, outer vent chamber, and vapor port to exit the interior region of the housing.
28. The assembly of claim 23, wherein the partition further includes a sleeve arranged to engage an inner wall of the housing to orient the funnel means to cause an outlet aperture defined by the funnel means to be aligned with the inner nozzle-receiving opening.
29. The assembly of claim 28, wherein a portion of the sleeve is formed to include a portion of the channel.
30. The assembly of claim 29, wherein a portion of the funnel means is formed to include another portion of the channel.
31. The assembly of claim 23, wherein the channel is defined by a plurality of circumferentially spaced-apart notches formed in an axially outer portion of the partition at a junction between the inner and outer vent chambers.
Type: Application
Filed: Jul 21, 2004
Publication Date: Jul 21, 2005
Inventors: Chad McClung (Connersville, IN), Jeffery Griffin (Connersville, IN), Lowell Bell (Indianapolis, IN)
Application Number: 10/895,593