Prosthetic annular coupling socket adaptor with adjustable clamp
A method for custom fitting prosthetic devices, comprising the steps of: (a) providing a unitary prosthetic coupling device adapted to couple a prosthetic pylon to a second prosthetic limb component, the coupling device having a cylindrical sheath extending from a cavity adapted to receive at least a portion of the second prosthetic limb component therein, the cylindrical sheath adapted to interface with a prosthetic pylon, the cylindrical sheath accommodating various depths of pylon insertion to provide height adjustability with the second prosthetic limb component, the coupling device further being designed for day-to-day use; and (b) mounting the second prosthetic limb component to the prosthetic coupling device and mounting the prosthetic pylon to an interior surface of the cylindrical sheath so as to provide a secure coupling between the prosthetic pylon and the second prosthetic limb component enabling day-to-day use.
This application is a continuation of U.S. Nonprovisional patent application Ser. No. 10/377,289, entitled “PROSTHETIC ANNULAR COUPLING SOCKET ADAPTOR WITH ADJUSTABLE CLAMP,” filed on Feb. 28, 2003, now U.S. Pat. No. ______, which claimed the benefit of U.S. Provisional Patent Application Ser. No. 60/361,427, entitled, “PROSTHETIC ANNULAR COUPLING SOCKET ADAPTOR WITH ADJUSTABLE CLAMP”, filed on Feb. 28, 2002, the disclosures of which are incorporated herein by reference.
BACKGROUND1. Field of the Invention
The present invention relates to prosthetic devices, and more particularly, to prosthetic couplings having annular coupling socket adapters (aka, “pyramid receivers”) with adjustable height tube clamps.
2. Description of the Related Art
As shown in
As shown in
In fitting prosthetic limbs to patients, it is often necessary for the prosthetist to modify the lengths and/or orientations of various prosthetic limb components with respect to each other during initial fitting, or after the patient has worn the prosthetic limb for a period of time. The prosthetist attempts to maintain the alignment of the prosthetic components along the TKA line; a line parallel to the trochanter, knee and ankle. A pylon, in particular, is capable of being ground down or cut so as to shorten the length of the pylon to accord proper fitting. Problems sometimes arise when the pylon is ground down or cut, thereby shortening its length beyond that which is required. This necessitates the procurement of a completely new pylon. Alternatively, if the original pylon is too short, the current state of the art provides no alternative for the prosthetist other than procuring another pylon having a greater length.
Accordingly, there is a need for a pyramid receiver and associated tube clamp that provides axial height adjustability with respect to pylon length. Alternatively, there is a need for a system in which a prosthetist may simply exchange different height spacers or bushings to be placed within the tube of the tube clamp, between an axial shoulder in the tube and the end of the pylon, to adjust the height of the pyramid receiver with respect to the pylon.
SUMMARY OF THE INVENTIONIn a first exemplary embodiment of the present invention, a height-adjustable prosthetic coupling is provided that has an annular coupling adapter (pyramid receiver) on one end and a diametrically restrictable tube (tube clamp) on the opposing end, which allows for height (axial) adjustment between the coupling and a prosthetic pylon. The diametrically restrictable tube has an internal depth which accommodates the insertion of a portion of the pylon. Conventional pyramid-receiver tube clamps have a diametrically restrictable tube of a minimal length sufficient to provide enough surface area to securely lock the tube clamp onto the pylon. One reason for minimizing this length is to reduce the material costs for such components. The first exemplary embodiment of the present invention, on the other hand, provides a diametrically restrictable tube having an internal depth which can accommodate more than the minimum length of the pylon necessary for properly securing the pylon to the coupling. In other words, the interior height of the tube is greater than prior art tubes. When the patient requires the overall length between the tube clamp and pylon to be adjusted, the prosthetist “frees up” the diametrically restrictable tube so as to enable movement between the internal surface of the tube and the exterior surface of the pylon. Once the desired overall length is reached, the prosthetist restricts the diametrically restrictable tube and prevents noticeable movement between the pylon and tube; both in the vertical, and in the rotational/axial direction. Thus, the present invention provides for human errors in measuring and provides adjustability to meet the patient's needs and may not require the procurement of a plurality of pylons of varied lengths.
Likewise, the elements of the first exemplary embodiment may be combined with bushings (or spacers) that fill any potential axial void that may be present in the first exemplary embodiment between the shoulder of the coupling extending radially into the channel of the tube and the longitudinal end-surface of the pylon; resulting in a second exemplary embodiment. The second exemplary embodiment provides a plurality of variable-height axial bushings that are insertable into the tube of the coupling before the pylon is inserted. One or more of these bushings may be inserted to fill any potential void between the coupling and the longitudinal surface of the pylon. Thus, the adjustment of the prosthetic components may be made easier for the prosthetist because the weight of the tube clamp and associated prosthetic components may be pressed onto the pylon without the fear of hampering the measurements surrounding the proper depth of the pylon.
It is a first aspect of the present invention to provide an adjustable prosthetic coupling comprising: (a) a unitary coupling adapter comprising a pylon receiving end having an inner ring for captively engaging a prosthetic pylon therein, and a prosthetic component interface end for engaging and securing a prosthetic component thereto; and (b) an outer ring circumscribing the inner ring, where the pylon receiving end accommodates varying depths of insertion of the prosthetic pylon beyond the minimum required for secured fitting, thereby enabling height adjustability.
It is a second aspect of the present invention to provide An adjustable prosthetic coupling comprising: (a) a pylon receiving portion having a means for selectively securing a prosthetic pylon therein; and (b) a pyramid receiving portion including a means for selectively securing a prosthetic pyramid thereto, where the means for selectively securing the prosthetic pylon therein includes a plurality of height adjustments between the prosthetic pyramid and the prosthetic pylon, and wherein the means for selectively securing the prosthetic pylon therein enables day-to-day use
It is a third aspect of the present invention to provide a method for custom fitting prosthetic devices, comprising the steps of: (a) providing a unitary prosthetic coupling device adapted to couple a prosthetic pylon to a second prosthetic limb component, the coupling device having a cylindrical sheath extending from a cavity adapted to receive at least a portion of the second prosthetic limb component therein, the cylindrical sheath adapted to interface with a prosthetic pylon, the cylindrical sheath accommodating various depths of pylon insertion to provide height adjustability with the second prosthetic limb component, the coupling device further being designed for day-to-day use; and (b) mounting the second prosthetic limb component to the prosthetic coupling device and mounting the prosthetic pylon to an interior surface of the cylindrical sheath so as to provide a secure coupling between the prosthetic pylon and the second prosthetic limb component enabling day-to-day use.
BRIEF DESCRIPTION OF THE DRAWINGS
The exemplary embodiments of the present invention are described and illustrated below as prosthetic limb couplings, for mounting a first prosthetic component to a second pylon component, that include height-adjustable tube clamps for mating with pylon components. The various orientational or positional terms used to describe the elements of the inventions are therefore used according to this frame of reference. Of course, it will be apparent to those of ordinary skill in the art that the preferred embodiments may also be used in combination with one or more prosthetic components to function as a complete prosthetic assembly. In such a case, the orientational or positional terms may be different. However, for clarity and precision, only a single orientational or positional reference will be utilized; and, therefore it will be understood that the positional and orientational terms used to describe the elements of the exemplary embodiments of the present invention are only used to describe the elements in relation to one another. For example, a pylon will have two opposing longitudinal surfaces; one being characterized as proximal, while the other is characterized as distal. Yet, the pylon may be rotated in space, thereafter transforming the proximal end into the distal end and vice versa without departing from the scope and spirit of the present invention.
As shown in
Referencing
Mounting the pyramid 42 to the pyramid receiver 54 begins by placing the frustropyramidal boss 50 within the concave mouth 60 of the pyramid receiver proximal opening so as to enable the set screws 66 to engage the faces 48 of the frustropyramidal boss 50. Concurrently, as the set screws 66 are engaging the faces 48 of the frustropyramidal boss 50, the domed portion 40 of the pyramid 42 is being moved closer to the concave mouth 60 of the pyramid receiver 54. As the pyramid 42 comes in close proximity to the pyramid receiver's 54 interior conical surface 62, the exterior surface of the domed portion 40 abuts the conical interior surface 62 of the pyramid receiver 54 and a friction fit results. The tighter the set screws 66 push against the faces 48 of the frustropyramidal boss 50, the relatively better the friction fit. In other words, the higher the force the set screws 66 exert against the faces 48 of the frustropyramidal boss 50, thus pushing the pyramid 42 against the pyramid receiver 54, the greater the amount of force required to unseat the pyramidal receiver's 54 interior conical surface 62 from the domed portion 40 of the pyramid 42. This results in relatively no movement between the two elements in either the vertical or rotational direction when the set screws 66 are sufficiently tightened.
As shown in
The restrictable aspect of the ring clamp 58 includes a radial projection 84 that takes on a pyramidal shape which exhibits an apex in exterior diameter at the axial center of the clamp and diminishes proportionally in the vertical and radial directions accordingly, thus providing an outer surface 86 which slopes in the axial as well as distal and proximal directions. A break 88 effectively bisects the radial projection of the ring clamp 58, providing complimentary, mirror image planar surfaces 90 parallel to the TKA line. Perpendicular to the break 88 of the ring clamp 58 is a hole 92 which extends through the pyramid shaped radial projection 94 of the ring clamp 58. The hole 92 extends through the complimentary parallel planar surfaces 90 created by the break 88. This hole 92 may be machined or molded so as to accept a threaded device such as a screw 94; the screw may be a #10-32 socket head cap screw. The screw 94 facilitates the restrictive force necessary to bring the parallel surfaces 90 of the ring clamp 58 closer together than compared to equilibrium without the screw 94, such that the internal diameter of the tube 56 at the distal end becomes variable; generally smaller in diameter when restrictive force is applied.
It is preferred, but not necessary, that the adjustable aluminum ring clamp 58 be mounted on the distal end of the hollow titanium tube 56. One example of how this might be accomplished is by way of a retention pin 96 that is friction fit within a hole 98 radially bored through the ring clamp 58 and the tube 56. When the retention pin 96 is in place, free rotation and axial separation of the ring clamp 58 from the tube 56 is inhibited. In any such mounting technique, it is preferred, but not necessary, to align the break 88 with at least one channel 78.
An inner concavity 100 of the tube 56 provides a “female” interface between the coupling 52 and a second prosthetic component such as, for example, a graphite pylon. The interior surface of the tube 56 which makes contact with the exterior surface of the pylon (not shown) may be smooth or of non-uniform texture and include a taper approximating its distal end to effectively provide a maximum axial depth for insertion of the pylon. In this exemplary embodiment, the maximum axial depth is one-half inch longer than the minimum depth necessary to provide sufficient surface area to achieve secure locking (as required by the ISO 10328 torque test) between the coupling 52 and the pylon. This additional one-half inch depth of the tube 56 provides height adjustability for the component as will be discussed further below.
The pylon is generally a cylindrical shaft having a uniform circular cross section. The pylon has two longitudinal end surfaces which make up the respective distal and proximal ends of the pylon. Assembly of the pylon into the tube 56 of the coupling 52 begins by inserting the proximal end of the pylon into the tube 56 until the pylon abuts the shoulder 102 inside of the tube 56. Using a paint marker, the exposed portion of the pylon immediately adjacent to the ring-clamp is marked. The pylon may then be withdrawn from the tube 56 up to one-half inch by sliding the coupling 52 away from the pylon; all the while providing at least the minimum pylon insertion depth. This minimal pylon insertion depth being the depth at which enough of the exterior surface of the pylon is in potential contact with enough of the interior surface of the tube 56 such that a resulting friction fit between the two elements will disallow substantial rotational and/or vertical movement between the two during day-to-day use of the prosthetic limb by the patient. Thereafter, the ring clamp 58 is restricted by use of the screw 94. An application of Loctite® may be applied before tightening the screw to help maintain the proper restrictive force.
Alternatively, to adjust the pylon to coupling 52 distance, the prosthetist may simply measure down from the proximal longitudinal surface of the pylon and mark the exterior surface of the pylon corresponding to the minimum insertion depth. Thereafter, the prosthetist may make vertical adjustments of the pylon so long as the marked exterior surface of the pylon is inserted into the tube 56.
Additionally, the prosthetist may adjust the pylon length after the initial fitting of the patient's prosthetic components. In this case, the prosthetist begins by loosening the ring clamp 58 around the tube 56, thus enabling vertical and/or rotational movement between the coupling 52 and the pylon. Next, the prosthetist simply pulls a portion of the pylon out from the tube 56, up to one-half inch until the proper measurements are met if the distance is too short; conversely, the prosthetist simply pushes a portion of the pylon into the tube 56, up to one-half inch until the proper measurements are met if the distance is too great; all the while keeping the minimum amount of exterior pylon surface in potential contact with the minimum amount of interior surface of the tube 56 such that a friction fit between the two elements will be maintained with proper tightening of the ring clamp 58. While the prosthetist is adjusting the length between the distal end of the pylon and the proximal end of the coupling 52, it will be recognized by one of ordinary skill in the art that other concerns may be addressed by the prosthetist such as alignment retention of the prosthetic components attached to either the distal end of the pylon, or the proximal end of the coupling 52. Finally, the prosthetist tightens the ring clamp 58 by torquing the screw 94 to the setting recommended by the manufacturer and the adjustment is complete.
As a caveat to the aforementioned procedure for adjustability, it will also be recognized by one of ordinary skill in the art that if the amount of the pylon inserted into the tube is the minimum amount necessary for a proper friction fit, adjustability to a greater length may require: the procurement of another pylon having a longer length; adjusting the prosthetic component mounted to the distal end of the pylon; or, exchanging a coupling 52 having a greater tube 56 height.
It will be apparent to those of ordinary skill that the one-half inch extension of the tube of the tube clamp provided in the first exemplary embodiment is not limiting, and it is within the scope of the invention to provide extensions having longer or shorter lengths as desired.
The ring clamp 58 may be of the same or a similar material or of an alloy comprising one or more of the materials of the tube 56 and/or pyramid receiver 54. Materials suitable for use in the fabrication of the tube 56, the pyramid receiver 54, and the ring-clamp include elemental metals, alloys of elemental metals, composites, and any other similar materials. It is preferred that the material chosen for the tube 56 inhibits any permanent deformation attributable to the ring clamp 58.
It is likewise within the scope and spirit of the invention to provide grooves on the outer circumferential surface of the tube 56 that mate with corresponding grooves in the ring clamp 58 to align the ring-clamp 98 to the proper exterior surface of the tube 56, thus maintaining the ring clamp's 58 axial position around the tube 56 when the ring clamp 58 is not sufficiently tightened.
In the first exemplary embodiment 52, the clamp is separate from the manufacture of the tube 56. However, it is within the scope and spirit of the present invention to provide a titanium ring clamp 58 incorporated into the tube 56 and/or pyramid receiver 54.
It is also within the scope and spirit of the present invention to provide a set of bushings or spacers having incremental axial height and uniform circular cross section. In this embodiment, these bushings may be inserted into the tube 56 whenever the measurements taken by the prosthetist indicate that the proximal end of the pylon will not abut the shoulder 102 within the tube 56. The prosthetist begins by making a measurement of the overall length desired as measured from the distal end of the pylon to the proximal end of the coupling 52. Next, the prosthetist marks or measures how much of the pylon will be inserted into the tube 56 for proper fitting. If this measurement is less than the height of the tube 56 available for pylon insertion, the prosthetist simply chooses a bushing having a height to make up the difference. It will be understood by those of ordinary skill in the art that the bushings do not act to provide a friction fit between the pylon and the tube 56, but simply occupy a space or void that would normally be vacant. It is also within the scope of the invention that all or some of the spacers have equal height and are designed to be stackable upon one another.
Another exemplary embodiment of the present invention provides a plurality of couplings 52 having incremental tube heights. This “set” of tube clamps, being interchangeable, provides a prosthetist flexibility regarding adjustments to the length between the proximal end of the coupling and the distal end of the pylon (overall length). As characterized above, this flexibility in tube height does not negate the requirement of a minimum pylon insertion depth for proper friction fitting. The set of couplings may be manufactured with any tube height for pylon insertion, so long as the set as a whole provides incremental adjustment of the overall length at least ranging one-half inch.
Still another exemplary embodiment of the present invention is shown in
Adjustability typically requires that the prior art tube clamp be loosened by the prosthetist enabling vertical and/or rotational movement between the pylon and tube clamp, so that measurement can be made to adjust the length/height of the pylon. However, using a set of couplings having incremental pylon insertion depths, the pylon is not adjusted. A prosthetist would remove the pylon and replace the coupling with another coupling having a different pylon insertion depth so as to provide the proper overall length for the patient. The pylon is thereafter inserted into the tube 56 until the proximal longitudinal end of the pylon abuts the shoulder on the inside of the tube. If applicable, other prosthetic components are reattached, all the while cognizant of proper alignment before final attachment and tightening of the screw. Generally, it is envisioned that this set be used without using the bushings as described above. However, it is within the scope and spirit of the present invention to also utilize the bushings if found advantageous by the prosthetist.
If the prosthetist utilizes the set, bushings may be used in lieu of, or in addition to, the next or greater incremental sized coupling in the set. Here, adjustability starts with the prosthetist simply pulling a portion of the pylon out from the tube until the proper measurements are established if the current distance has been determined as being too short. All the while keeping the minimum amount of exterior pylon surface in potential contact with the minimum amount of interior surface (not shown) of the tube such that a friction fit between the two elements will be maintained with proper tightening of the screw. While the prosthetist is adjusting the length between the distal end of the pylon and the proximal end of the coupling, it will be recognized by one of ordinary skill in the art that other concerns may additionally be addressed such as alignment retention of the prosthetic components attached to either the distal end of the pylon, or the proximal end of the coupling. Once the proper distance is determined and/or marked, the pylon is removed from the tube. A bushing is inserted into the tube to accord the proper distance. Next, the pylon is inserted into the tube to abut the bushing which abuts the shoulder in the tube. Finally, the prosthetist tightens the clamp by tightening the screw to the proper torque setting recommended by the manufacturer and the adjustment is complete. As a caveat to the aforementioned procedure for adjustability, it will also be recognized by one of ordinary skill in the art that if the amount of the pylon inserted into the tube is the minimum amount necessary for a proper friction fit, adjustability to a greater length will not be possible without the procurement of another pylon having a longer length, or adjusting the prosthetic component attached to the distal end of the pylon, or switching couplings where the second coupling has a longer height tube. In addition, should the prosthetist desire to exchange couplings and utilize bushings, the procedure is analogous with that enunciated above, but begins with removal of the old coupling and insertion of a new coupling from the set.
Following from the above description and invention summaries, it should be apparent to those of ordinary skill in the art that, while the methods and apparatuses herein described constitute exemplary embodiments of the present invention, it is to be understood that the inventions contained herein are not limited to these precise embodiments and that changes may be made to them without departing from the scope of the inventions as defined by the claims. Additionally, it is to be understood that the invention is defined by the claims and it not intended that any limitations or elements describing the exemplary embodiments set forth herein are to be incorporated into the meanings of the claims unless such limitations or elements are explicitly listed in the claims. Likewise, it is to be understood that it is not necessary to meet any or all of the identified advantages or objects of the invention disclosed herein in order to fall within the scope of any claims, since the invention is defined by the claims and since inherent and/or unforeseen advantages of the present invention may exist even though they may not have been explicitly discussed herein.
Claims
1. An adjustable prosthetic coupling comprising:
- a unitary coupling adapter comprising: a pylon receiving end having an inner ring for captively engaging a prosthetic pylon therein, and a prosthetic component interface end for engaging and securing a prosthetic component thereto; and
- an outer ring circumscribing the inner ring;
- wherein the pylon receiving end accommodates varying depths of insertion of the prosthetic pylon beyond the minimum required for secured fitting, thereby enabling height adjustability.
2. The adjustable prosthetic coupling of claim 1, wherein the inner ring includes at least two segments being constrictable.
3. The adjustable prosthetic component of claim 2, wherein the outer ring facilitates restriction by forcing the at least two segments toward one another to operatively adjust the inner ring diameter.
4. The prosthetic coupling of claim 2, wherein the axial depth of the inner ring does not exceed 2.5 inches.
5. The adjustable prosthetic component of claim 2, wherein the prosthetic component interface end includes at least one concavity adapted to accommodate a convex portion of the prosthetic component mounted thereto.
6. The adjustable prosthetic component of claim 5, wherein the prosthetic component interface end includes a prosthetic pyramid having a frustropyramidal boss.
7. The prosthetic coupling of claim 2, wherein:
- the pylon receiving end is manufactured, at least in part, from a metal; and
- the outer ring is manufactured, at least in part, from a metal.
8. The prosthetic coupling of claim 7, wherein:
- the metal for the pylon receiving end includes at least one of stainless steel and titanium; and
- the metal for the outer ring includes at least one of stainless steel, aluminum and titanium.
9. The adjustable prosthetic component of claim 2, wherein the outer ring is a ring clamp.
10. The adjustable prosthetic component of claim 9, wherein the ring clamp is integrated into the pylon receiving end.
11. The adjustable prosthetic component of claim 9, wherein the ring clamp includes at least one screw for securing the prosthetic pylon within the pylon receiving end.
12. The prosthetic coupling of claim 9, wherein the ring clamp is mounted to the inner ring so as to inhibit unrestricted rotation of the ring clamp about the inner ring.
13. An adjustable prosthetic coupling comprising:
- a pylon receiving portion having a means for selectively securing a prosthetic pylon therein; and
- a pyramid receiving portion including a means for selectively securing a prosthetic pyramid thereto;
- wherein the means for selectively securing the prosthetic pylon therein includes a plurality of height adjustments between the prosthetic pyramid and the prosthetic pylon, and wherein the means for selectively securing the prosthetic pylon therein enables day-to-day use.
14. A method for custom fitting prosthetic devices, comprising the steps of:
- providing a unitary prosthetic coupling device adapted to couple a prosthetic pylon to a second prosthetic limb component, the coupling device having a cylindrical sheath extending from a cavity adapted to receive at least a portion of the second prosthetic limb component therein, the cylindrical sheath adapted to interface with a prosthetic pylon, the cylindrical sheath accommodating various depths of pylon insertion to provide height adjustability with the second prosthetic limb component, the coupling device further being designed for day-to-day use; and
- mounting the second prosthetic limb component to the prosthetic coupling device and mounting the prosthetic pylon to an interior surface of the cylindrical sheath so as to provide a secure coupling between the prosthetic pylon and the second prosthetic limb component enabling day-to-day use.
15. The method of claim 14, further comprising the step of adjusting the height between the second prosthetic limb component and the prosthetic pylon for a proper fit.
16. The method of claim 15, wherein the adjusting step includes the steps of:
- releasing a restrictive force associated with the prosthetic coupling so as to enable vertical movement relative to an interior surface of the prosthetic coupling and the exterior surface of the prosthetic pylon;
- moving the prosthetic pylon relative to the prosthetic coupling such that a proper distance is achieved between a proximal end of the prosthetic coupling and a distal end of the prosthetic pylon; and
- engaging the restrictive force associated with the prosthetic coupling to inhibit vertical movement relative to the interior surface of the prosthetic coupling and the exterior surface of the prosthetic pylon.
17. The method of claim 14, wherein the secure coupling is accomplished, at least in part, by a clamp manipulating a restrictive force about the prosthetic pylon.
18. The method of claim 17, wherein the clamp is a ring clamp that includes a screw torqued to approximately around 7.0 ft.lbs to facilitate the secure coupling.
19. The method of claim 14, wherein the day-to-day use includes time periods extending beyond initial fitting or adjustment.
20. The method of claim 14, wherein the concavity enables prosthetic pylon insertion approximately between 1.375 and 1.875 inches.
Type: Application
Filed: Dec 14, 2005
Publication Date: May 4, 2006
Inventors: Steve Steinbarger (Willmington, OH), Damon Johncour (Raleigh, NC)
Application Number: 11/302,753
International Classification: A61F 2/62 (20060101);