High-speed TO-can optoelectronic packages
Methods and apparatus that provide TO-can optoelectronic packages suitable for optical telecommunications applications involving data speed rates of up to 10 Gbps and beyond. A TO-can optoelectronic package may comprise a TO-can cap and a TO-can header defining an interior region of the package. An optoelectronic component such as a laser or photodetector can be mounted within the interior region of the TO-can. An electrical connection may be selected for coupling the optoelectronic component to a selected post of the TO-can package. The electrical connection may include a transmission line formed from a conductive element other than a bond wire having a predefined length that can assist in reducing parasitic effects within the TO-can optoelectronic package to accommodate high-speed data rates. The transmission line itself is connected to the optoelectronic component and the selected post with a plurality of bond wires.
This is a continuation application which claims priority under 35 USC § 120 to U.S. patent application Ser. No. 10/212,011 filed on Aug. 2, 2002, which claims the benefit of priority to U.S. Provisional Application No. 60/350,610 filed on Jan. 18, 2002, which are incorporated herein by reference in their entirety.
BACKGROUND OF THE INVENTIONThe present invention pertains to semiconductor laser packages, transmitters, and receivers, and more particularly to the packaging of a plurality of optoelectronic components within TO-can package configurations.
Lasers are used for many purposes particularly in the telecommunications industry. Edge emitting lasers are the most common. They are available for all major telecommunication wavelengths and multiple types are available for various applications. Vertical cavity surface emitting lasers (VCSELs) generally offer a low-cost alternative and are capable of being fabricated in larger volumes on semiconductor wafers. These lasers, which emit light vertically from the surface of a fabricated wafer, combine the surface emission and low production cost as with light-emitting diodes (LEDs), and provide the necessary speed and power for many laser applications. VCSELs operating at wavelengths at 850 nm are often selected today as laser sources for commercial 10 Gigabit Ethernet networks and optical backplane systems.
A widely accepted package for VCSELs and edge emitting lasers is commonly known as TO-style or TO-can packages. Many conventional semiconductor laser apparatus utilize a metal or composite TO-can package for optoelectronic packaging, which includes a can and header assembly that is formed with a window or lens. The laser emissions from a laser contained within the package passes through the header or cap portion of the TO-can. The TO-can design has been used to package electronic devices since the early days of transistor technology and include characteristic features such as these windowed tops and related fiber pigtailing. The wide availability of relatively inexpensive TO-can parts and packaging services makes it a very attractive package for optoelectronic devices. Presently, relatively small TO-cans such as TO-18, TO-46 or TO-56 are used for optoelectronic packaging that accommodate data rates as high as 2.5 and 3.3 Gbps. The TO-can package however was not originally designed for relatively high Gbps speeds. High-speed optoelectronic devices have primarily relied on other more expensive laser packaging solutions such as butterfly modules.
The parasitic reactance associated with the construction of a TO-can package limited its operation for high-speed applications in the past. Speeds of up to a few gigabits per second have been achieved by implementing a “differential” drive approach well known in the art. This approach minimizes the effect of the parasitics associated with the grounding of the package. A virtual ground is established that limits current flow through the physical ground. Maintaining the balance between the differential signals is crucial however and this task gets progressively more difficult at higher speeds. Moreover, TO-can packages generally employ bond wires for connecting various optoelectronic components and posts which may further contribute to the undesirable parasitic effects often associated with these types of packages at high data rates. The current lack of adequate solutions for addressing these limitations can not meet the growing demand for high-speed digital communications services which now require optical transmission links to operate at data rates of 10 Gbps and higher.
Early transistors were packaged in metal cans. The “transistor outline package” or the “TO-can” was the first transistor package standardized by the JEDEC organization in 1960's. (JEDEC: Joint Electron Devices Engineering Council was formed in 1958.) As optoelectronic semiconductor devices such as photodetectors became available, these components were housed in TO-cans with optical windows. Although the TO-can was not originally intended to be used with high-speed modulation, it has supported increasing rates of modulation over the years. Currently, small TO-cans such as TO-46 are widely used in optoelectronic packaging at data rates as high as 2.5 and 3.3 Gbps. The wide availability of inexpensive TO-can parts and packaging services makes it a very attractive package for optoelectronic devices.
SUMMARY OF THE INVENTIONIt is an object of the invention to provide high-speed TO-can packaging for semiconductor lasers, transmitters, receivers, and other optoelectronic components. The cost-effective improvements described herein may further promote the continued success of TO-can packaging in the marketplace as a desirable choice for current high-speed applications demanding data rates of 10 Gbps and greater.
The following is a basic summary of various aspects of the invention which may be applied separately or collectively in achieving a TO-can package for applications requiring high-speed data transfer rates of up to 10 Gbps and beyond:
1. Cutting the external TO-can posts short, connecting the posts directly to controlled impedance transmission lines, and grounding the TO-can as well as possible.
2. Decrease inductance below, for example, 600 picoHenries in an electrical path from the laser or photodetector to the post. For example, keeping bond wires inside the TO-can compartment relatively short by incorporating transmission lines as interconnects. Some other examples of decreasing inductance in the electrical path include at least two parallel bond wires, a bond ribbon, and/or multiple bond wires and at least capacitor in series with the capacitor(s) coupled to ground. The bond wire can be less than 500 micrometers in total length, and/or have one or more diameters exceeding 17 microns. The transmission line can be 50 ohms or some other defined impedance for some frequency range and/or include a coplanar waveguide.
3. Combining interconnect transmission lines and other necessary components such as power monitor diode(s) and/or mirror(s) on the same submount for the active device. The transmission line and/or other components may be mounted or formed on the submount. Examples of forming include, for example, forming with the semiconductor material of the submount and/or metallization.
4. Including signal conditioning and/or bandwidth broadening circuitry such as filters also either on the same submount as other TO-can components or on the PC board. For example, a lowpass filter can be partly on the PCB and partly include at least one post of the TO-can, and/or a coplanar waveguide bandpass filter can be on the PCB coupled to at least one post of the TO-can.
These principles may be applied to various TO-can packages including TO-18, TO-46 and TO-56 style packages for edge emitting devices and vertically emitting devices, which may involve modifications specific to such configurations as described herein. The TO-can package can include any number posts, such as 4 posts, 5 posts, or more posts, or fewer posts. The invention may be generally applied to various laser packages and TO-can packaging known in the art such as those described in the following issued patents which are incorporated by reference in their entirety: U.S. Pat. No. 5,838,703 entitled Semiconductor Laser Package with Power Monitoring System and Optical Element; U.S. Pat. No. 6,001,664 entitled Method for Making Closely-Spaced VCSEL and Photodetector on A Substrate; U.S. Pat. No. 6,302,596 entitled Small Form Factor Optoelectronic Transceivers; and U.S. Pat. No. 6,314,117 entitled Laser Diode Package.
BRIEF DESCRIPTION OF THE DRAWINGSFIGS. 1(a) and (c) illustrate the device placement and PC board assembly of a TO-can package in a conventional configuration that is provided herein.
FIGS. 1(b) and (d) illustrate the device placement and PC board assembly of a TO-can package in a high-speed configuration that is provided herein.
FIGS. 7(a) and (b) illustrate filters which may be installed between a laser component and post within a TO-can.
FIGS. 7(c) and (d) illustrate filters which may be installed at least partly on a printed circuit board.
Speed Limitation Comparison
A comparison between TO-can package posts connected with bond wiring alone is provided below against those using a transmission line and shortened bond wires as described herein. Speed limitations of a conventional TO-can package are highlighted below when compared against packages modified in accordance with the invention. To begin the experimentation, the external posts of two TO-cans packages (Can #1 and Can #2) were substantially shortened and edge-mounted on PC boards with 50 ohm transmission lines extending to the posts. Eliminating or reducing the offset distance to the PC board extends the acceptable performance of the TO-can to approximately 7 GHz. Reducing bond-wire lengths further extends its performance to approximately 12 GHz. The inductance and capacitance of the packaging were minimized by keeping the posts to the TO-can as short as possible. Some embodiments include optoelectronic transmit and receive modules in TO-cans that operate at data rates as high as 12.5 Gbps.
In Can #1 200, two adjacent signal posts 202 and 204 were connected with a single bond wire 208 as shown in
The modifications described herein provide TO-can packages that are inherently usable at speeds up to and beyond 10 Gbps without any substantial structural modification. A 10 Gbps VCSEL may be installed within these widely accepted TO-can packages as described herein and mounted on a PC board. The undesirable parasitic effects which currently plague TO-can packages at high-speeds are significantly reduced by approaching the problem as provided herein from two different perspectives, external and internal parasitic minimization. External parasitics may be minimized by reducing the length of the posts and eliminating the physical gap between a TO-can package and the edge of a PC board. Internal parasitics can be reduced by providing a transmission line attached with relatively short end bond wires inside the TO-can in place of a single continuous bond wire.
Integrated Submounts
The VCSEL packaging provided herein may contain multiple lasers, monitor photodiodes or other photoelectronic components. Various components may be formed on a single chip to recognize certain cost-saving benefits and provide a smaller footprint. For example, it is possible to reduce the number of parts by combining the monitor diode with the transmission line segments on the same submount. Another distinct aspect of the disclosed invention provides integrated submounts positioned within the interior region of a TO-can package for integrating transmission lines and other optoelectronic elements inside the can.
In some embodiments, the cap and the header of are integrally formed. In other embodiments, the cap and the header are separately formed and then joined.
In some embodiments that are differentially driven, geometrical symmetry should be maintained the differential lines, because unequal lengths and parasitic reactances of the signal lines can destroy the balance of the differential signal.
In some embodiments, to avoid radiative interference between various signal lines, RF absorber material can be placed on the PC board or close to the board in the enclosure.
Some embodiments compensate for parasitics with additional circuit elements. The parasitics can at least partly be “absorbed” into a low-pass filter or an “artificial transmission line”. One embodiment includes a filter with multiple series inductors and shunt capacitors, allowing the parasitics to provide a few of the elements. The remaining elements may be incorporated into the PC-board and/or the device submount. A quick way to verify this approach is to add 0.25 pF shunt capacitors at the input and output ports of a TO-46 package that has 2.5 to 3.0 millimeters of offset from the board and notice a 2.0 GHz improvement in its bandwidth.
The RF cavity formed within a TO-46 is small enough that its lowest order resonance should not be of concern at 10 Gbps. The first order resonance of a pillbox cavity is at the wavelength of 1.3 times its inside diameter. For a TO-46 with an inside diameter of 4.22 mm, the first cavity resonance occurs at 55 GHz. The inclusion of chips and submounts in the package reduces the resonance frequency, but normally not to the extent that would be of concern at 10 Gbps. Bandwidth limitations observed in practice for some embodiments of the TO-46 are in the range of 3-4 GHz and are caused largely by parasitic reactances. Some reactances are inherent in the structure of the package and cannot be altered without redesigning the TO-can. Other reactances are determined by the assembly of parts inside the TO-can and by the assembly of the TO-can on the PC board.
The simulated performance of a conventional TO-46 shows the familiar bandwidth limitation of approximately 3 GHz or roughly 4 Gbps. This is shown in
The effects of reducing the bond-wire inductance inside the TO-can package and reducing the post inductance outside of it may be examined. In the simulation shown in
It can be seen that post inductance plays a stronger role in limiting the bandwidth of the TO-can package than internal parasitics. The elimination of bond-wire parasitics and post inductances extends the usable bandwidth to 12 GHz and the TO-can can be used at data rates up to 16 Gbps. Some bond wire and/or external post inductance are tolerable at 10 Gbps. In one embodiment, the offset distance is below one millimeter and bond wire lengths below 500 microns.
A TO-46 can be modeled as a two-port network. This was done by connecting a two-port device to two adjacent posts of the TO-can package. The third post was ignored. The two-port device was chosen to be either a 50-ohm transmission line or a single bond-wire. The lumped element model developed for this configuration is shown in
Based on the foregoing, various TO-can style packages are provided which may be adapted for high-speed data transfer rates in accordance with the present invention. While the present invention has been described in this disclosure as set forth above, it shall be understood that numerous modifications and substitutions can be made without deviating from the true scope of the present invention as would be understood by those skilled in the art. Therefore, the present invention has been disclosed by way of illustration and not limitation, and reference should be made to the following claims to determine the scope of the present invention.
Claims
1. A high-speed TO-can package comprising:
- a TO-can cap and a TO-can header defining an interior region;
- a plurality of posts connected to the TO-can header;
- a laser mounted within the interior region; and
- an electrical connection coupling the laser and a selected post, wherein the electrical connection includes a transmission line formed from a conductive element other than a bond wire having a predefined length for reducing parasitic effects within the TO-can package to be able to accommodate high-speed data rates, and wherein the transmission line itself is connected to the laser and the selected post with a plurality of bond wires.
2. A high-speed TO-can package comprising:
- a TO-can cap and a TO-can header defining an interior region;
- a plurality of posts connected to the TO-can header;
- a photodetector mounted in the interior region; and
- an electrical connection coupling the photodetector and a selected post, wherein the electrical connection includes a transmission line formed from a conductive element other than a bond wire having a predefined length for reducing parasitic effects within the TO-can package to be able to accommodate high-speed data rates, and wherein the transmission line itself is connected to the photodetector and the selected post with a plurality of bond wires.
3. A TO-can optoelectronic package comprising:
- a TO-can cap and a TO-can header defining an interior region of the package;
- an optoelectronic component mounted within the interior region;
- a plurality of posts for connection to a circuit board; and
- an electrical connection coupling the optoelectronic component and a selected post, wherein the electrical connection includes a transmission line formed from a conductive element other than a bond wire having a predefined length for reducing parasitic effects within the TO-can optoelectronic package to be able to accommodate high-speed data rates, and wherein the transmission line itself is connected to the optoelectronic component and the selected post with a plurality of bond wires.
Type: Application
Filed: Mar 18, 2005
Publication Date: Sep 15, 2005
Inventors: Majid Riaziat (San Jose, CA), Ching-Kung Tzuang (Hsinchu), Yi-Ching Pao (Los Gatos, CA)
Application Number: 11/084,704