Stereolithographic apparatus
An improved stereolithography apparatus for forming three-dimensional objects using multiple chambered resin vats and a quick disconnect mounting system to permit concurrent use of multiple photopolymer build materials and easy change over of resin vats is disclosed. The apparatus permits easy change over from multiple chambered vat use to single chamber vat use and vice versa or change over between multiple chambered vats.
Latest Patents:
The present invention is directed to a stereolithographic apparatus for forming three-dimensional objects on a layer-by-layer basis and, more particularly, is directed to an apparatus having multiple resin vats or containers to permit more than one part location to be utilized during the building of stereolithographic objects and to permit easy and rapid change over of multiple resin vats or containers to a single vat or container, or between multiple vats by using an improved mounting system.
BACKGROUND OF THE INVENTIONIn recent years, many different techniques for the fast production of three-dimensional models have been developed for industrial use. These are sometimes referred to as rapid prototyping and manufacturing (“RP&M”) techniques. In general, rapid prototyping and manufacturing techniques build three-dimensional objects layer by layer from a working medium utilizing a sliced data set representing cross-sections of the object to be formed. Typically, an object representation is initially provided by a Computer Aided Design (CAD) system.
Stereolithography, presently the most common RP&M technique, may be defined as a technique for the automated fabrication of three-dimensional objects from a fluid-like material utilizing selective exposure of layers of the material at a working surface to solidify and adhere successive layers of the object (i.e. laminae). In stereolithography, data representing the three-dimensional object is input as, or converted into, two-dimensional layer data representing cross-sections of the object. Layers of material are successively formed and selectively transformed or solidified (i.e. cured) using a computer controlled laser beam of ultraviolet light (UV) into successive laminae according to the two-dimensional layer data. During transformation, the successive laminae are bonded to previously formed laminae to allow integral formation of the three-dimensional object. More recent designs have employed the use of visible light to initiate the polymerization reaction to cure the photopolymer build material that is commonly referred to as resin.
Stereolithography represents an unprecedented way to quickly make complex or simple parts without tooling. Since this technology depends on using a computer to generate its cross-sectional patterns, there is a natural data link to CAD/CAM. Such systems have encountered and had to overcome difficulties relating to shrinkage, curl and other distortions, as well as resolution, accuracy, and difficulties in producing certain object shapes.
Although stereolithography has shown itself to be an effective technique for forming three-dimensional objects, various improvements addressing the technology's difficulties and expanding the potential manufacturing applications have been desired for some time. Many improvements have addressed the aforementioned difficulties and have been made to object accuracy, speed and appearance of the build object over the years. A recent area of expansion of stereolithographic applications has been into the area of hearing aid shell manufacturing where digital data of a patient's ear is used to create a customized hearing aid shell. This is done on a large scale with as many as 160 hearing aid shells being manufactured in a single build using a stereolithography system. Many patients have two hearing aid shells made, one for each ear. Other patients require only a single hearing aid shell. Regardless, a convention has arisen among some manufacturers to color code the hearing aid shells according to which ear in which the shell is to be used. With the advent of biocompatible colored resins or build materials, a need has arisen for the ability to manufacture in a single build cycle hearing aid shells for both the left and the right ears. This requires the use of at least two separate vats within the context of the traditional stereolithography systems. Therefore there is the need for a stereolithography system to accommodate a second vat or resin material container so that hearing aid shells of two different colors can be manufactured in a single build cycle. Further, there is a need to permit easy change over of vats in a stereolithographic system between one and two vats or simply to be able to replace an existing vat.
These problems are solved in the design of the present invention.
SUMMARY OF THE INVENTIONIt is an aspect of the present invention that a stereolithography apparatus is provided which permits the concurrent use of multiple chambered resin vats or photopolymer material containers during a single build cycle.
It is another aspect of the present invention that an improved design for securing the resin vats to the stereolithography system is provided to permit easy change over of the resin vats or photopolymer material containers from a single chambered vat to multiple chambered vats, or between multiple chambered vats.
It is a feature of the present invention that multiple resin vats or photopolymer material containers can be used concurrently during a single build cycle to create three-dimensional parts in a stereolithography system.
It is another feature of the present invention that the mounting system for the elevator legs in the resin vats or photopolymer material containers employ an easy release locking system.
It is yet another feature of the present invention that the resin vats or photopolymer material containers are removable from the stereolithography system with the elevator legs and support platforms.
It is still another feature of the present invention that the resin level within the multiple chambered resin vats or photopolymer containers is at the same level in each chamber during operation.
It is an advantage of the present invention that multiple resins, including differently colored resins, can be utilized concurrently in a stereolithography system to produce three-dimensional objects with different physical properties.
It is another advantage of the present invention that a simple resin vat and elevator leg mounting system is employed to permit easy and fast changing of resin vats or material containers and changing from single chambered vat operation to multiple chambered vat operation or vice versa.
It is still another advantage of the present invention that no cleaning of the stereolithography system parts is required between change over of vats.
These and other aspects, features, and advantages are obtained by the present invention through the use of a multiple chambered resin vat and a quick disconnect mounting system to permit concurrent use of multiple photopolymer build materials and easy change over of resin vats in a stereolithography system.
BRIEF DESCRIPTION OF THE DRAWINGThese and other aspects, features and advantages of the invention will become apparent upon consideration of the following detailed disclosure of the invention, especially when taken in conjunction with the following drawings wherein:
Stereolithography typically involves the layer by layer build-up of articles from a vat or container of liquid monomer. Stereolithography parts are preferably built on structures known as supports rather than directly on an elevator platform that moves the build object or part up and down as successive layers or laminae are formed during the stereolithography process. The vat of liquid photopolymer material provides a fresh material to create new layers as the object is built.
A typical stereolithography system is represented by the numeral 10 shown in
Looking now at
The vector data and parameters from the computer control system 24 are directed to a controller subsystem for operating the system stereolithographic laser, mirrors, elevator and the like which permit the solid individual laminae that represent cross-sections of the build object or part to be generated and the laminae to be successfully combined to form the three-dimensional part. The part is generated by the application of an appropriate form of energy stimulation as a graphic pattern according to these vector data and parameters at the fluid medium surface to form the thin individual layers or laminae. Each solid layer or individual lamina represents an adjacent cross-section of the three-dimensional object to be produced. Successive adjacent layers or laminae are superimposed as they are formed to generate the three-dimensional object or part.
The programmable source of energy stimulation, in this instance the ultraviolet (“UV”) light, is provided by a laser. Alternatively, new systems employing visible light such as DLP, systems may be used to cure the photocurable resin 19. Photomasks also can be utilized in either approach to selectively apply the energy stimulation, which may be any other appropriate form of energy to stimulate change from a liquid to a solid such as electron beam particle bombardment or application of chemically reactive materials. Operation of the SLA system 10 of
Turning now to
A recoater device 30 is movably mounted onto the frame for movement front-to-back along the vat rim 28. However, in the dual vat configuration the recoater device is not employed. A recoater device 30 is employed where a single vat is utilized in the stereolithography system 10 and its operation is described in greater detail in U.S. Pat. No. 5,902,537 issued to Almquist et al. and assigned to the assignee of the present invention. An advantage of the present invention is that cleaning of the stereolithography system and especially the recoater device is not required during change over or exchange of multiple chambered vats to a single chamber vat.
The dual vat 31 illustrated in
As seen in
Dual vat 31 is raised up and down by a vat hoist (not shown) under the vat and which can be used to lower the vat to a fully lowered position when removal is needed in a manner to be described with respect to disconnection of the elevator legs 48.
Also seen in
The elevator, indicated generally by the numeral 57, is best seen in
A vat quick disconnect locking lever 46, best seen in
Returning now to
As seen
When a single vat is desired to be utilized, the locking levers 46 are moved to the unlocked position and the elevator arms 48 are removed from the mounting plate pins 59 by sliding the arms 48 off of the pins 59 and out of the grooves 60 to permit the elevator assembly 57 and the platform 62 in each vat chamber 31A and chamber 31B to be lowered into the vat. The vat hoist (not shown) then lowers the dual vat 31 and a cart is used to remove the dual vat 31 from the stereolithography system 10. A single chambered vat 80 is then moved into place by means of a cart rolling the vat into the frame 26. As seen in
Any suitable fluid medium capable of solidification in response to the application of an appropriate form of energy stimulation may be employed in the practice of the present invention. Many liquid state chemicals are known which can be induced to change to solid state polymer plastic by irradiation with ultraviolet light or other forms of stimulation such as electron beams, visible or invisible light, or reactive chemicals applied by ink jet or via a suitable mask. Suitable photopolymers that may be employed in the practice of the present invention include any commercially available photopolymer manufactured by 3D Systems, Inc. of Valencia, Calif. These include, but are not limited to, SI10, SI20, SI 40, and SI 50 resins for use in any 3D Systems' commercially available SLA® system. Especially suitable for manufacturing hearing aid shells are the 7400, 7500, 7100 and 7300 series resins available from Dreve-Otoplastik GmbH of Unna, Germany. When manufacturing hearing aid shells the resin vats 31 or 80 are shallow, having a depth of about 2 to 3 inches.
The present invention can be practiced on any stereolithographic equipment, but has been discussed in the context of a Viper si2™ SLA® system available commercially from 3D Systems, Inc., the assignee of the present invention.
While the invention has been described above with references to specific embodiments thereof, it is apparent that many changes, modifications and variations in the materials, arrangements of parts and steps can be made without departing from the inventive concept disclosed herein. For example, the elevator arm quick release apparatus and method of the present invention can equally well be applied to permit replacement of individual ones of the chambers in dual vat 31 by having the dual vat chambers be separately formed in two separate and distinct containers each supported by their own elevator assembly. Then should just one vat need replacement or a different color be desired, the existing one of the two vat chambers can be released and removed and then replaced with a new vat chamber. Further, while only a dual chambered approach has been illustrated it is possible to employ a vat having more than two chambers or more than two separate and distinct chambers each supported by their own elevator assembly and individually removable. Accordingly, the spirit and broad scope of the appended claims are intended to embrace all such changes, modifications and variations that may occur to one of skill in the art upon a reading of the disclosure. All patent applications, patents and other publications cited herein are incorporated by reference in their entirety.
Claims
1. An apparatus for forming three dimensional objects from solidifiable liquid material in response to energy applied to a working surface of the material comprising:
- a. a frame;
- b. a source of energy mounted to the frame for applying energy to the solidifiable liquid material;
- c. a container for holding the solidifiable liquid material mounted to the frame, the container having multiple chambers for holding separate solidifiable liquid materials;
- d. a data source to supply data representative of the three-dimensional objects to the apparatus;
- e. a data processing apparatus connected to the apparatus to receive the data representative of the three-dimensional objects and convert the data into layer data format that is processed to form layer data used by the apparatus to control the source of energy to apply energy to the solidifiable liquid material to stimulate a change from a liquid to a solid layer by layer to form the three dimensional object;
- f. a support platform on which the three dimensional objects are formed for each chamber in the container connected to the apparatus and movably supported within each chamber; and
- g. elevator assembly supporting each support platform in each chamber for raising and lowering the support platform in each chamber.
2. The apparatus according the claim 1 further comprising at least two chambers in the container for holding the solidifiable liquid material.
3. The apparatus according the claim 1 wherein the elevator assembly comprises a supporting frame connected to elevator legs, the legs being removably fastened to the apparatus.
4. The apparatus according to claim 3 wherein the elevator legs are removably fastened to a mounting plate connected to the frame and associated with each chamber, the mounting plate having a locking lever pivotally mounted thereto movable between a locked position contacting and holding the elevator assembly and an unlocked position in which the elevator assembly can be removed from the mounting plate.
5. The apparatus according to claim 4 wherein the elevator assembly further comprises a locking bar connecting two spaced apart elevator legs, the elevator legs extending vertically upwardly from the elevator assembly supporting frame.
6. The apparatus according to claim 5 wherein each mounting plate has support pins extending horizontally outwardly therefrom.
7. The apparatus according to claim 6 wherein the elevator legs for each elevator assembly further have a recess into which the mounting plate support pins fit to provide movable hanging support until the locking lever is moved to the locked position and the elevator legs are securely fastened in unmoving fashion.
8. The apparatus according to claim 7 further comprising the multiple chambers being individually removable from the apparatus.
9. The apparatus according to claim 8 further comprising the source of energy selectively supplying UV or visible light to the solidifiable liquid material.
10. The apparatus according to claim 9 further comprising the source of energy being a UV laser or a visible light digital light projector.
11. The apparatus according to claim 9 further comprising the solidifiable liquid material being a photopolymer resin.
12. The apparatus according to claim 2 further comprising each chamber holding a different solidifiable liquid material.
13. An apparatus for forming three dimensional objects from solidifiable liquid material layer by layer in response to energy applied to a working surface of the material, the improvement comprising multiple solidifiable liquid material containing chambers for concurrently forming three dimensional objects, the chambers being removably fastened to the apparatus and releasable from the apparatus by at least one quick release lever to permit individual or multiple chamber removal and replacement.
14. The apparatus according the claim 13 further comprising support platforms within each chamber on which the three dimensional objects are formed, the support platforms being supported by elevatable elevator assemblies removably connected to the apparatus and releasable by the at least one quick release lever.
15. The apparatus according the claim 14 further comprising each elevator assembly having at least one elevator leg removably connected to the apparatus via a mounting plate to which the at least one locking lever is pivotally mounted, the at least one locking lever being moveable between a locked position and an unlocked position in which the elevator assembly can be removed from the apparatus to permit individual or multiple chamber removal.
16. The apparatus according the claim 15 further comprising each elevator assembly having a locking bar connecting two spaced apart elevator legs, the elevator legs extending vertically upwardly from an elevator assembly supporting frame, the locking bar further being contacted by the locking lever in the locked position to retain the elevator assembly in position.
17. The apparatus according to claim 16 further comprising each mounting plate being associated with a chamber and having support pins extending horizontally therefrom and onto which the elevator legs hangingly are supported in movable fashion until the locking lever is moved to the locked position and the elevator legs are securely fastened in unmoving fashion.
18. The apparatus according to claim 17 further comprising the energy being UV light or visible light.
19. The apparatus according to claim 18 further comprising the solidifiable liquid material being a photopolymer resin.
20. The apparatus according the claim 19 further comprising each chamber holding a different photopolymer resin.
Type: Application
Filed: Oct 8, 2004
Publication Date: Apr 13, 2006
Applicant:
Inventors: Scott Holmboe (Corvallis, OR), Gary Reynolds (Santa Clarita, CA), Matthew Stonesmith (Grand Junction, CO), Charles Hull (Santa Clarita, CA), Abraham Reichental (Simpsonville, NC)
Application Number: 10/961,976
International Classification: B29C 35/08 (20060101); B29C 41/02 (20060101);