System and method for reduced hierarchy key management

A controller for managing media stream decryption keys includes a media decryption engine, a table, and a content key list. The media decryption engine receives an encrypted media stream from a headend and presents a decrypted media stream to a receiving device in response to a decryption key, wherein the decryption key is a function of a content key. The table contains a content key index and a plurality of corresponding content keys. Content keys that correspond to a particular encrypted media stream are selected from the content key list using an index from the content key table, and that is referenced by an identifier received from a headend in connection with the encrypted media stream.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates to a system and method for reduced hierarchy key management.

2. Background Art

Media (e.g., digital video, audio, combination video and audio, and the like) stream generation and distribution systems (e.g., cable systems) use keyed encryption and decryption to provide security to the media stream content (e.g., to reduce or prevent unauthorized use of or intrusion upon the media streams). Conventional products that are used to provide management of the encryption/decryption keys are generally unwieldy and expensive to implement and use.

In a typical, conventional media stream conditional access system (CAS), Category Keys or Session Keys are used to decrypt Entitlement Control Messages (ECMs) to obtain a Content Key or Control Word in the media stream. Each media program stream has a unique Content Key or Control Word.

Therefore, it would be desirable to have a system and a method for a reduced hierarchy key management that is lower in cost, easier to implement, and easier to use than conventional approaches.

SUMMARY OF THE INVENTION

The present invention generally provides a system and a method for a reduced hierarchy key management that is lower in cost and easier to implement and easier to use than conventional approaches. The present invention generally provides novel concepts in the ability to securely renew (using role based authentication) and re-configure Key Management products to support both proprietary and non-proprietary systems.

According to the present invention, a controller for managing media stream decryption keys is provided. The controller comprises a media decryption engine, a table, and a content key list. The media decryption engine generally receives an encrypted media stream from a headend and presents a decrypted media stream to a receiving device in response to a decryption key. The decryption key is generally a function of a content key. The table may contain a content key and index and a plurality of corresponding content keys. Content keys that correspond to a particular encrypted media stream may be selected from the content key list using an index from the content key table, and that is referenced by an identifier received from a headend in connection with the encrypted media stream. The table may optionally (i.e., alternatively) contain initialization vector (IV) values that may be indexed and selected.

Also according to the present invention, a method of managing media stream decryption keys is provided. The method comprises receiving an encrypted media stream from a headend and presenting a decrypted media stream to a receiving device in response to a decryption key using a media decryption engine. The decryption key is generally a function of a content key. The method further comprises storing a content key index and a plurality of corresponding content keys in a table, and selecting content keys that correspond to a particular encrypted media stream from a content key list using an index in the content key table that is referenced by an identifier received from the headend in connection with the encrypted media stream. The table may optionally (i.e., alternatively) contain initialization vector (IV) values that may be indexed and selected.

Further, according to the present invention, a system for distribution, reception and display of media streams is provided. The system comprises a headend, a media decryption engine, and a table. The headend may be configured to generate and present at least one encrypted media stream. The media decryption engine generally receives the at least one encrypted media stream and presents a decrypted media stream in response to a decryption key. The decryption key is a function of a content key. Content keys that correspond to a particular encrypted media stream are selected from a content key table using an entry in the content key index that is referenced by an identifier received from the headend in connection with the encrypted media stream.

The above features, and other features and advantages of the present invention are readily apparent from the following detailed descriptions thereof when taken in connection with the accompanying drawings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIGS. 1(a-d) are diagrams of media stream decoders of the present invention; and

FIGS. 2(a-b) are diagrams of media processing and delivery systems implementing the present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT(S)

Terms used to describe the present invention are defined as follows:

AES: Advanced Encryption Standard. AES is generally a much more secure algorithm to use for the storing of digital content in a digital video recording when compared to DES. The standard key length used for AES is 128 bits.

DES: Data Encryption Standard. A fixed-key-length security algorithm that employs 56-bit length keys. Any 56-bit number can be implemented as a DES key. The relatively short key length renders DES vulnerable to brute-force attack wherein all possible keys are tried one by one until the correct key is encountered (i.e., the key is “broken”).

Electronic Code Block (Mode): ECB, In ECB the message is divided into 64-bit blocks, and each block is encrypt separately. Encryption is independent for each block.

Entitlement Control Message (Stream): ECM, Messages that generally define access requirements of a program, specify the tiers required for subscription, and the cost associated with impulse purchase of the program. The index may be delivered in the ECM as a reference to the content key. Encrypted program keys may be delivered in the ECM stream.

Entitlement Management Message (Stream): EMM, Messages that define access rights for each individual decoder. The EMM stream is processed with the access control device, however, the user processor buffers EMMs and feeds them to the access control device via an interface.

Hash: A function (or process) that converts an input (e.g., the input stream) from a large domain into an output in a smaller set (i.e., a hash value, e.g., the output stream). Various hash processes differ in the domain of the respective input streams and the set of the respective output streams and in how patterns and similarities of input streams generate the respective output streams. One example of a hash generation algorithm is Secure Hashing Algorithm-1 (SHA-1). Another example of a hash generation algorithm is Message Digest 5 (MD5). The hash may be generated using any appropriate algorithm to meet the design criteria of a particular application.

Headend: The control center of a cable television system, where broadcast signals are received and distributed. The headend generally contains antennas, preamplifiers, frequency converters, demodulators, encoders, compressors, automatic switching equipment and other related equipment that receives, amplifies, filters, encrypts, encodes, and converts incoming satellite and terrestrial streams for presentation to distribution channels.

Initialization vector: IV, An initialization vector in a block cipher is a block of bits that is combined with the first block of data in any of several feedback modes. The IV will make each ciphertext unique, even when similar plain text is encrypted with the same key in chain block coding (CBC) mode.

Keylist: A list of decoder addresses and respective decoder keys in ordered pairs. Keylists may be used by the Uplink Control System (UCS) for generation of authorization messages that are addressed to the diagnostic circuit that is embedded in decoders that are specific to the encoder system.

Program: A time contiguous collection of motion image information, audio information, or a combination thereof that is transmitted (i.e., presented, broadcast, sent, delivered, etc.) as an entity.

Program Key: An encryption/decryption key that controls access, encryption/decryption, etc. of a particular program.

Triple-DES: (3-DES) Application of DES encryption three times using three different keys or, alternatively, using a one key for the first and third segments of a three segment key and a second key for the middle segment, for a total key bit-width of 112 or 168 bits is also used to protect certain structures and the key inside entitlements.

Unit address: A unique number that identifies and distinguishes one decoder from another. One example of a unit address is a Media Access Control (MAC).

Unit key (or Private key): A key that is unique to a respective decoder. Messages intended for a particular decoder are encrypted using the respective unit key.

Unit keylist: A file that contains unit addresses and respective unit keys.

Uplink Control System (UCS): Software that is used to support the secure delivery of digitally compressed services. The UCS generally provides the capability to authorize and de-authorize individual decoders on an event-by-event basis.

UTC: Universal Time Code

Working key: A low level key that generally changes several times per second. The working key generally has a validity that is equal to or shorter in duration than the program to which it is related. The working key is also referred to as the “control word.” In one typical example, the working key changes every 20 to 30 seconds. In one example (e.g., services that do not have a video component), the working key epoch (i.e., the period of time during a program for which a working key is valid) duration may be set at an appropriate time interval. However, any appropriate time for changing the working key may be implemented to meet the design criteria of a particular application. The working key is used to derive the keystream. The working key is generally delivered in an encrypted form with the respective program key.

Working Key File: A file that contains the working keys for the entire program that is encrypted in the program key, generally in chronological order.

The reduced hierarchy key management of the present invention generally provides a system and method for renewable and re-configurable security for delivering Entitlement Management Messages (EMM's), Entitlement Control Messages (ECM's), Content Keys, and the associated keys. In a typical Conditional Access System (CAS), Category Keys or Session Keys (decrypted from the EMM) are used to decrypt the ECM to obtain the Content Key or a Control Word in the video stream. Each media stream (e.g., video program stream) generally has a unique Content Key or Control Word. The reduced hierarchy key management of the present invention generally uses a highly secure method to deliver a set of symmetric keys such as triple-DES or AES (which can be protected using one or more mutually defined algorithms and data such as one way (e.g., SHA-1, MD5, and the like) hashing and Exclusive OR (EXOR) operations as part of the EMM for all program media streams. ECB modes of AES, DES or triple-DES do not require an initialization vector (IV) while CBC modes do require and IV. The system and method of the present invention may optionally (i.e., alternatively) include an IV that may be indexed and selected if CBC mode is used for the algorithm chosen.

Both the headend delivering the key list and the receiving device may be able to receive encrypted data and obtain the clear-text keys. An index table is also generally delivered for referencing each of the delivered keys. The EMM updates can generally be used solely to deliver the entitlements after the first table is sent. In one example, the reduced hierarchy of the present invention can obtain a key index by using a program identifier (PID). In another example, the reduced hierarchy of the present invention can obtain a key index via a session ID such as a Video On Demand (VOD) Session ID. The key index is generally used to determine the index which references one or more related content keys.

The key index is generally used to obtain the key (and alternatively an IV) when Cipher Block Chaining mode is used. The index table can be updated as a countermeasure in lieu of sending new keys for each new EMM. The number of keys can be less than the total number of program streams and content keys because some streams can be derived mathematically from combinations of other keys. In other cases, entire service tiers can be on the same general key and derivative keys may be generated for each program stream in the respective tier. The system and method of the present invention may eliminate the delivery and management of Category or Session Keys and the related ECMs from the headend.

For VOD services, a table of keys can be generated and delivered at session setup time. The keys for VOD service may be delivered with synchronization information related to key change as well as other information for short term working key epochs. A VOD Session ID or, alternatively, a Program ID may be used as an index to reference the keys list with the appropriate record of information for the VOD transport decryption. In alternative embodiments of reduced hierarchy key management of the present invention, one-way hashing may be implemented in the protection, selection and processing of the decryption key.

The reduced hierarchy key management of the present invention generally provides a new, more secure, and elegant system and method to deliver content keys for decrypting the program streams in conditional access systems (e.g., Broadcast and Video On Demand applications). The key management of the present invention may dramatically reduce the complexity required to deliver new content keys when a first Entitlement Message has been sent (i.e., presented, transmitted, provided, broadcast, etc.) to each set top box. The reduced hierarchy key management system and method of the present invention may be implemented as a portion of a new CAS system. The new CAS system generally provides for the manufacture and distribution of devices that are compatible with infrastructure, regardless of specific content security mechanisms that are used in that infrastructure. The new CAS system may provide far more efficient manufacturing, distribution and operations, and in fact enable new business models, including the retail availability of extremely low cost customer premises equipment (CPE) when compared to conventional approaches.

The reduced hierarchy key management of the present invention provides the user with flexibility and also helps to simplify Impulse Pay Per View (IPPV) and Video On Demand (VOD) security in the headend when compared to conventional approaches. The simplified key management structure of the present invention can be applied to IPPV and VOD technologies and thereby standardize the overall approach to security for VOD.

The commercial value of the unique improved system and method for reduced hierarchy key management of the present invention is potentially very large because the present invention may provide all of the Consumer Electronics (CE) industry to innovate new types of products for multiple system operators (MSOs). Furthermore, all CE companies are potential customers. The present invention may lower the overall cost of producing headends, STBs and digital televisions, lower the cost and ease the operational complexities for IPPV and VOD, thereby providing the MSOs significant cost savings when compared to conventional approaches. Further, by enabling dramatically lower costs as well as increased innovation and new business models, the reduced hierarchy key management of the present invention may improve the competitive position of cable television implementations versus alternative video providers such as Digital Broadcast Satellite (DBS) (i.e., Digital TV transmissions via satellite) and emerging telecommunications-based video systems.

Referring to FIG. 1a, a diagram illustrating a media decoder (i.e., controller, processor, apparatus, circuit, device, etc.) 100 of the present invention is shown. The decoder 100 may be implemented in connection with a digital media stream distribution system (described in more detail in connection with FIGS. 2(a-b)). The controller 100 is generally implemented as a security processor (or processing system) that provides at least one security feature (e.g., encryption, decryption, authentication, security key management, copy protection, digital rights management, etc.) to at least one digital media input/output stream. The decoder 100 generally has an input 102 that receives at least one signal (e.g., VIDIN and PID), an input/output 104 that receives/presents a signal (e.g., TFHE) as well as additional data, signals, messages, and the like, an input 106 that receives a working key modifier and application function signal (e.g., WKM), and an output 108 that presents a signal (e.g., VIDOUT).

The streams VIDIN and VIDOUT may be implemented as digital media streams that may be in an encrypted and in a clear (i.e., unencrypted or decrypted) state (or condition), respectively. The streams VIDIN and VIDOUT are each generally implemented as a digital media signal stream (e.g., an MPEG, MPEG-2, etc. stream or other transport stream). In one example, the stream VIDOUT may be implemented as a decrypted (and decompressed) version of the stream VIDIN. However, the streams VIDIN and VIDOUT may be implemented having any appropriate format and protocol to meet the design criteria of a particular application.

The signal PID may be implemented as a program identifier for the respective program that has been selected by a user (e.g., customer, client, viewer, listener, etc.). The signal TFHE may be implemented as at least one entitlement management message (EMM) that is received from and presented to the headend via an out-of-band (OOB) transmission. The working key modifier and application function (e.g., a factor, an operator, or a combination of a factor and an operator that was applied to the content key to enhance encryption) WKM is generally combined with a content key to generate a working key that is used to decrypt an encrypted media stream (e.g., the stream VIDIN) to generate a clear output media stream (e.g., the media stream VIDOUT).

The controller 100 generally comprises a media stream transport decryption engine 110, a table 112, a list 114, and a combiner 116. The decoder 100 is generally implemented via at least one processor (e.g., microprocessor, controller, etc.) and at least one memory (e.g., random access memory (RAM), read only memory (ROM), NVROM, flash, EPROM, etc.) where one or more processes, routines, engines, lists, tables, etc. may be stored. The engine 110, the table 112, the list 114, and the combiner 116 are generally implemented within the processor and memory of the decoder 100.

The engine 110 may have a first input that may receive a stream (e.g., VIDIN) from a headend (described in connection with FIG. 2), an input that may receive a stream decryption working key (e.g., WK), and an output that may present (i.e., transmit, broadcast, send, etc.) a stream (e.g., VIDOUT). The decryption engine 110 may be configured to decrypt (and decompress) the media stream VIDIN and present the clear media stream VIDOUT in response to the working key WK and the media stream VIDIN. The decryption key WK is generally a function of the content key.

The input/output 104 may provide for interfacing that corresponds to (or is related to) entitlement management message (EMM) downloads that are authenticated between the headend (e.g., headend 202, described in more detail in connection with FIGS. 2(a-b)) and the media decoder 100. The input/output 104 may further provide for interfacing that corresponds to downloads to the decoder related to at least one of entitlement structure, content keys lists, IV lists, content key index tables, and digital signatures.

The table 112 generally comprises a content key index table. The contents of the table 112 are generally loaded from the headend (e.g., via the input/output 104). During the downloading from the headend, the content key list table may be decrypted and extracted using the respective unit or device key. The table 112 may receive the identifier PID via the input 102. The table 112 may present an index (e.g., IND) to the content key list 114 in response to the identifier PID based on the respective value in the table 112 using a content key index contained therein. In an alternative (i.e., optional) example, the table 112 comprises a content key and IV index table.

The list 114 generally contains a list of content keys that may be referenced by respective index values (e.g., the index IND). The contents of the list 114 may be loaded via the input/output 104. The list 114 may be configured to present a content key to the combiner 116 in response to the respective index IND. The content keys (and, alternatively or optionally, IV values) in the list 114 that correspond to a particular encrypted media stream VIDIN are selected from the content key (and, alternatively or optionally, IV) table 112 using an entry in the content key (and, alternatively or optionally, IV) index that is referenced by the identifier PID that is received from the headend in connection with the encrypted media stream VIDIN. Content keys and IVs that correspond to a particular encrypted media stream are selected from the content key and IV list using the index IND from a content key and IV table that is referenced by the identifier PID that is received from the headend in connection with the encrypted media stream when Cipher Block Chaining is used as the mode of a selected algorithm.

The combiner 116 may be configured to present the working key WK to the engine 110 in response to the working key modifier WKM and the content key. The combiner 116 may combine the working key modifier WKM and the content key using at least one of a hash and an exclusive OR (EXOR) operation (i.e., routine, algorithm, process, method, steps, blocks, etc.). In one example (an optional or alternative mode of operation), the combiner 116 may be configured to periodically change the working key WK. For example, the combiner 116 may change the working key WK every four video display frame times.

The present invention obviates the need for the transmission, receipt, and processing of respective entitlement control messages (ECMs) as are used in conventional approaches. As such, the reduced hierarchy key management of the present invention is lower in cost, easier to implement, and easier to use than conventional approaches.

Referring to FIG. 1b, a diagram illustrating an alternative media decoder (i.e., controller, processor, apparatus, circuit, device, etc.) 100′ of the present invention is shown. The decoder/controller 100′ may be implemented similarly to the decoder/controller 100 and may further comprise one or more one-way hash operators 118 (e.g., operators 118a-118n). The hash operators 118 may be configured to provide a one-way hash operation (i.e., process, routine, algorithm, etc.) to at least one of the index IND as selected from the table 112 via the list 114, the key selected from the 112, and in connection with the modifier WKH to generate the decryption (i.e., working) key WK.

Referring to FIG. 1c, a diagram illustrating an alternative media decoder (i.e., controller, processor, apparatus, circuit, device, etc.) 100″ of the present invention is shown. The decoder 100″ may be advantageously implemented in connection with video on demand (VOD) key management. The media stream VIDIN may be an encrypted VOD media stream. The media stream VIDOUT may be clear VOD media stream. The input 102 may receive the media stream VIDIN. In one example, the input 102 may receive the identifier PID. In another example, the input 102 may receive a VOD session identifier (e.g., VODID). The decoder 100″ generally does not receive the working key modifier WKM.

The input/output 104 may provide for interfacing that corresponds to (or is related to) EMM downloads that are authenticated between the headend and the media decoder 100′. The input/output 104 may further provide for interfacing that corresponds to downloads to the decoder related to at least one of entitlement structure, VOD key records lists, IV lists, content key index tables, and digital signatures.

The controller 100″ generally comprises the media stream transport decryption engine 110, a table 112″, and a list 114″. The decoder/controller 100″ is generally implemented without a combiner such as the combiner 116 of the decoder 100. The engine 110 may receive a video content key (e.g., VK) instead of the working key WK. The engine 110 may generate and present the clear media stream VIDOUT in response to the media stream VIDIN and the decryption key VK.

The table 112″ generally comprises a content key (and, alternatively or optionally, IV) index table. The contents of the table 112′ are generally loaded from the headend (e.g., via the input/output 104). The table 112″ may receive the identifier PID or, alternatively, the identifier VODID via the input 102. The table 112″ may present an index (e.g., IND″) to the content key list 114″ in response to the identifier PID or, alternatively, the identifier VODID based on the respective value in the table 112″ using a key record index contained therein.

The list 114″ generally contains a list of VOD content keys (e.g., the keys VK) that may be referenced by respective index values (e.g., the index IND″). The contents of the list 114″ may be loaded via the input/output 104. The list 114″ may be configured to present a content key to the engine 110 in response to the respective index IND″. The VOD content keys (and, alternatively or optionally, IVs) VK in the list 114″ that correspond to a particular VOD encrypted media stream VIDIN are selected from the content key (and, alternatively or optionally, IV) table 112″ using an entry in the content key record index that is referenced by the identifier PID or, alternatively, the identifier VODID that is received from the headend in connection with the encrypted media stream VIDIN. The stream decryption keys VK are generally presented to the engine 110 on respective key epochs.

Referring to FIG. 1d, a diagram illustrating an alternative media decoder (i.e., controller, processor, apparatus, circuit, device, etc.) 100′″ of the present invention is shown. The decoder/controller 100′″ may be implemented similarly to the decoder/controller 100″ and may further comprise the one or more one-way hash operators 118a-118n. The hash operators 118 may be configured to provide a one-way hash operation to at least one of the index IND as selected from the table 112″ via the list 114″, the key selected from the 112″, and in connection with the decryption (i.e., working key) VK.

Referring to FIG. 2a, a diagram illustrating a media stream processing and distribution system 200 implemented in connection with the present invention is shown. The distribution system 200 generally comprises a headend 202, a network 204, at least one set top box (STB) 206 (generally a plurality of STBs 206a-206n), and at least one respective receiving device (i.e., receiver, transceiver, display device, etc.) 208 (generally a plurality of devices 208a-208n). The distribution system 200 is generally implemented as a media service provider/subscriber system wherein the provider (or vendor) generally operates the headend 202 and the network 204, and also provides a subscriber (i.e., client, customer, service purchaser, user, etc.) with the STB 206.

The STB 206 is generally located at the subscriber location (not shown, e.g., home, tavern, hotel room, business, etc.) and the receiving device 208 is generally provided by the client. The device 208 is generally implemented as a television, high definition television (HDTV), monitor, host viewing device, MP3 player, audio receiver, radio, personal computer, media player, digital video recorder, game playing device, etc. The device 208 may be implemented as a transceiver having interactive capability in connection with the STB 206, the headend 202, or both the STB 206 and the headend 202.

The headend 202 is generally electrically coupled to the network 204, the network 204 is generally electrically coupled to the STB 206, and each STB 206 is generally electrically coupled to the respective device 208. The electrical coupling may be implemented as any appropriate hard-wired (e.g., twisted pair, untwisted conductors, coaxial cable, fiber optic cable, hybrid fiber cable, etc.) or wireless (e.g., radio frequency, microwave, infrared, etc.) coupling and protocol (e.g., HomePlug, HomePNA, IEEE 802.11(a-b), Bluetooth, HomeRF, etc.) to meet the design criteria of a particular application. While the distribution system 200 is illustrated showing one STB 206 coupled to a respective one device 208, each STB 206 may be implemented having the capability of coupling more than one device 208 (not shown).

The headend 202 generally comprises a plurality of devices 210 (e.g., devices 210a-210n) that are implemented as amplifiers, pre-amplifiers, data servers, computers, processors, security encryption and decryption apparatuses or systems, and the like configured to provide video and audio data (e.g., movies, music, television programming, and the like), processing equipment (e.g., provider operated subscriber account processing servers), television service transceivers (e.g., transceivers for standard broadcast television and radio, digital television, HDTV, audio, MP3, text messaging, gaming, etc.), media streams, and the like. In one example, the headend 202 may generate and present (i.e., transmit, provide, pass, broadcast, send, etc.) the stream VIDIN, the signal TFHE, and the program identification signals PID and VODID.

The network 204 is generally implemented as a media stream distribution network (e.g., cable, satellite, and the like) that is configured to selectively distribute (i.e., transmit and receive) media service provider streams (e.g., standard broadcast television and radio, digital television, HDTV, audio, MP3, text messaging, games, etc.) for example, as the stream VIDIN, the downloads TFHE, and the identifiers PID and VODID, to the STBs 206 and to the receivers 208, for example, as the stream VIDOUT. The stream VIDIN, the downloads TFHE, and the identifiers PID and VODID are generally distributed based upon (or in response to) subscriber information. For example, the level of service the client has purchased (e.g., basic service, premium movie channels, etc.), the type of service the client has requested (e.g., standard TV, HDTV, interactive messaging, video on demand, pay-per-view, impulse-pay-per-view, etc.), and the like may determine the media streams that are sent to (and received from) a particular subscriber.

The STB 206 is generally implemented as an STB having multiple stream capability (e.g., standard broadcast television and radio, digital television, audio, MP3, high definition digital television (HDTV), text messaging, etc.). The STB 106 generally comprises at least one respective media decoder (e.g., an appropriate one of the decoders (controllers) 100, 100′, 100″ and 100′″). The STB 206 may receive encrypted (and compressed) video and audio data (e.g., the stream VIDIN), the EMM signal and downloads TFHE, and the id signals PID and VODID, present the EMM signal TFHE to the headend 202 via the network 204, and present clear video and audio data (e.g., the stream VIDOUT) to the receiver 208.

Referring to FIG. 2b, a diagram illustrating a media stream processing and distribution system 200′ implemented in connection with the present invention is shown. The distribution system 200′ generally comprises the headend 202, the network 204, and at least one of the receiving device (i.e., receiver, transceiver, etc.) 208′ (generally a plurality of the devices 208a′-208n′). The receiving device 208′ is generally coupled directly to the network 204 and receives the stream VIDIN, the signal TFHE, and the program identification signals PID and VODID, and receives and presents the EMM signal TFHE. The receiving device 208′ generally comprises at least one respective media decoder (e.g., an appropriate one of the decoders (controllers) 100, 100′, 100″ and 100′″).

In yet another example (not shown), the system 200′ may be implemented having at least one STB 206 coupled to the network 204 and with at least one receiver 208 coupled thereto, as well as having at least one device 208′ that is directly coupled to the network 204.

As is readily apparent from the foregoing description, then, the present invention generally provides an improved system (e.g., the decoders 100 and 100′) and an improved method for a reduced hierarchy key management that is lower in cost, easier to implement, and easier to use than conventional approaches.

While embodiments of the invention have been illustrated and described, it is not intended that these embodiments illustrate and describe all possible forms of the invention. Rather, the words used in the specification are words of description rather than limitation, and it is understood that various changes may be made without departing from the spirit and scope of the invention.

Claims

1. A controller for managing media stream decryption keys, the controller comprising:

a media decryption engine that receives an encrypted media stream from a headend and presents a decrypted media stream to a receiving device in response to a decryption key, wherein the decryption key is a function of a content key;
a table containing a content key index and a plurality of corresponding content keys; and
a content key list, wherein content keys that correspond to a particular encrypted media stream are selected from the content key list using an index from a content key table that is referenced by an identifier received from a headend in connection with the encrypted media stream.

2. The controller of claim 1 wherein the decryption key is a working key that is changed periodically.

3. The controller of claim 1 wherein the list of the content keys and the key index are loaded into the controller from the headend.

4. The controller of claim 1 further comprising a combiner configured to receive the selected content key and a working key modifier, and generate the decryption key in response to the selected content key and the working key modifier.

5. The controller of claim 4 wherein the identifier is a program identifier in the media stream.

6. The controller of claim 4 wherein the combiner generates the decryption key using at least one of an exclusive OR (EXOR) and a hashing operator.

7. The controller of claim 1 wherein the identifier is a video on demand identifier and the table further contains video on demand epochs related to respective content keys, and the decryption keys are further presented in response to a respective video on demand epoch that is selected when the content key is selected.

8. The controller of claim 3 wherein entitlement management message (EMM) updates that are downloaded from the headend to the controller are used solely to deliver entitlements after a first list of the content key tables is sent, and the index table is updated in lieu of sending new keys for each new EMM.

9. The controller of claim 1 wherein the index further comprises initialization vector (IV) values and the content key list contains IVs, wherein content keys and IVs that correspond to a particular encrypted media stream are selected from the content key and IV list using the index from a content key and IV table that is referenced by the identifier that is received from the headend in connection with the encrypted media stream.

10. The controller of claim 1 further comprising at least one hash operator configured to provide a one-way hash operation to at least one of the index, the content key, and the decryption key.

11. A method of managing media stream decryption keys, the method comprising:

receiving an encrypted media stream from a headend and presenting a decrypted media stream to a receiving device in response to a decryption key using a media decryption engine, wherein the decryption key is a function of a content key;
storing a content key index and a plurality of corresponding content keys in a table; and
selecting content keys that correspond to a particular encrypted media stream from a content key list using an index in the content key table that is referenced by an identifier received from the headend in connection with the encrypted media stream.

12. The method of claim 11 wherein the decryption key is a working key that is changed periodically.

13. The method of claim 11 further comprising loading the list of the content keys and the key index into the controller from the headend.

14. The method of claim 11 further comprising receiving the selected content key and a working key modifier, and generating the decryption key in response to the selected content key and the working key modifier using a combiner in the controller.

15. The method of claim 14 wherein the identifier is a program identifier in the media stream.

16. The method of claim 12 generating the decryption key using at least one of an exclusive OR (EXOR) and a hashing operator via the combiner.

15. The method of claim 11 wherein the identifier is a video on demand identifier and the table further contains video on demand epochs related to respective content keys, and the decryption keys are further presented in response to a respective video on demand epoch that is selected when the content key is selected.

17. The method of claim 11 further comprising downloading entitlement management message (EMM) updates from the headend to the controller solely to deliver entitlements after a first list of the content key tables is sent, and updating the index table in lieu of sending new keys for each new EMM.

18. The method of claim 11 wherein the index further comprises initialization vector (IV) values and the content key list contains IVs, wherein content keys and IVs that correspond to a particular encrypted media stream are selected from the content key and IV list using the index from a content key and IV table that is referenced by the identifier that is received from the headend in connection with the encrypted media stream when Cipher Block Chaining is used as the mode of a selected algorithm.

19. The method of claim 11 further comprising at least one hash operator configured to provide a one-way hash operation to at least one of the index, the content key, and the decryption key.

20. A system for distribution, reception and display of media streams, the system comprising:

a headend configured to generate and present at least one encrypted media stream;
a media decryption engine that receives the at least one encrypted media stream and presents a decrypted media stream in response to a decryption key, wherein the decryption key is a function of a content key; and
a table containing a content key index and a plurality of corresponding content keys, wherein content keys that correspond to a particular encrypted media stream are selected from the content key table using an entry in the content key index that is referenced by an identifier that is received from the headend in connection with the encrypted media stream.

21. The system of claim 20 further comprising a network configured to receive the at least one encrypted media stream and present the at least one encrypted media stream to at least one of a set top box (STB) and a receiving device that include the media decryption engine and the table.

Patent History
Publication number: 20060031873
Type: Application
Filed: Aug 9, 2004
Publication Date: Feb 9, 2006
Applicant: Comcast Cable Holdings, LLC (Philadelphia, PA)
Inventors: James Fahrny (Pueblo, CO), Charles Compton (Bryn Mawr, PA)
Application Number: 10/914,478
Classifications
Current U.S. Class: 725/31.000; 380/200.000; 380/239.000
International Classification: H04N 7/167 (20060101);