Connector, and portable terminal equipment including the connector
A connector includes a plug including a plug body made of an insulating material and at least one plug contact supported by the plug body; a receptacle including a receptacle body made of an insulating material and at least one receptacle contact supported by the receptacle body; a contact projecting portion formed on one of the plug contact and the receptacle contact; a contacting portion formed on the other of the plug contact and the receptacle contact; and a first projecting portion and at least one second projecting portion which is formed on the contacting portion, the second projecting portion being formed integral with the first projecting portion to be elongated in an insertion/extraction direction of the plug. A portion of the contact projecting portion is formed as a flat surface having a width greater than a width of the second projecting portion.
Latest KYOCERA ELCO Corporation Patents:
- Connector, and LED lighting apparatus using the connector
- Electrical contact
- CONNECTOR
- CONNECTOR
- SEMICONDUCTOR LIGHT-EMITTING ELEMENT MOUNTING MODULE, SEMICONDUCTOR LIGHT-EMITTING ELEMENT MODULE, SEMICONDUCTOR LIGHT-EMITTING ELEMENT LIGHT FIXTURE, AND MANUFACTURING METHOD OF SEMICONDUCTOR LIGHT-EMITTING ELEMENT MOUNTING MODULE
The present invention is related to and claims priority of the following co-pending application, namely, Japanese Patent Application No. 2004-240018 filed on Aug. 19, 2004.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates to a connector including a receptacle and a plug which are engaged with each other to be electrically connected to each other.
2. Description of the Prior Art
A conventional connector including a receptacle and a plug which are engaged with each other to be electrically connected to each other by inserting the plug into an insertion groove formed on the receptacle has a structural problem such that foreign matter easily accumulates between contacts of the receptacle and associated contacts of the plug, i.e., between two opposed arrays of contacts of the receptacle (receptacle contacts), which are arranged on opposed inner walls in the insertion groove of the receptacle, and associated two arrays of contacts of the plug (plug contacts), which are arranged on opposite sides of the plug to be capable of being in contact with the two opposed arrays of receptacle contacts, respectively, thus causing a bad connection between the receptacle and the plug. In such a connector, foreign matter is usually removed by repeatedly plugging and unplugging the plug into and from the receptacle. However, since each receptacle contact and the associated plug contact are in surface contact with each other when the plug is connected to the receptacle, it is difficult to make each receptacle contact and the associated plug contact impose loads on each other in a concentrated manner, and accordingly, such foreign matter cannot be removed efficiently by repeatedly plugging and unplugging the plug into and from the receptacle.
To overcome such a problem, an improved connector has been proposed in which each receptacle contact (socket contact) or each plug contact (header contact) is provided with a resilient contact projecting portion which projects in a direction intersecting an insertion/extraction direction of the plug relative to the insertion groove of the receptacle. The other corresponding plug contact or receptacle contact is provided with a contacting portion which is elongated in the insertion/extraction direction and with which the contact projecting portion is in sliding contact when the plug is plugged and unplugged into and from the insertion groove, and the contacting portion thereof is provided, on a surface with which the contact projecting portion comes in contact, with a recessed portion. This improved connector is disclosed in Japanese Unexamined Patent Publication No. 2004-111081.
In such a connector, when the contact projecting portion of each receptacle contact or each plug contact is engaged in the recessed portion of the other corresponding plug contact or receptacle contact, the contact projecting portion and the recessed portion come in contact with each other at two points, which achieves a higher efficiency of removing foreign matter from the insertion groove than that in the above described conventional case where each receptacle contact and the associated plug contact are in surface contact with each other. However, if the plug and the receptacle are not precisely positioned relative to each other when the plug is plugged into the receptacle, there is a possibility of the contact projecting portion and the recessed portion being in contact with each other at only one point, or there is a possibility of the contact projecting portion not being engaged in the recessed portion. If the contact projecting portion and the recessed portion are in contact with each other at only one point, a sliding contact between the contact projecting portion and the recessed portion occurs only at a single point (on a single line), which tends to be incapable of removing foreign matter thoroughly, so that there is a possibility of the contact resistance between the plug and the receptacle becoming unstable. Moreover, if the contact projecting portion does not slip into the recessed portion but rather slides on a flat surface portion on the contacting portion on which the recessed portion is not formed, foreign matter is not trapped into the recessed portion and merely moves on the flat surface portion by insertion/extraction movements of the plug relative to the insertion groove of the receptacle, and accordingly, such foreign matter cannot be removed to a sufficient degree. Furthermore, miniaturization of such a conventional connector reduces the contact pressure between each contacting portion and the associated contact projecting portion, thus causing instability of the contact resistance between the plug and the receptacle.
If the contact projecting portion is replaced with a flat shaped or a substantially flat shaped contact portion so that each contact portion becomes capable of coming in surface contact with the associated contacting portion, it becomes difficult to make each receptacle contact and the associated plug contact impose loads on each other in a concentrated manner when the plug and the receptacle come in contact with each other, and therefore the efficiency of removing foreign matter decreases.
Foreign matter tends to accumulate in the recessed portion on each contacting portion by repeatedly plugging and unplugging the plug into and from the receptacle. Such accumulated foreign matter makes it difficult for the contact projecting portion to enter the associated recessed portion, and also makes it difficult for newly-removed foreign matter to be trapped into the recessed portion; additionally, the contact resistance between the plug and the receptacle becomes unstable because foreign matter trapped and accumulated in the recessed portion is not removed therefrom. On the other hand, if foreign matter is adhered to the recessed portion before the plug is plugged into the receptacle, such foreign matter tends to get trapped deeply into the recessed portion due to plugging and unplugging the plug into and from the receptacle, which also causes instability of the contact resistance between the plug and the receptacle.
SUMMARY OF THE INVENTIONThe present invention provides a connector which is configured to be capable of removing foreign matter from between the plug and the receptacle securely and easily to establish stability of the contact resistance between the plug and the receptacle. According to an aspect of the present invention, a connector is provided, including a plug including a plug body made of an insulating material and at least one plug contact supported by the plug body; a receptacle including a receptacle body made of an insulating material and at least one receptacle contact supported by the receptacle body, wherein the receptacle contact contacts the plug contact so as to be electrically connected with the plug contact when the plug is plugged into an insertion groove of the receptacle; a contact projecting portion formed on one of the plug contact and the receptacle contact to resiliently project in a direction to come in contact with the other of the plug contact and the receptacle contact when the plug is plugged into the insertion groove of the receptacle; a contacting portion formed on the other of the plug contact and the receptacle contact to come in sliding contact with the contact projecting portion when the plug is plugged into the insertion groove of the receptacle; and a first projecting portion and at least one second projecting portion which is formed on the contacting portion to project in a direction to come in contact with the contact projecting portion, the second projecting portion being formed integral with the first projecting portion to be elongated in an insertion/extraction direction of the plug relative to the insertion groove of the receptacle. A portion of the contact projecting portion which is in sliding contact with the contacting portion when the plug is plugged into the insertion groove of the receptacle is formed as a flat surface having a width greater than a width of the second projecting portion.
It is desirable for the second projecting portion to include two second projecting portions which are arranged side by side in a direction that intersects the insertion/extraction direction of the plug.
It is desirable for the two second projecting portions to be parallel to each other and extend along the insertion/extraction direction of the plug.
It is desirable for the second projecting portion to be formed on the contacting portion to be inclined with respect to the contacting portion to increase a distance between the second projecting portion and the contact projecting portion in a direction from one end of the second projecting portion which is formed integral with the first projecting portion to the other end of the second projecting portion when the plug is plugged into and unplugged from the receptacle.
One and the other of the plug contact and the receptacle contact can be mounted to a display device unit and a circuit board, respectively, the display device unit and the circuit board being electrically connected to each other by making an insertion of the plug into the insertion groove of the receptacle.
One and the other of the plug contact and the receptacle contact can be mounted to an image pickup device unit and a circuit board, respectively, the image pickup device unit and the circuit board being electrically connected to each other by making an insertion of the plug into the insertion groove of the receptacle.
The connector can be incorporated in portable terminal equipment.
It is desirable for lengths of the two second projecting portions in the insertion/extraction direction of the plug to be the same.
It is desirable for the contact projecting portion to comes in sliding contact firstly with the first projecting portion and secondly with the second projecting portion when the plug is plugged into the insertion groove of the receptacle.
According to the present invention, foreign matter between the plug and the receptacle can be removed securely and easily because the wide first projecting portion is in sliding contact with the contact projecting portion in a wide range and further because at least one second projecting portion is in sliding contact with the contacting projecting portion while imposing a strong load on the contact projecting portion in a concentrated manner. Moreover, even if each plug contact and the associated receptacle contact are not precisely positioned relative to each other when the plug is plugged into the insertion groove of the receptacle, the contact resistance between the plug and the receptacle becomes stable because a portion of the contact projecting portion which is in sliding contact with the contacting portion when the plug is plugged into the insertion groove of the receptacle is formed as a flat surface. Furthermore, even if the plug is plugged and unplugged into and from the receptacle many times, there is little possibility of foreign matter accumulating between the receptacle and the plug, and accordingly, a stable contact resistance between the plug and the receptacle is achieved because no recess or gap is formed between the first projecting portion and the second projecting portion by the arrangement wherein one end the second projecting portion is formed integral with the first projecting portion.
BRIEF DESCRIPTION OF THE DRAWINGSThe present invention will be discussed below in detail with reference to the accompanying drawings, in which:
An embodiment of a connector according to the present invention is provided with a receptacle 1 shown in
As shown in
As shown in
Each receptacle contact 4 is made of a base material (e.g., phosphor bronze, beryllium copper or titanium copper) on which firstly a base coating (e.g., nickel coating) is plated and subsequently a finishing coating (e.g., gold coating) is plated. In the case where each array of receptacle contacts 4 (each array of plug contacts 6 shown in
The retaining portion 41 is provided with a locking piece 46 which is elongated in a widthwise direction of the receptacle contact 4 to make the receptacle contact 4 held securely by the receptacle body 3.
The bendable portion 42 is provided with a contact projecting portion 44 which is formed by bending a portion of the bendable portion 42 to project in a direction away from the retaining portion 41. The contact projecting portion 44 resiliently projects in a direction that intersects the insertion/extraction direction of the plug 2 relative to the insertion groove 31 of the receptacle 1. Moreover, the contact projecting portion 44 is straight in the widthwise direction thereof, and is provided with a flat surface having a width W2 on a portion of the contact projecting portion 44 which comes in sliding contact with a contacting portion 61 of an associated plug contact 6 of the plug 2. The contacting portion 61 has two second projecting portions provided thereon which are arranged side by side in a direction that intersects the insertion/extraction direction of the plug 2 and extend parallel to each other in the insertion/extraction direction. As shown in
The bendable portion 42 is provided with an end portion 45 which projects from a free end (upper end as viewed in
As shown in
As shown in
On the other hand, the plug body 5 is provided, on two opposed side walls thereof which are elongated in a lengthwise direction of the plug body 5, with two collar portions 51 which project in directions away from each other from bottom ends (lower ends as viewed in
Each plug contact 6 is made of a base material (e.g., phosphor bronze) on which firstly a base coating (e.g., nickel coating) is plated and subsequently a finishing coating (e.g., gold coating) is plated. In the case where each array of plug contacts 6 (each array of receptacle contacts 4 shown in
Each plug contact 6 is provided, on a surface of the contacting portion 61 thereof which comes in sliding contact with the contact projecting portion 44 of the associated receptacle contact 4, with a first projecting portion 66 which projects toward the contact projecting portion 44 of the associated receptacle contact 4, and the aforementioned two second projecting portions 68 and 69, each end (upper ends as viewed in
In the case where each array of plug contacts 6 (each array of receptacle contacts 4 shown in
Although the number of second projecting portions formed on the contacting portion 61 can be one or more, it is desirable that two second projection portions be formed on the contacting portion 61, as in the case of the two second projecting portion 68 and 69, because the load imposed on each second projecting portion decreases if more than two second projecting portions are formed on the contacting portion 61. In the case of forming a plurality of second projecting portions on the contacting portion 61, it is desirable that the two second projecting portions be formed in a side by side configuration, elongated in a direction that intersects the insertion/extraction direction of the plug 2 relative to the receptacle 1 to enhance the efficiency of removing foreign matter. Moreover, in order to facilitate removal of foreign matter between the receptacle contacts 4 and the plug contacts 6, it is desirable that each second projecting portion be formed on the contacting portion 61 so as to be inclined with respect to the contact projecting portion 44 of the associated receptacle contact 4 to increase the distance between the second projecting portion and the contact projecting portion 44 in a direction from one end (upper end as viewed in
According to the present embodiment of the contact having the above described structure, each of the first projecting portion 66 and the two second projecting portions 68 and 69 of each plug contact 6 comes into sliding contact with the contact projecting portion 44 of the associated receptacle contact 4 when the plug 2 is plugged and unplugged into and from the receptacle 1. Namely, foreign matter can be removed from between each receptacle contact 4 and the associated plug contact 6 in a wide range by the wide first projecting portion 66, and can be removed more reliably by the two second projecting portions 68 and 69 that come in sliding contact with the contact projecting portion 44 of the associated receptacle contact 4 while imposing a strong load thereon in a concentrated manner, especially when the plug 2 is plugged into the receptacle 1. Accordingly, the present embodiment of the contact is capable of removing foreign matter from between the plug and the receptacle reliably and easily.
In a state shown in
On the other hand, when the plug and the receptacle of the present embodiment of the contact are installed on a circuit board, foreign matter such as flux and the like may be scattered and deposited on the contacting portion 61. In this case, even if the plug 2 is plugged (engaged) into the receptacle 1, such foreign matter can be removed from the two second projecting portions 68 and 69 by repeatedly plugging and unplugging the plug 2 into and from the receptacle 1, which makes it possible to reliably remove such foreign matter, and accordingly, stabilize the contact resistance between the plug and the receptacle.
Since the contact projecting portion 44 of each receptacle contact 4, i.e., a flat surface thereof, is in sliding contact with the contacting portion 61 of the associated plug contact 6, the contact resistance between the plug and the receptacle maintains stable with little variation even if the plug contacts 6 and the receptacle contacts 4 are not precisely positioned relative to each other.
Even if the plug 2 is plugged and unplugged into and from the receptacle many times, there is little possibility of foreign matter accumulating between the receptacle 1 and the plug 2, and accordingly, a stable contact resistance between the plug and the receptacle is achieved because no recess or gap is formed between the first projecting portion 66 and each of the two second projecting portions 68 and 69 by the above described arrangement wherein one end (upper end as viewed in
A portion of the contact projecting portion 44 of each receptacle contact 4 which is in sliding contact with the contacting portion 61 of the associated plug contact 6 is formed as a flat surface, thus being capable of being made with a high degree of precision. On the other hand, even if each plug contact 6 is made thin, reliable contact of each receptacle contact 4 which comes in contact with the thin plug contact 6 are secured by the formation of the two second projecting portions 68 and 69 provided on the contacting portion 61 of the thin plug contact 6.
The functions of each receptacle contact 4 and each plug contact 6 are reversible. Namely, it is possible for a contact projecting portion, which corresponds to the contact projecting portion 44, to be formed on each plug contact and for a first projecting portion and two second projecting portions, which respectively correspond to the first projecting portion 66 and the two second projecting portions 68 and 69, to be formed on each receptacle contact.
Obvious changes may be made in the specific embodiments of the present invention described herein, such modifications being within the spirit and scope of the invention claimed. It is indicated that all matter contained herein is illustrative and does not limit the scope of the present invention.
Claims
1. A connector comprising:
- a plug including a plug body made of an insulating material and at least one plug contact supported by said plug body;
- a receptacle including a receptacle body made of an insulating material and at least one receptacle contact supported by said receptacle body, wherein said receptacle contact contacts said plug contact so as to be electrically connected with said plug contact when said plug is plugged into an insertion groove of said receptacle;
- a contact projecting portion formed on one of said plug contact and said receptacle contact to resiliently project in a direction to come in contact with the other of said plug contact and said receptacle contact when said plug is plugged into said insertion groove of said receptacle;
- a contacting portion formed on said other of said plug contact and said receptacle contact to come in sliding contact with said contact projecting portion when said plug is plugged into said insertion groove of said receptacle; and
- a first projecting portion and at least one second projecting portion which are formed on said contacting portion to project in a direction to come in contact with said contact projecting portion, said second projecting portion being formed integral with said first projecting portion to be elongated in an insertion/extraction direction of said plug relative to said insertion groove of said receptacle;
- wherein a portion of said contact projecting portion which is in sliding contact with said contacting portion when said plug is plugged into said insertion groove of said receptacle is formed as a flat surface having a width greater than a width of said second projecting portion.
2. The connector according to claim 1, wherein said second projecting portion comprises two second projecting portions which are arranged side by side in a direction that intersects said insertion/extraction direction of said plug.
3. The connector according to claim 2, wherein said two second projecting portions are parallel to each other and extend along said insertion/extraction direction of said plug.
4. The connector according to claim 1, wherein said second projecting portion is formed on said contacting portion to be inclined with respect to said contacting portion to increase a distance between said second projecting portion and said contact projecting portion in a direction from one end of said second projecting portion which is formed integral with said first projecting portion to the other end of said second projecting portion when said plug is plugged into and unplugged from said receptacle.
5. The connector according to claim 1, wherein one and the other of said plug contact and said receptacle contact are mounted to a display device unit and a circuit board, respectively, said display device unit and said circuit board being electrically connected to each other by making an insertion of said plug into said insertion groove of said receptacle.
6. The connector according to claim 1, wherein one and the other of said plug contact and said receptacle contact are mounted to an image pickup device unit and a circuit board, respectively, said image pickup device unit and said circuit board being electrically connected to each other by making an insertion of said plug into said insertion groove of said receptacle.
7. The connector according to claim 1, wherein said connector is incorporated in portable terminal equipment.
8. The connector according to claim 2, wherein lengths of said two second projecting portions in said insertion/extraction direction of said plug are the same.
9. The connector according to claim 3, wherein lengths of said two second projecting portions in said insertion/extraction direction of said plug are the same.
10. The connector according to claim 1, wherein said contact projecting portion comes in sliding contact firstly with said first projecting portion and secondly with said second projecting portion when said plug is plugged into said insertion groove of said receptacle.
Type: Application
Filed: Aug 17, 2005
Publication Date: Feb 23, 2006
Patent Grant number: 7195495
Applicant: KYOCERA ELCO Corporation (Yokohama-shi)
Inventors: Hirohisa Takano (Kanagawa), Yuusuke Shiroyama (Kanagawa)
Application Number: 11/205,649
International Classification: H01R 12/00 (20060101);