Pipe coupling having wedge shaped keys
A coupling and pipes joined by the coupling are disclosed. The pipes have circumferential grooves adjacent their ends which are engaged by keys that project inwardly from the couplings. The keys are wedge shaped and substantially fill the grooves to provide a rigid joint. The grooves may have a shape that is complementary to the grooves. The keys may have convex or concave cross sectional shapes. The couplings have segments attached by fasters engaging lugs at either end of the coupling. The lugs are attached pad to pad or in spaced relationship. Gaps may be maintained between various surfaces on the keys and on the grooves through tolerances on the couplings.
Latest Victaulic Company of America Patents:
The invention concerns couplings for joining pipes end to end and effecting a substantially rigid or flexible fluid tight joint therebetween.
BACKGROUND OF THE INVENTIONCouplings for joining pipes together end to end comprise arcuate segments that circumferentially surround co-axially aligned pipes and engage circumferential grooves positioned proximate to the ends of each pipe. The couplings are also used to connect pipes to fluid control components such as valves, reducers, strainers, restrictors, pressure regulators, as well as components to components. Although in the description which follows pipes are described, they are used by way of example only, the invention herein not being limited for use only with pipes per se. It should also be noted that the term “pipe” as used herein refers to straight pipes as well as elbows, tees and other types of fittings.
The segments comprising the couplings have circumferential keys that extend radially inwardly toward the pipes and fit within the grooves around the pipes. The keys are typically somewhat narrower than the grooves to permit them to fit within the grooves and bear against the shoulders formed by the grooves to hold the pipes together against internal pressure and external forces that may be applied to the pipes. External forces may arise due to thermal expansion or contraction of the pipes due to changes in temperature as well as the weight of the pipes or components such as valves attached to the pipes, which can be significant for large diameter pipes and valves. Wind loads and seismic loads may also be a factor.
It is advantageous that pipe couplings be substantially rigid, i.e., resist rotation of the pipes relative to one another about their longitudinal axes, resist axial motion of the pipes relatively to one another due to internal pressure, and resist angular deflection of pipes relative to one another. A rigid coupling will be less likely to leak, requiring less maintenance, and will simplify the design of piping networks by eliminating or at least reducing the need for engineers to account for axial motion of pipes in the network when subjected to significant internal pressure. Pipes joined by rigid couplings require fewer supports to limit unwanted deflection. Furthermore, valves and other components which may tend to rotate out of position because their center of gravity is eccentric to the pipe axis will tend to remain in position and not rotate about the longitudinal axis under the pull of gravity when the pipe couplings are substantially rigid.
Many couplings according to the prior art do not reliably provide the desired degree of rigidity mainly because they use keys having rectangular cross-sections that are narrower than the width of the grooves that they engage. This condition may result in inconsistent contact between the coupling and the pipes which allows too much free play and relative movement, for example, axially, rotationally or angularly, between the pipes. It is also difficult to ensure that such keys properly engage the grooves. Couplings which provide a more rigid connection may be ineffective to force the pipe ends apart at a desired distance from one another so that the keys and grooves are in proper alignment and the pipes are properly spaced. When properly spaced apart, the pipe ends and the coupling cooperate with a sealing member positioned between the coupling and the pipe ends to ensure a fluid tight seal. The movement of the pipes, although small, is effected as the couplings are engaged with each other and the pipe and may required that significant torque be exerted upon the fasteners used to clamp the coupling to the pipes. This is especially acute when pipes to be joined are stacked vertically one above another, and the action of engaging the coupling with the pipes must lift one of the pipes upwardly relatively to the other in order to effect the proper spacing between the pipe ends. For such couplings, it is also difficult to reliably visibly ensure that the couplings have been properly installed so that the keys engage the grooves and the pipes are spaced apart as required to ensure a fluid tight seal.
It would be advantageous to provide a coupling that provides increased rigidity while also reducing the force necessary to engage the coupling with the pipe ends to effect their proper spacing, and also provides a reliable visual indication that the couplings are properly installed on the pipes.
SUMMARY OF THE INVENTIONThe invention concerns a pair of pipes and a coupling for connecting the pipes end to end. The pipes have circumferential grooves proximate to each the end. The coupling comprises a plurality of segments positionable circumferentially around the pipes. Each of the segments has a pair of keys projecting radially inwardly toward the pipes for engagement with the circumferential grooves. The keys are positioned in spaced apart relation from one another and define a space therebetween. The keys have a wedge-shaped cross section. The grooves have a complementary shape to the keys for receiving the keys when the segments are positioned circumferentially around the pipes.
One of the keys has an inner surface facing the space and an outer surface facing away from the space. The outer surface is preferably angularly oriented relative to the inner surface thereby defining the wedge-shaped cross section of the one key. Preferably, the inner surface is oriented substantially perpendicularly to a longitudinal axis of the pipes.
The one key further includes a radially facing surface positioned between the inner and outer surfaces. The one key may be sized so that when the lugs on one of the segments are engaged, either in pad to pad contact or in spaced apart relation with the lugs on another of the segments, the radially facing surface and the outer surface remain substantially in spaced relation away from the pipe, the inner surface engaging the groove to connect the pipes to one another.
In another embodiment, the outer surface is positioned in contact with the pipe, the radially facing surface is in spaced relation away from the pipe, and the inner surface again engages the groove to connect the pipes to one another. In an additional embodiment, the outer surface is in spaced relation away from the pipe and the radially facing surface is in contact as well as the inner surface. Alternately, the one key may be sized so that when the lugs on the one segment are engaged in either pad to pad contact or spaced apart relation with the lugs on the other segment, both the radially facing surface and the outer surface are positioned in contact with the pipe, the inner surface engaging the groove to connect the pipes to one another.
Preferably, one of the grooves comprises a first side surface positioned proximate to an end of the pipe. A second side surface is positioned in spaced apart relation to the first side surface and distally to the end of the pipe. A floor surface extends between the first and second side surfaces. One of the first and second side surfaces is oriented substantially perpendicularly to the floor surface.
The invention further includes coupling for connecting two pipes together end to end. The pipes have circumferential grooves proximate to each end. The coupling comprises first and second segments positionable circumferentially around the pipes. Each segment has outwardly extending lugs at each end. The lugs of the first segment align with the lugs of the second segment and are adapted to receive fasteners for attaching the segments to one another. Each of the segments has a pair of keys projecting radially inwardly toward the pipes for engagement with the circumferential grooves. The keys are positioned in spaced apart relation from one another and define a space therebetween. Each of the keys has an inner surface facing the space and an outer surface facing away from the space. The keys further include a radially facing surface positioned between the inner and outer surfaces. The keys are sized so that when the lugs on the first segment are engaged with the lugs on the second segment, at least one of the radially facing surfaces and the outer surfaces remain substantially in spaced relation away from the pipes, the inner surfaces engaging the grooves to connect the pipes to one another.
The invention also concerns a pair of pipes and a coupling for connecting the pipes end to end. The pipes have circumferential grooves proximate to each the end. The coupling comprises a plurality of segments positionable circumferentially around the pipes. Each of the segments has a pair of keys projecting radially inwardly toward the pipes for engagement with the circumferential grooves. The keys are positioned in spaced apart relation from one another and define a space therebetween, the keys having a cross sectional shape that substantially fills the grooves when the segments are positioned circumferentially around the pipes. In one embodiment, the keys have a convexly curved cross sectional shape.
BRIEF DESCRIPTION OF THE DRAWINGS
Although lugs are the preferred means for attaching the segments to one another end to end, it is recognized that there are other attachment means, such as circumferential bands, axial pins, and latching handles. These means are disclosed in U.S. Pat. Nos. 1,541,601, 2,014,313, 2,362,454, 2,673,102, 2,752,174, 3,113,791, and 4,561,678, all of which are hereby incorporated by reference.
For large diameter pipes, it is sometimes advantageous to form the coupling 10 from more than two segments. As shown in
As shown in
As best shown in
The use of keys having camming surfaces is not confined to couplings for joining grooved pipes to one another, but may be used on practically any coupling arrangement having at least one key.
As best shown in
Although surfaces 52 and 54 in
As shown in
Preferably, the grooves 34 and 36 that keys 30 engage have a shape that is complementary to the wedge-shape cross section of the keys. In general, it is advantageous that the keys have a cross sectional shape that substantially fills the grooves even when the shapes of the groove and key are not exactly complementary. Groove 36 is described in detail hereafter, groove 34 being substantially similar and not requiring a separate description. Groove 36 is defined by a first side surface 58 positioned proximate to end 14a of pipe 14, a second side surface 60 positioned in spaced apart relation to the first side surface 58 and distally from the end 14a, and a floor surface 62 that extends between the first and second side surfaces. The complementary shape of the groove 36 to the keys 30 is achieved by orienting the floor surface 62 substantially parallel to the radial surface 54, orienting the first side surface 58 substantially perpendicularly to the floor surface 62 (and thus substantially parallel to the inner surface 50), and orienting the second side surface 60 substantially parallel to the outer surface 52 (and thus angularly to the floor surface 62).
Preferably, the keys 30 and the lugs 20 and 22 are sized and toleranced so that when the lugs 20 are in pad-to-pad engagement with the lugs 22, i.e., in contact with each other as shown in
Analogous relationships between the key surfaces and the surfaces comprising the grooves are contemplated even when the keys do not have a shape complementary to that of the groove, as shown in
Alternately, as shown in
It is found that the preferred configuration defined by pad-to-pad engagement of lugs 20 and 22 in conjunction with the tolerance conditions as describe above provides several advantages. The engagement of inner surface 50 with first side surface 58 forces pipes 12 and 14 into substantially precise axial position relative to one another. Because these surfaces bear against one another when the coupling is installed on the pipes they will not shift axially when internal fluid pressure is applied. Thus, designers need not take into account lengthening of the piping network due to internal pressure during use, thereby simplifying the design. The relatively small gaps 64 and 66 (which could be zero) ensure adequate rigidity and prevent excessive angular displacement between the pipes and the couplings, while the tolerances necessary to limit the gaps within the desired limits allow the coupling 10 to be manufactured economically. It also allows the grooves in the pipes, valves or other fittings to be manufactured economically. The gaps work advantageously in conjunction with the normally encountered out of roundness of practical pipes to provide a rigid joint. The pad-to-pad engagement of lugs 20 and 22 provides a reliable visual indication that the coupling 10 is properly engaged with the pipes 12 and 14.
If it is desired to have a more flexible coupling 10 to allow greater angular deflection, then the gaps 64 at one or both ends of the coupling may be made larger than the aforementioned limit of 0.035 inches. For flexible couplings, it is found advantageous to have gap 64 between surfaces 52 and 60 preferably be ½ of the size of gap 38 between the ends of pipes 12 and 14 as shown in
It is also feasible to have keys 30 engage grooves 34 and 36 without a gap under all tolerance conditions. This configuration takes advantage of the wedging action of the keys to provide a rigid joint. It is not practical, however, to have this configuration and also maintain pad to pad engagement of lugs 20 and 22 because it is very difficult to economically manufacture couplings and pipes to the necessary tolerances to ensure both pad to pad engagement and full contact circumferential wedging engagement of the keys and grooves. For the configuration wherein pad-to-pad engagement is not nominally held, as shown in
As illustrated in
A roller tool 68 is used having a cross sectional shape at its periphery substantially identical to the desired shape of the groove. The roller tool 68 is forcibly engaged with the outer surface 70 of pipe 14 around its circumference, either by moving the roller tool around the pipe or moving the pipe about its longitudinal axis 48 relatively to a roller tool. Preferably, a back-up roller 72 engages the inner surface 74 of the pipe 14 opposite to the roller tool 68. The pipe wall 76 is compressed between the roller tool 68 and the back-up roller 72. Use of the back-up roller 72 provides a reaction surface for the roller tool. The back-up roller also helps ensure that accurate groove shapes are achieved by facilitating material flow during roll grooving.
During cold working to form the groove 36 having the angularly oriented second side surface 60, it is found that significant friction is developed between the roller tool 68 and the pipe 14. The friction is caused by the contact between the angled surface 78 on the roller tool 68 that forms the angularly oriented second side surface 60 of groove 36. Because it is angled, points along angled surface 78 are at different distances from the axis of rotation 80 of roller tool 68. Due to their different distances from the axis 80, each of the points on the surface 78 will move relative to one another at a different linear speed for a particular angular velocity of the roller tool 68. The points farthest from the axis 80 move the fastest and the points closest to the axis move the slowest. Thus, there is a velocity differential along the angled surface 78 which causes the surface to slip relatively to the second side surface 60 of groove 36 as the roller tool 68 rotates relatively to the pipe 14 to form the groove. The relative slipping between the roller tool and the pipe causes the friction. Excessive heat caused by the friction can result in a break down of the roller tool bearing lubricants and make the roller tool too hot to handle when changing tools for a different size pipe. The roller tool must be allowed to cool before it can be changed, resulting in lost time.
To mitigate the generation of excessive heat, the roller tool 82, shown in
The roller tool 82 has a circumferential surface 94 with a cross sectional shape complementary to groove 84, the shape comprising a first perimetral surface 99 oriented substantially perpendicularly to the axis of rotation 80 of roller tool 82, a second perimetral surface 98 positioned in spaced relation to the first perimetral surface 96 and oriented substantially perpendicular to the axis 80, a radial surface 100 extending between the first and second perimetral surfaces and oriented substantially parallel to axis 80, and an angled surface 102 positioned adjacent to perimetral surface 100 and oriented angularly to the axis 80. The angled surface 102 is preferably oriented up to about 70° relatively to axis 80, and most preferably at about 50°. Surface 102 slopes away from the second perimetral surface, thereby making contact with the pipe when forming the groove 84.
Wedging action between the keys 30 and grooves in the pipes can be achieved for groove cross sectional shapes other than those described above. The main criterion for wedging action is that the width of the groove at the surface of the pipe be greater than the width of the groove at the floor of the groove.
Roller tools for creating grooves as described above are shown in
Similarly, roller tool 109, shown in
Additional roller embodiments 117 and 119, shown in
Roller tool 127, shown in
Roller tool 133, shown in
As shown in
While grooves adapted to achieve significant wedging action with the keys of a coupling have been described applied to pipe ends, such grooves may also be used in conjunction with pipe fittings as well. For example,
As further shown in
Pipe couplings according to the invention incorporate the advantages of a rigid connection with a reliable visual indicator for confirming that the coupling properly engages the pipes to effect a fluid tight joint. The couplings have tolerances allowing them to be economically produced and still yield a substantially rigid joint between pipes.
Claims
1. In combination, a pair of pipes and a coupling for connecting said pipes end to end, said pipes having circumferential grooves proximate to each said end, said coupling comprising a plurality of segments positionable circumferentially around said pipes and means for attaching said segments end to end, each of said segments having a pair of keys projecting radially inwardly toward said pipes for engagement with said circumferential grooves, said keys being positioned in spaced apart relation from one another and defining a space therebetween, said keys having a wedge-shaped cross section, said grooves having a complementary shape to said keys for receiving said keys when said segments are positioned circumferentially around said pipes.
2. A combination according to claim 1, wherein at least two of said segments have outwardly extending lugs at one end, said lugs aligning with one another and being adapted to receive a fastener for attaching said segments to one another end to end, said lugs and fastener comprising said attachment means.
3. A combination according to claim 2, wherein one of said keys has an inner surface facing said space and an outer surface facing away from said space, said inner and outer surfaces being angularly oriented relative to one another thereby defining said wedge-shaped cross section of said one key.
4. A combination according to claim 3, wherein said outer surface has a substantially flat cross-sectional profile.
5. A combination according to claim 3, wherein said inner surface is oriented substantially perpendicularly to a longitudinal axis of said pipes.
6. A combination according to claim 3, wherein said one key further includes a radially facing surface positioned between said inner and outer surfaces, said one key being sized so that when said lug on one of said segments is engaged in pad to pad contact with said lug on another of said segments, said radially facing surface and said outer surface remain substantially in spaced relation away from said pipe, said inner surface engaging said groove to connect said pipes to one another.
7. A combination according to claim 3, wherein said one key further includes a radially facing surface positioned between said inner and outer surfaces, said one key being sized so that when said lug on one of said segments is engaged in pad to pad contact with said lug on another of said segments, said outer surface is positioned in contact with said pipe and said radially facing surface is positioned in spaced relation away from said pipe, said inner surface engaging said groove to connect said pipes to one another.
8. A combination according to claim 7, further comprising a plurality of teeth positioned on said outer surface, said teeth engaging said groove when said outer surface is positioned in contact with said pipe.
9. A combination according to claim 3, wherein said one key further includes a radially facing surface positioned between said inner and outer surfaces, said one key being sized so that when said lug on one of said segments is engaged in pad to pad contact with said lug on another of said segments, both said radially facing surface and said outer surface are positioned in contact with said pipe, said inner surface engaging said groove to connect said pipes to one another.
10. A combination according to claim 7, wherein said radially facing surface has a substantially flat cross-sectional profile.
11. A combination according to claim 6, wherein said spaced relation between said radially facing surface and said pipe is no greater than about 0.030 inches.
12. A combination according to claim 6, wherein said pipe ends are separated apart from one another by a gap, said outer surface being spaced apart from said pipe by a distance approximately equal to ½ of said gap between said pipe ends.
13. A combination according to claim 6, wherein said spaced relation between said outer surface and said pipe is no greater than about 0.035 inches.
14. A combination according to claim 3, wherein said one key further includes a radially facing surface positioned between said inner and outer surfaces, said one key being sized so that when said lug on one of said segments is attached in spaced apart relation to said lug on another of said segments, said radially facing surface and said outer surface remain substantially in spaced relation away from said pipe, said inner surface engaging said groove to connect said pipes to one another.
15. A combination according to claim 3, wherein said one key further includes a radially facing surface positioned between said inner and outer surfaces, said one key being sized so that when said lug on one of said segments is attached in spaced apart relation to said lug on another of said segments, said outer surface is positioned in contact with said pipe and said radially facing surface is positioned in spaced relation away from said pipe, said inner surface engaging said groove to connect said pipes to one another.
16. A combination according to claim 3, wherein said one key further includes a radially facing surface positioned between said inner and outer surfaces, said one key being sized so that when said lugs on one of said segments are attached in spaced apart relation with said lugs on another of said segments, both said radially facing surface and said outer surface are positioned in contact with said pipe, said inner surface engaging said groove to connect said pipes to one another.
17. A combination according to claim 15, wherein said radially facing surface has a substantially flat cross-sectional profile.
18. A combination according to claim 1, wherein one of said grooves comprises:
- a first side surface positioned proximate to an end of said pipe;
- a second side surface positioned in spaced apart relation to said first side surface and distally to said end of said pipe;
- a floor surface extending between said first and second side surfaces; and
- wherein one of said first and second side surfaces is oriented at an angle to said floor surface, said angle being greater than 90 degrees.
19. A combination according to claim 18, wherein said second side surface is oriented at said angle to said floor surface.
20. A combination according to claim 19, wherein said first side surface is oriented substantially perpendicularly to said floor surface.
21. A combination according to claim 1, further comprising a sealing member positionable within said space between said keys, said sealing member extending circumferentially around said pipes to provide a fluid tight seal between said pipe ends.
22. A coupling for connecting two pipes together end to end, said pipes having circumferential grooves proximate to each end, said coupling comprising first and second segments positionable circumferentially around said pipes, each said segment having outwardly extending lugs at each end, said lugs of said first segment aligning with said lugs of said second segment and being adapted to receive fasteners for attaching said segments to one another, each of said segments having a pair of keys projecting radially inwardly toward said pipes for engagement with said circumferential grooves, said keys being positioned in spaced apart relation from one another and defining a space therebetween, each of said keys having an inner surface facing said space and an outer surface facing away from said space, said keys further including a radially facing surface positioned between said inner and outer surfaces, said keys being sized so that when said lugs on said first segment are engaged with said lugs on said second segment, at least one of said radially facing surfaces and said outer surfaces remain substantially in spaced relation away from said pipes, said inner surfaces engaging said grooves to connect said pipes to one another.
23. A coupling according to claim 22, wherein both said radially facing surface and said outer surface remain substantially in spaced relation away from said pipes when said lugs on said first segment are engaged with said lugs on said second segment.
24. A coupling according to claim 22, wherein said outer surface is angularly oriented relative to said inner surface thereby defining a wedge-shaped cross section of said keys.
25. In combination, a pair of pipes and a coupling for connecting said pipes end to end, said pipes having circumferential grooves proximate to each said end, said coupling comprising a plurality of segments positionable circumferentially around said pipes, each of said segments having a pair of keys projecting radially inwardly toward said pipes for engagement with said circumferential grooves, said keys being positioned in spaced apart relation from one another and defining a space therebetween, said keys having a cross sectional shape that substantially fills said grooves when said segments are positioned circumferentially around said pipes.
26. A combination according to claim 25, wherein one of said keys has a wedge shaped cross sectional shape.
27. A combination according to claim 26, wherein said one key has an inner surface facing said space and an outer surface facing away from said space, said outer surface being angularly oriented relative to said inner surface thereby defining said wedge shaped cross section of said one key.
28. A combination according to claim 27, wherein said outer surface is oriented at an angle up to 70 degrees relatively to an axis oriented coaxially with a longitudinal axis of said pipes.
29. A combination according to claim 25, wherein said keys have a convexly curved cross sectional shape.
30. In combination, a pair of pipes and a coupling for connecting said pipes end to end, said pipes having circumferential grooves proximate to each said end, said coupling comprising a plurality of segments positionable circumferentially around said pipes and means for attaching said segments end to end, one of said segments having a first key projecting radially inwardly toward one of said pipes for engagement with said circumferential groove on said one pipe, another of said segments having a second key projecting radially inwardly toward the other of said pipes for engagement with said circumferential groove on said other pipe, said keys having a wedge-shaped cross section, said grooves having a complementary shape to said keys for receiving said keys when said segments are positioned circumferentially around said pipes.
Type: Application
Filed: Mar 28, 2005
Publication Date: Sep 29, 2005
Applicant: Victaulic Company of America (Easton, PA)
Inventor: Douglas Dole (Whitehouse Station, NJ)
Application Number: 11/091,146