Fluid delivery mechanism
The present invention provides a fluid transfer fitment for controllably retaining a fluid in a reservoir in a leak-tight manner. This fluid transfer fitment can be used with a variety of fluid delivery mechanisms. The fluid transfer fitment has a cap portion, an engaging segment, a fluid transfer check valve and a vent check valve. The fluid transfer check valve of the fitment is located within the engaging segment of the fitment. The present invention also provides fluid delivery mechanisms, which can be used with a cleaning implement. The fluid delivery mechanisms can be used with a fitment having a cap portion, an engaging segment and a fluid transfer check valve.
Latest Patents:
This application claims the benefit of priority to U.S. Provisional Application Ser. No. 60/409,263, filed Sep. 9, 2002, which is herein incorporated by reference.
TECHNICAL FIELDThe present invention relates to a fitment suitable for use with a variety of a fluid delivery mechanism of cleaning implements used to clean hard surfaces.
The present invention also relates to fluid delivery mechanisms suitable for a cleaning implement for cleaning a hard surface.
BACKGROUND OF THE INVENTIONThe literature is replete with products capable of cleaning hard surfaces such as ceramic tile floors, hardwood floors, counter tops and the like. In the context of cleaning floors, numerous mopping devices and other cleaning implements are described which comprise a handle attached to a mop head, a fluid delivery mechanism which can be either attached to or incorporated within the handle and a reservoir which can be used to store a cleaning composition and which is in fluid communication with the fluid delivery mechanism. These cleaning implements usually have a handle comprising at least one pole segment attached at one end to a mop head and at the other end to a hand-grip. The hand-grip can include a trigger, a switch or any other type of actuating mechanism suitable for remotely actuating the fluid delivery mechanism. Some cleaning implements comprise a reservoir which is permanently attached to the implement and which can be filled by a user. Examples of such cleaning implements are disclosed in U.S. Pat. No. 2,228,573 to A. L. Lowe, filed Mar. 4, 1938, and U.S. Pat. No. 6,227,744 to Fodrocy et al, filed Oct. 12, 1999, which disclose cleaning implements with a refillable reservoir. Other types of cleaning implements comprise a reservoir which is removably attachable to the fluid delivery mechanism of the cleaning implement. One example of such cleaning implements can be found in International Application serial No PCT/US00/09498 to Hall et al, filed Mar. 23, 2001, and assigned to the Clorox Company, which describe cleaning implements having a liquid reservoir which is removably attachable to a fluid delivery mechanism which can be integrated into a cap and which is removably attachable to the finish of the reservoir. The first end of a tube is attached to this cap and the second end is attached to a nozzle which can be removably attached to the mop head of a cleaning implement. In order to replace an emptied reservoir, a user must remove the nozzle from the mop head, then thread it through the universal joint connecting the mop head to the handle and remove the cap from the emptied bottle. A user can then reattach the cap to a new filled reservoir and then reattach the nozzle to the mop head. Alternatively, when replacing an emptied reservoir, the user can also leave the nozzle attached to the mop head but in this case, the length of the tube can limit the ability of the user to maneuver or manipulate the reservoir while maintaining the cleaning implement stable. In addition, the disclosed fitment including the fluid delivery mechanism is specific in the sense that it is only usable as a gravity fed delivery mechanism and does not allow the user to use the reservoir with another kind of fluid delivery mechanism.
Another example of such a cleaning implement is disclosed in copending U.S. patent application Ser. No. 09/831,480, to Policicchio et al., filed Nov. 9, 1999, and assigned to the Procter & Gamble Company. The reservoir of the described cleaning implements can be removably attached to a fluid delivery mechanism with a mechanism such as the one described in U.S. Pat. No. 6,206,058 to Nagel et al, filed Nov. 9, 1998, and assigned to The Procter & Gamble Company, which discloses a fitment removably attachable to a reservoir and including a venting valve and a fluid transfer check valve.
Another type of mechanism is also disclosed in U.S. Pat. No. 6,386,392, to Lawson et al., filed May 22, 2000, and assigned to The Procter and Gamble Company, which discloses a reservoir comprising a cap having an opening covered with a needle-pierceable membrane. When this bottle is inserted in the housing of a cleaning implement, this membrane can be pierced by a first needle for delivering a liquid and by a second needle for venting this reservoir. As the cap having the needle-pierceacle membrane is attached to the reservoir, the user can conveniently handle the reservoir and insert it or remove it from the housing. Nonetheless, this type of reservoir can only be used with a fluid delivery mechanism comprising at least one needle.
While the prior art addresses the problem associated with cleaning implements having a liquid delivery mechanism to deliver a liquid from a reservoir, the fitments which are disclosed are specialized in the sense that they do not provide a fluid transfer fitment usable with a variety of fluid delivery mechanisms which can be conveniently attachable by a user to a reservoir.
As such, there remains a need for such a fitment attachable to a reservoir that offers both convenience, a low manufacturing cost and the ability to be used with a variety of fluid delivery mechanism.
SUMMARY OF THE INVENTIONThe present invention relates to a fluid transfer fitment suitable for controllably retaining a liquid in a reservoir in a leak-tight manner and capable of being used with a variety of fluid delivery mechanisms. In one embodiment, the fluid transfer fitment can have a cap portion, an engaging segment, a fluid transfer check valve and a vent check valve. In a preferred embodiment, the fluid transfer check valve can be located within the engaging segment of the fitment.
The present invention also relates to fluid delivery mechanisms, in connection with a cleaning implement and suitable for being used with a fitment having a cap portion, an engaging segment and a fluid transfer check valve.
All documents cited herein are, in relevant part, incorporated herein by reference; the citation of any document is not to be construed as an admission that it is prior art with respect to the present invention.
It should be understood that every maximum numerical limitation given throughout this specification will include every lower numerical limitation, as if such lower numerical limitations were expressly written herein. Every minimum numerical limitation given throughout this specification will include every higher numerical limitation, as if such higher numerical limitations were expressly written herein. Every numerical range given throughout this specification will include every narrower numerical range that falls within such broader numerical range, as if such narrower numerical ranges were all expressly written herein.
All parts, ratios, and percentages herein, in the Specification, Examples, and Claims, are by weight and all numerical limits are used with the normal degree of accuracy afforded by the art, unless otherwise specified.
BRIEF DESCRIPTION OF THE DRAWINGS
While not intending to limit the utility of the fluid delivery mechanism herein, it is believed that a brief description of its use in association with a modern mopping implement will help elucidate the invention.
In heretofore conventional wet-mopping operations, the mop user requires a source of detersive liquid for application to the surface being cleaned by means of the mop head. Earlier practice was to dip the mop head into an external source of liquid, such as a bucket, optionally wring-out the excess of liquid, and then apply the mop head to the surface with sufficient force to dislodge soil therefrom. Unfortunately, after repeated usage, the mop heads themselves, become dirty, unsanitary, unsightly and have to be removed and laundered.
Modern mopping implements employ disposable sheets or absorbent pads, which are releasably affixed to the head of the mopping implement, and which can conveniently be discarded and replaced after soiling. Even more modern implements carry their own reservoir of detersive liquid, thereby greatly enhancing their usefulness and convenience. In use, the liquid is dispensed onto the surface being cleaned via a liquid delivery mechanism.
As will be immediately appreciated, it becomes necessary to, somehow, affix the reservoir to such an implement. Moreover, from time-to-time, it is necessary to replenish the detersive liquid in the reservoir. As will be seen from the disclosures herein this affixing-usage-removal-refill-replacement sequence results in several problems whose solutions are non-trivial.
The first problem faced by the manufacturer is that the reservoir is typically inverted and affixed to the implement in an inverted position so that the gravity force contributes to the deliver of the detersive liquid. Inversion of a fluid-containing reservoir can, of course, result in spillage. Moreover, with certain designs, a small amount of liquid can remain in the reservoir and/or in the implement and/or in the various fitments and tubes connecting the whole assembly when the liquid in the reservoir is sufficiently depleted that its refill is judged necessary or that a different type of detersive liquid is desired. Even such small amounts of liquid can cause unacceptable spillage or leakage when the reservoir is removed.
In addition, the coupling of the inverted reservoir to the implement must be simple for users so that an essentially leak-proof joint or connection is achieved. Moreover, various vents, seals, valves, and the like, must be employed to provide good flow of the detersive liquid to the mop head or directly onto the surface being cleaned. Operational means to start-and-stop the liquid flow must be provided. Yet, the overall construction of the implement and its reservoir should be sufficiently simple that it is economical to manufacture and sell. As noted, the overall construction of the reservoir and its interconnecting fluid transfer fitment, is preferably one that would be useful on a variety of implements having different types of fluid delivery mechanism.
The foregoing considerations are addressed by the present invention, as will be clear from the detailed disclosures which follow.
Reference will now be made in detail to the present preferred embodiments of the invention, examples of which are illustrated in the accompanying drawings wherein like numerals indicate the same elements throughout the views and wherein reference numerals having the same last two digits (e.g., 20 and 120) connote similar elements.
I. Fluid Transfer Fitment
Referring to
In one embodiment, the fluid transfer fitment 10 comprises a cap portion 20 having an engaging segment 120 with an opening 220 as shown in
In one embodiment, the cap portion 20 can have an opening 420 for allowing the vent opening 230 to be in fluid communication with the outside atmosphere. In a preferred embodiment, the cap portion 20 can have a groove 520, preferably a substantially circular groove, located on the inner bottom surface of the cap portion as shown in
In another embodiment, the check valve 80 can be a movable spring-loaded ball valve or a slit seal valve which can be engaged by a probe.
In another embodiment, the fitment 10 can be attached to the finish of the “crown” portion of a reservoir and an additional cap portion can be attached to the base portion of the reservoir such that a user can refill the reservoir through the additional cap when the reservoir is inverted.
One skilled in the art will understand that the previously described fitment can be used with any fluid delivery mechanism having a receiving member.
II. Fluid delivery Mechanism.
Another aspect of the invention is related to fluid delivery mechanisms and in particular cleaning implements having a fluid delivery mechanism comprising a receiving member, which can be used in combination with the previously described fluid transfer fitment.
Referring to
In one embodiment, the cleaning implement comprises a housing 45 for enclosing a fluid delivery mechanism and receiving at least a portion of a reservoir 55 and which is attached to the handle 15.
Optionally but preferably, at least one resilient member 85 can be located about the portion of the tube 75 which is located within the universal joint 65 as shown in
II. (a) Gravity Fed Fluid Delivery Mechanism.
As previously discussed, the fluid delivery fitment can be attached to a fluid filled reservoir, as represented in
For clarity purposes,
In one embodiment, a docking member 95, represented in
In one embodiment, the docking member 95 comprises at least one but preferably two flexible snapping members 695 and 795. Each snapping member 695 and 795, can be deflected in a substantially downward and/or upward direction when the fluid transfer fitment, which is connected to the reservoir, is respectively inserted and/or removed from the housing and the cavity 495 of the docking member 95. When the cap portion 120 of the fluid delivery fitment 10 is located within the cavity 495 of the docking member 95 and past the snapping members 695, 795, each snapping member 695, 795 returns suddenly to its original position and generate an audible signal. Among other benefits, the snapping members 695 and 795 provide an audible signal informing the user that the reservoir has been properly inserted in the housing. The snapping members 695 and 795 also act as a snapping/locking device maintaining the fitment in place in the cavity 495 of the docking member 95 and therefore the reservoir within the housing of the cleaning implement. The reservoir 55 is properly maintained within the housing until a sufficient pulling or extracting force is applied by the user on the reservoir in order to disengage the reservoir from the housing 45.
For clarity purposes,
In one embodiment, the fluid delivery mechanism 12 can be controllably actuated by a lever member 22 which comprises a first end 122 and a second end 222. In a preferred embodiment, the first end 122 of the lever member 22 is pivotably connected via a pin or protrusion to a non-moving part of the cleaning implement. In one embodiment, the first end 122 of the lever member 22 is pivotably connected to the housing 45. In a preferred embodiment, the first end of the lever member 22 is pivotably connected to an extending portion 895 of the docking member 95 via an opening 1895 shown in
In one embodiment, the lever member 22 has a substantially “fork” shape and comprises a right arm portion 322 and an opposing left arm portion 422. In a preferred embodiment, the right and left arm portions 322, 422 are pivotably connected to the extending portion 895 of the docking member 95. In one embodiment, the right and/or left arm portions 322, 422 can have at least one but preferably two ear portions 1322, 1422 extending upwardly from the right and/or left arm portion. The ear portions are capable of contacting and lifting in a substantially upward direction a clipping member 72 of the fluid delivery mechanism 12 when the longitudinal member pulls on the lever member 22.
In one embodiment represented in
In one embodiment, the fluid delivery mechanism 12 comprises a transition member 62 for conveying a fluid from the receiving member 42 to the tube 75 in a substantially leak-tight manner. The transition member 62 comprises a hollow body 162 (shown in
In one embodiment, the transition member 62 comprises means 262 for actuating for actuating the check valve 80 of the fitment 10. The actuating means 262 can be any device suitable for movably engaging the check valve 80. Non-limiting example of means 262 for actuating the check valve 80 can be rod, pole, shaft, which can be hollow, tubular and/or solid and which allow a fluid to flow within and/or along the means for actuating the check valve 80 when this actuating means engages the check valve 80. In a preferred embodiment, the actuating means is an actuating rod which has a substantially cross shape at a cross-sectional. The actuating rod 262 is preferably connected to the upper portion of the transition member 62. When a user controllably causes the longitudinal member 32 to impart a pulling motion to the lever member 22, the ear portions 1322 and 1422, push the clipping member 72 in a substantially upward direction. The upward motion of the clipping member 72 causes the transition member 62 and the actuating rod 262 to move in a substantially upward direction concurrently. As the actuating rod 262 moves in the substantially upward direction, the actuating rod 262 pushes the piston portion 280 upwards such that the lower opening 220 of the engaging segment 120 ceases to be sealed causing the fluid contained in the reservoir 55 to flow by gravity from the reservoir 55 and the fitment 10, into the chamber 242, from the chamber 242 into the tube 75 via the transition member 62, from the tube 75 to the nozzle 225 and from the nozzle 225 to a surface to be cleaned. One skilled in the art will understand that the fluid in the reservoir 55 keeps flowing to the nozzle 225 as long as the actuating rod 262 actuates the check valve 80, i.e. as long as the longitudinal member 32 maintains the lever member 22 in an upward position. When the user allows the longitudinal member 32 to return to its original position, the lever member 22 can pivot back to a downward position causing the clipping member 72, the transition member 62 and, as a result, the actuating rod 262 to return concurrently to their original downward position as shown in
Optionally but preferably, the transition member 62 comprises a disk portion 362 for sealing the lower portion of the chamber 242 of the receiving member 42 in a substantially leak-tight manner.
One skilled in the art will understand that when a user actuates the previously described fluid delivery mechanism 12 while a fluid filled reservoir and a fitment 10 are inserted within the housing 45, the fluid flows by gravity to the nozzle 225. When the user ceases to actuate the fluid delivery mechanism 12, a column of fluid is “trapped” within the receiving member 42 and the tube 75 due to the leak-tightness between the check valve 80 and the lower opening 220 of the engaging segment 120 as well as the leak-tightness between the engaging segment 120 and the receiving member 42. In the event a user wishes to remove the reservoir from the housing 45 before the reservoir has been emptied, this leak-tightness to the outside atmosphere ceases and the column of fluid undesirably flows onto the floor surface. This situation may happen when for example the user wishes to use a different type of fluid contained in a different reservoir or wishes to disassemble the cleaning implement to decrease its storage space. As a result, it is believed that it can be useful to add stoppage means from preventing this column of fluid to flow undesirably onto a surface when the reservoir is removed. In one embodiment, the stoppage means can be a disk portion 362 which can be connected to the transition member 62 such that it is located between the actuating rod 262 and the upper opening 1162 of the transition member 62. In a preferred embodiment, the diameter of the disk portion 362 is slightly greater than the diameter of the portion of the receiving member 42 which is adjacent to the disk portion 362 such that the disk portion 362 contacts the inner surface of the receiving member in a substantially leak-tight manner. The disk portion 362 separates an upper portion 3242 of the chamber 242 of the receiving member 42 from the lower portion 4242 of the chamber 242 in a substantially leak-tight manner as shown in
While particular embodiments of the subject invention have been described, it will be apparent to those skilled in the art that various changes and modifications of the subject invention can be made without departing from the spirit and scope of the invention. In addition, while the present invention has been described in connection with certain specific embodiments thereof, it is to be understood that this is by way of limitation and the scope of the invention is defmed by the appended claims which should be construed as broadly as the prior art will permit.
Claims
1. A fluid transfer fitment, said fitment comprising:
- a cap portion having a first fluid transfer opening;
- an engaging segment for engaging a receiving member of a fluid delivery. mechanism, wherein said engaging segment extends from said first fluid transfer opening of said cap portion and wherein said engaging segment comprises a wall defining a cavity and a second fluid transfer opening in fluid communication with said first fluid transfer opening; and
- a fluid transfer check valve for controllably preventing a fluid from flowing through said fitment, wherein said fluid transfer check valve is connected to said engaging segment and wherein at least a portion of said fluid transfer check valve is located within said engaging segment.
2. The fluid transfer fitment of claim 1 further comprising a fluid filled reservoir having a finish portion wherein said cap portion is releasably attached to said finish portion and wherein said fluid filled reservoir is inverted.
3. The fluid transfer fitment of claim 1 wherein said cap portion comprises a vent opening in fluid communication with the outside atmosphere and a vent valve in fluid communication with said vent opening.
4. The fluid transfer fitment of claim 3 wherein said fluid transfer check valve controllably closes said first fluid transfer opening in a substantially leak-tight manner.
5. The fluid transfer fitment of claim 3 wherein said fluid transfer check valve controllably closes said second fluid transfer opening in a substantially leak-tight manner.
6. A fluid delivery mechanism, said fluid delivery mechanism comprising:
- a docking member having a top surface and an opening through said top surface
- a receiving member for receiving an engaging segment of a fitment having a fluid transfer check valve, wherein said receiving member comprises a wall having an inner surface defining a chamber, an upper portion being adjacent to an upper inlet, said upper inlet being engageable by said engaging segment and lower portion being adjacent to a lower outlet, wherein at least a portion of said receiving member extends through said opening of said docking member and wherein said receiving member is connected to said docking member and wherein said receiving member is in fluid communication with a nozzle member; and
- actuating means for movably actuating said fluid transfer check valve, wherein said actuating means is connected to said receiving member and wherein said actuating means is located within said chamber of said receiving member.
7. The fluid delivery mechanism of claim 6 further comprising a transition member, said transition member comprising a substantially hollow body having an upper opening and a lower opening such that a fluid can flow from said upper opening to said lower opening of said transition member, wherein said upper opening is located within said chamber.
8. The fluid delivery mechanism of claim 7 wherein said lower opening of said transition member is in fluid communication with said nozzle member.
9. The fluid delivery mechanism of claim 8 wherein said actuating means is a rod being connected to said transition member.
10. The fluid delivery mechanism of claim 9 wherein said transition member comprises a contacting member wherein said contacting member is located between said actuating rod and said upper opening of said transition member.
11. The fluid delivery mechanism of claim 10 wherein said contacting member separates said chamber into an upper chamber and a lower chamber in a substantially leak-tight manner such that a fluid cannot flow from said upper chamber to said lower chamber when said contacting member sealingly contacts said inner surface of said receiving member.
12. The fluid delivery mechanism of claim 11 wherein said receiving member is substantially deformable.
13. The fluid delivery mechanism of claim 12 wherein said receiving member is substantially radially and outwardly deformed when pressure is applied to said transition member such that said contacting member ceases to sealingly contact said inner surface of said and such that a fluid flows from said upper chamber to said lower chamber by gravity.
14. A fluid connecting mechanism for a cleaning implement, said fluid connecting mechanism comprising:
- a handle,
- a mop head having a top surface, wherein the top surface of said mop head is rotatably connected to said handle with a universal joint having a first and a second rotational axis;
- a tube, wherein said tube communicates with said handle and said mop head and wherein at least a portion of said tube is located within said universal joint; and
- a resilient member, wherein said resilient member is connected to said portion of said tube located within said universal joint.
15. The fluid connecting mechanism of claim 14 wherein said tube is deformable.
16. The fluid connecting mechanism of claim 15 wherein said handle is substantially parallel to said mop head.
17. The fluid connecting mechanism of claim 14 wherein said resilient member is located within the portion of said tube located within said universal joint.
18. The fluid connecting mechanism of claim 14 wherein said resilient member is a spring.
19. A fluid connecting mechanism for a cleaning implement, said fluid connecting mechanism comprising:
- a handle,
- a mop head having a top surface, wherein the top surface of said mop head is rotatably connected to said handle with a universal joint having a fist and a second rotational axis;
- a resilient tube member, wherein said resilient member is located within said universal joint and wherein said resilient tube portion has a substantially corrugated shape.
20. A mechanism for transferring fluid from a reservoir and delivering said fluid to the external environment, said mechanism comprising first and second elements, wherein:
- a.) said first element comprises a fluid transfer fitment comprising, in association: i.) means for removably attaching said first element to said reservoir; ii.) a tubular engagement member extending outward from means (i) for engaging said second element and providing fluid communication between said reservoir and said second element; iii.) valve means for controlling flow of said fluid between said reservoir and said second element, said valve means residing at least partially within said engagement shaft; iv.) optionally, venting means for equalizing pressure within said reservoir as fluid flows therefrom; and
- b.) said second element comprises a fluid delivery fitment, comprising: v.) a receiving member having walls having a receiving orifice for insertion of said engagement shaft therethrough and an exit orifice leading to said external environment for delivery of said fluid thereto, said walls comprising a flexible, resilient material which provides an annular seal around said engagement shaft; vi.) actuating means located within said receiving member for movably engaging said valve (iii); and vii.) means associated with said second element for effecting a motion to said actuating means sufficient to operate said valve.
Type: Application
Filed: Sep 9, 2003
Publication Date: Nov 17, 2005
Patent Grant number: 7172099
Applicant:
Inventors: Paulus Antonius Hofte (Sint Martens Latem), Gregory Spooner (Hong Kong), Terence Curtis (Bucks), Hoss Vong (Hong Kong), Phillip Nagel (West Chester, OH)
Application Number: 10/658,031