Shared contact for high-density memory cell design
A new method and structure is created for a multi-transistor SRAM device. Standard processing steps are followed for the creation of CMOS devices of providing a patterned layer of gate material, of performing LDD impurity implants, of creating gate spacers. After the creation of the gate spacers, a new step of photoresist patterning and exposure is added. The mask for this additional step is a modified butt-contact mask, comprising enlarging the conventional butt-contact opening by between about 0.005 μm and 0.2 μm, an effect that can also be achieved by photo over-expose. This modified butt-contact mask exposes a spacer that is adjacent to the butt-contact hole, this spacer is removed. S/D impurity implant is performed after which conventional processing steps are applied for completion of the multi-transistor SRAM device.
Latest Patents:
(1) Field of the Invention
The invention relates to the fabrication of integrated circuit devices, and more particularly, to a method and structure for a new contact that connects an active area with a polysilicon interconnection.
(2) Description of the Prior Art
Conventional methods of forming CMOS gate electrodes in or over an active device region of a semiconductor substrate are well known in the art. The active device region is typically defined by field oxide regions, which electrically isolate the active region of the substrate from the surrounding surface areas of the substrate. Substrate conductivity in the active surface area is first established by providing n/p-well impurity implants into the active surface of the substrate. In fabricating a CMOS device, a layer of gate material such as polysilicon is formed over a layer of thin oxide that is formed over the active device region of the substrate. The polysilicon layer is then masked and both the exposed polysilicon and the underlying thin layer of oxide are etched to define a poly-silicon gate electrode that is separated from the substrate by the thin layer of gate oxide. Two masked steps for N-LDD and for P-LDD dopants are adopted to form lightly doped diffusion (LDD) source/drain regions in the substrate as a first phase of forming the substrate N-type source/drain regions of the CMOS device. After the formation of for instance oxide sidewall spacers over the sidewalls of the polysilicon gate and of the gate oxide, a second N-type and p-type impurity implant is performed to set the conductivity of the gate region to a desired level and to complete the N+ and P+ source/drain regions of the gate electrode.
Contact surfaces of the gate electrode may then be salicided by depositing for instance a layer of titanium or cobalt or nickel over the structure, more specifically over the exposed surfaces of the N+ and P+ source/drain regions and the gate region. The deposited titanium or cobalt or nickel is annealed, thereby causing the titanium to react with the underlying N+ and P+ silicon of the substrate of the source/drain regions and the doped polysilicon gate to form titanium salicide over these surfaces.
The gate electrode is completed by forming a layer of dielectric material, typically silicon oxide, over the gate electrode. Contact openings are etched in the dielectric and a metallization layer is formed to provide contacts to the salicided surfaces of the source/drain regions and over the polysilicon gate.
For maximum density to be achieved in a six-transistor SRAM device, the cells of the device must be created in as small a surface area as possible. A shared contact is therefore provided to simultaneously connect the gate and the active region of the cells, this contact is referred to as the butted or butt contact or the coupled contact or the shared contact. This approach however presents a challenge since the processing steps required to create the butt contact must simultaneously expose both a standard square contact and the butt contact. This results in a very difficult etch step, caused by differences in contact size, contact shape and fluctuations in the thickness of the etch stop layer that has been deposited over a polysilicon pattern of varying density. This may, under worst case circumstances, result in increased junction leakage, primarily caused by the etch for creation of the butt contact proceeding through the etch stop layer over the gate spacer causing excessive loss of the created gate electrode spacers. An additional concern is errors of miss-alignment between the butt contact and the polysilicon or between the butt contact and other critical points of electrical contact of the created SRAM device. The invention addresses these concerns of the creation of the butt contact.
U.S. Pat. No. 6,310,397 B1 (Chang et al.) shows a butt contact process in a SRAM.
U.S. Pat. No. 6,239,458 B1 (Liaw et al.) reveals a butt contact process.
U.S. Pat. No. 6,121,684 (Liaw) and U.S. Pat. No. 6,057,186 (Change et al.) reveal other butt contact methods.
SUMMARY OF THE INVENTIONA principal objective of the invention is to create a butt opening for a multi-transistor SRAM device that eliminates problems of leakage current between the butt contact and the underlying surface of the substrate of well type conductivity.
Another objective of the invention is to relax requirements of alignment when simultaneously creating a butting contact and a conventional contact.
Another objective of the invention is to enable a relaxation in the overlay design rule of the butt contact opening to conventional contact opening, increasing the overlay margin of the butt opening and the conventional contact opening.
Yet another objective of the invention is to create a butt contact opening while allowing for reduced cell surface area.
A new method and structure is created for a multi-transistor SRAM device. Standard processing steps are followed for the creation of CMOS devices of providing a patterned layer of gate material, of performing LDD impurity implants, of creating gate spacers. After the creation of the gate spacers, a new step of photoresist patterning and exposure is added. The mask for this additional step is a modified butt-contact mask, comprising enlarging the conventional butt-contact opening by between about 0.005 μm and 0.2 μm, an effect that can also be achieved by photo over-expose. This modified butt-contact mask exposes a spacer that is adjacent to the butt-contact hole, this spacer is removed. S/D impurity implant is performed after which conventional processing steps are applied for completion of the multi-transistor SRAM device.
BRIEF DESCRIPTION OF THE DRAWINGS
For a better understanding of the invention, prior art steps for the simultaneous creation of a butt contact and a conventional contact are first explained. It must thereby understood that the butt-contact is created in order to establish electrical continuity between a layer of polysilicon, which forms a conductive layer of the SRAM device, and the active surface of the substrate over which the SRAM device is being created.
The cross section shown in
-
- 10, the surface of a single crystalline silicon substrate
- 11, a region of Shallow Trench Isolation. (STI) created in the surface of substrate 10, defining an active surface are of the substrate 10 over which a butt contact and a conventional contact are to be created
- 12 and 14, two gate electrodes created over the surface of substrate 10 with gate electrode 12 partially overlying a region 11 of field oxidation created in the surface of substrate 10
- 13 and 15, layers of gate material, preferably comprising polysilicon, that form the body of the gate electrodes 12 and 14
- 16, source/drain impurity implant of either n-type or p-type impurity, the butt contact is created to make contact with this impurity implant, the butt contact must overlay the polysilicon 13 and the S/D region 16
- 17, a source/drain impurity implant of either n-type or p-type impurity
- 17′, an LDD impurity implant adjacent to and contiguous with source/drain impurity implant 17
- 16′ and 16″, LDD implants adjacent to source/drain impurity implant 16 and forming one contiguous region of n-type or p-type conductivity with the source/drain impurity implant 16
- 18 and 20, silicided layers over the surface of gate electrodes 12 and 14 respectively
- 19 and 22, silicided layers over the surface of source/drain impurity implants 16 and 17 respectively
- 22, a layer of etch stop material, preferably comprising silicon nitride or silicon oxynitride, deposited for subsequent etch of the butt contact opening
- 23 and 25, gate spacers formed over sidewalls of respectively gate electrodes 12 and 14.
The desired conventional results of creating a butt contact and simultaneously creating a conventional contact are shown in the cross section of
As previously stated, the butt contact is created to make contact with impurity implant 16, the butt contact must overlay the polysilicon 13 and the S/D region 16.
The cross section of
The reduced in size gate 23′ will form a leakage path. Specifically, the affected gate spacer 23′ overlies the relatively shallow LDD impurity implant 16′, therefore readily forming a low-resistance leakage path between the butt contact, created in opening 26′,
-
- 30, a second layer of poly-1, forming part of the interconnects of the SRAM device
- 32, a first layer of poly-1, overlying a gate electrode of the SRAM device
- 31, the active area defined over the surface of substrate 10, partially bounded and defined by STI region 11,
FIG. 1 - 34, a top view of a butt contact that interconnects the active area 31 and poly-1 layer 32
- 36, a top view of a conventional contact such as contact created through opening 28 and 28′,
FIGS. 2 and 3 - 38, a top view of the gate spacers created over sidewalls of the layer of gate material.
The borderless etch that is applied for the creation of a contact opening, such as openings 26 (26′) and 28 (28″) in
The invention follows, prior to processing steps that are unique to and of critical importance to the invention, conventional processing steps of creating a multi-transistor SRAM device to the point where gate spacers have been completed over the gate electrodes of the SRAM device. This structure is shown in cross section of
Recognized in the cross section of
-
- active regions having been defined over the surface of substrate 10 by STI region 11
- N/P well implants (not highlighted but implied)
- the patterned layers 13/15 of poly-1
- LDD implant 80, and
- the gate spacers 23/25.
The preferred material for gate spacers 23,
LDD implants 80 of the invention are preferably high-energy, high density implants, performed as follows:
-
- For NMOS: As or P
- energy 2 to 60 KeV
- dose 1E13 to 2E15 atoms/cm2
- For PMOS: BF2 or B
- energy 1 to 60 KeV
- dose 1E13 to 2E15 atoms/cm2.
- For NMOS: As or P
P-well (NMOS) region (not highlighted) can typically be created using the following implant processing parameters:
-
- As or P
- energy: 10 to 100 KeV
- dose: 1E14 to 5E16 atoms/cm2.
- As or P
N-well (PMOS) region (not highlighted) can typically be created using the following implant processing parameters:
-
- boron or BF2 or indium
- energy: 5 to 200 KeV
- dose: 1E14 to 5E16 atoms/cm2.
- boron or BF2 or indium
After the structure that is shown in cross section in
The exposure mask that is used for the creation of opening 41 has the same pattern as the mask that,
By exposing the gate spacer 23″,
The result of the etch of gate spacer 23″ is shown in the cross section of
Gate spacers are frequently created over a layer of silicon oxide (not shown for reasons of clarity of the drawings) that interfaces between the etched layer of spacer material and the sidewalls of layers 13 and 15 of gate material. This layer of silicon oxide further overlies the substrate underneath the etched layer of gate material. The etch of the gate spacer, that is provided by the invention, is aimed at complete or partial removal of the gate spacer, which implies that the gate spacer material must be removed more readily than other, also exposed, materials.
Because it is desirable to leave the layer of silicon oxide (interfacing between the gate and the gate spacer and underneath the gate spacer) in place, since this layer frequently serves to repair surface damage incurred by the sidewalls of the gate structure and the silicon substrate during etch of the layer of gate material, the etch for the complete or partial removal of gate spacer material 23″ must have a high etch selectively with respect to silicon oxide (of the interfacing layer) and to silicon (of the substrate). A preferred etch selectively is an etch selectively in excess of 10.
After the gate spacer 23″ has been etched in accordance with the etch blocking mask 40, the etch blocking mask 40 is removed, applying conventional methods of photoresist ashing followed by a thorough surface clean.
The invention now continues,
More specifically shown in the cross section of
The LDD implant 16 is followed by surface salicidation, creating salicided surface layers 18, 19′, 20, and 21,
From the cross section that is shown in
By now,
The top view shown in
The invention can be summarized as follows:
- 1. the invention provides for complete or partial removal of a gate spacer that is adjacent to the butt contact by applying for an extra etch
- 2. the invention provides for a modified butt-opening exposure mask, wherein the opening for the butt opening has been increased by between about 0.005 μm and 0.2 μm, and
- 3. the invention provides a deep junction profile on the corner of the poly-1 and the active region of butt contact cover portion.
For purposes of clarity, conventional processing steps are compared with the processing steps of the invention, as follow.
Conventional processing steps for the creation of a butt contact comprise:
-
- define active region
- perform N/P well implant
- provide a patterned layer of poly-1
- perform LDD implant
- form spacers over sidewalls of the patterned layer of poly-1
- perform S/D implants
- perform salicidation of contact surfaces
- deposit an etch stop layer
- deposit a layer of dielectric, and
- form butt contact and standard contact in the layer of dielectric.
The invention provides for:
-
- define active region
- perform N/P well implant
- provide a patterned layer of poly-1
- perform LDD implant
- form spacers over sidewalls of the patterns layers of poly-1
- at this time, the invention provides an extra mask for spacer remove (the butt contact portion)
- perform S/D implant, whereby the S/D junction penetrates under and covers the corner in the interface between the poly-1 and the active region of the substrate underlying the butt contact
- perform salicidation
- deposit an etch stop layer
- deposit a layer of dielectric, and
- form butt contact and standard contact through the layer of dielectric.
Although the invention has been described and illustrated with reference to specific illustrative embodiments thereof, it is not intended that the invention be limited to those illustrative embodiments. Those skilled in the art will recognize that variations and modifications can be made without departing from the spirit of the invention. It is therefore intended to include within the invention all such variations and modifications which fall within the scope of the appended claims and equivalents thereof.
Claims
1-22. (canceled)
23. A butt contact opening for high-density memory cells, comprising:
- a silicon semiconductor substrate;
- at least one patterned and etched layer of gate material forming a gate electrode;
- a first gate spacer over a first sidewall of the at least one patterned and etched layer of gate material, the first gate spacer being opposite to a second sidewall of the at least one patterned and etched layer of gate material;
- LDD and S/D impurity implants self-aligned with the at least one patterned and etched layer of gate material, the S/D impurity implant underlying the LDD impurity implant, the LDD implant and the S/D implant underlying and surrounding a corner where the second sidewall of the etched layer of gate material interfaces with the active surface of the substrate over which a butt contact is provided;
- a well implant underlying the butt contact opening;
- a layer of etch stop material over the substrate, including the at least one patterned and etched layer of gate material;
- a layer of dielectric over the layer of etch stop material;
- a butt contact opening through the layer of dielectric and the layer of etch stop material, a conventional contact opening through the layer of dielectric, the butt contact opening comprising and laterally extending from the second sidewall of the at least one patterned and etched layer of gate material; and
- the butt contact opening and the conventional contact opening having been filled with a conductive interconnect.
24. The butt contact opening of claim 23, additionally comprising salicided contact surfaces.
25. The butt contact opening of claim 23, the gate material preferably comprising polysilicon.
26. The butt contact opening of claim 23, the gate spacers preferably comprising silicon nitride.
27. The butt contact opening of claim 23, the enlarged sizing rule comprising a pattern of an enlarged butt contact opening.
28. The butt contact opening of claim 23, the enlarged sizing rule comprising an increased a sizing rule, increased by between about 0.005 and 0.2 μm.
29-39. (canceled)
40. A semiconductor device, comprising:
- a substrate with a butt contact thereon;
- a layer of gate material with a first sidewall and a second sidewall on the substrate, the second sidewall adjacent to the butt contact;
- a first spacer over a first sidewall;
- a LDD impurity implant substantially aligned with the layer of gate material; and
- a S/D impurity implant underlying and surrounding the LDD impurity implant, the S/D impurity implant and the LDD impurity implant underlying and surrounding a corner where the second sidewall interfaces with the butt contact.
41. The semiconductor device of claim 40, further comprising a silicide layer on the top surface of the layer of gate material, the second sidewall, and the butt contact.
42. The semiconductor device of claim 41, further comprising:
- a layer of etch stop material over the substrate and the layer of gate material;
- a layer of dielectric over the layer of etch stop material; and
- a butt contact opening through the layer of etch stop material and the layer of dielectric to the silicide layer on the butt contact, the butt contact opening comprising and laterally extending from the silicide layer on the second sidewall.
Type: Application
Filed: Mar 23, 2005
Publication Date: Jul 28, 2005
Applicant:
Inventor: Jhon-Jhy Liaw (Hsin-Chu)
Application Number: 11/087,422