Desktop computer conferencing system
A man-computer-man communications system, including a computer workstation (10), which is comprised of a display device (22), graphic tablet (18), stylus (14), computer unit (24), and display device screen (16) located at convenient locations. The active area of the graphic tablet is a transparent surface area (18), which is coincident to the display screen and is approximately the same size as the display screen. The graphic tablet device may include active or passive stylus (14). A keyboard unit (12) and telephone unit (28) may be added to the workstation. An external communications system may be added to transmit and receive data to or from remote computers or other workstations. The computer unit (24) controls the operation of the workstation and external communications.
This present application is a continuation application Ser. No. 08/487,778 filed Jun. 7, 1995; which was divisional application of Ser. No. 08/280,148 filed Jul. 25, 1994, which was a continuation application of Ser. No. 07/771,856 filed Oct. 7, 1991, which was a Continuation in part application Ser. No. 07/375,366 filed on Jul. 3, 1989. Each of the related applications is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTION1. Field of the Invention
This invention relates to communication systems used by individuals for general tele-writing, sketching and drawing of hand written information, to be transmitted to other individuals via computer systems. In particular it relates to computer workstations comprised of electrical and mechanical devices for the input, computation, and output of data, resulting an integrated ergonomically designed human-computer interface system.
2. Description of the Prior Art
In the following, a computer workstation is defined to be a combination of devices and apparatus, which may include computer hardware and software, that a person uses or operates during the performance various computing and communication tasks. These tasks includes, but is not limited to, technical calculations, business computations and local/remote communications. Prior art in this field includes many computer workstations and personal computers. Henceforth, a computer workstation will include personal computers, computer terminals, computer consoles, and like devices. The person operating the workstation will be referred to as the user. Display devices used in computer workstations can be classified into two broad categories. The first category is often referred to as direct-view display devices, in which the user, looks directly at the actual display screen, not projected light image from other components. Most of the display devices in the prior art belong to this category, examples include the Cathode Ray Tube (CRT), liquid crystal, and plasma panel displays. The other category is referred to as non-direct view or projected image displays, where examples include the optical CRT projector and some laser addressed liquid crystal projection devices.
There are presently many computer workstations on the market, many having similar components and physical arrangements. The available workstations are very well known to those skilled in the workstation art. The majority of computer workstations have a CRT display device placed on the table or desk, a mouse unit, a computer unit, and an alphanumeric keyboard. The prior art CRT or other direct-view displays usually have the display screen at near vertical or near 45 degree screen inclinations. A graphic tablet is defined to be an electrical device, which repeatedly measures the position of a stylus, pen or a user's finger over a defined area, encodes the positions into a digital signal, and transmits the data to a computer. A stylus is defined to be any elongated pen-like object that can be used for writing or sketching, including the user's finger. The writing stylus is typically used to point, write, sketch, or draw onto the graphic tablet's active area, referred to as the encoding area.
Prior art in computer workstations exist in various combinations of computers, display devices, and peripheral devices. However, the prior art fails to anticipate the importance of computer workstation with computer, graphic tablet, and display device, with inclined screen angle and its adjustability through large angles. U.S. Pat. No. 4,361,721 of Dagnelie discloses a teletext device having a graphic tablet and a CRT display at a screen inclination fixed near 45 degrees. However, the disclosure does not recognize display screen angle adjustability and does not teach a computing means of any type, which severely limits the usefulness of the device. U.S. Pat. No. 4,562,482 of Brown discloses a computerized executive workstation having a CRT display with a screen inclination angle of 50 degrees from the horizontal, during workstation operation. Although the CRT display can be retracted to a stored position below the work surface area, the teachings of Brown do not disclose a graphic tablet and do not disclose screen angle adjustability. These shortcomings restrict the workstation an operation without graphic input. The U.S. Pat. No. 4,668,026 of Lapeyre and Gundlach discloses a computer terminal cabinet for glare reduction, having a CRT display at an acute angle with the horizontal, a keyboard, and a printer. The reference teaches adjustable mounting only for glare reduction, and does not disclose a graphic tablet or a computer; thus also restricting the terminal to non-graphic input. U.S. Pat. No. 4,669,789 of Pemberton discloses a computer user's desk having a CRT monitor at about 60 degrees from the horizontal, a keyboard, and dual disk drives. This reference does not disclose a graphic tablet or screen angle adjustability to inclinations near the horizontal. Again, the prior art does not anticipate graphic input or screen angle adjustability for optimal stylus control.
All the prior art of computer workstations, terminals or cabinets, of which the above is representative, disclose either display screens near vertical orientation, disclose fixed acute inclinations, or limited screen angle adjustability for glare reduction. No prior art can be found that disclose screen angle adjustability from horizontal to vertical, with a graphic tablet and computer. The prior art workstations can be used in either the conventional manner or at a fixed acute screen angle, but not both. The prior art fails to recognize the importance of an ergonomically design graphic input workstation capable of adjusting between conventional orientation and graphic input mode of operation with stylus data entry and screen angle near the horizontal (about 30 degrees for horizontal).
Although several graphic tablet and stylus devices are available in the market, they usually have been combined with a display device by electrical means only. The typical display and graphic tablet combination has an opaque tablet laying horizontally on the desk or table next to the display device, connected by an electrical cable. Some graphic tablet prior art includes a transparent tablet placed over the display screen, but typically the screen orientation is near vertical. Although this arrangement works satisfactory for general purpose computer processing, it has some definite shortcomings when high resolution graphic processing is attempted. This is important because today software is becoming more graphic intensive than ever before.
An important problem exists if the screen angle is near vertical. The user's hand and wrist must bend to an uncomfortable position to write or sketch on the tablet-display surface. In addition, if the screen is at eye level, as with most prior art, the user's arm must be raised and held at position that will become very tiresome to the user, if used for a significant amount of time. The above is not just a matter of convenience. These shortcomings have severely restricted the use of standard graphic tablet input devices in the marketplace. This is one reason that the mouse input device has found wide spread use as a graphic input device for computer workstations and personal computers. Specifically, the mouse unit slides over the work table or desk, providing a support for the user's hand and arm. However, the mouse graphic input devices also have several disadvantages. First, it is difficult for the user to write, sketch, or draw with a mouse, because the device is too large and bulky to act as a pen or stylus. Secondly, the device must have a clear area on the table or desk for the unit to slide. This is valuable work space that some workstations cannot afford to lose.
Prior art workstations are inherently limited in their graphic interaction capabilities. The use of mice, joysticks, trackballs, and touch panels all have limitations for entering positional and functional data. For example, Computer-Aid Design (CAD) and Computer-Aided Design and Drafting (CADD) applications require precise and natural drawing and pointing means. An engineer or draftsman must be able to work at their workstation all day without great mental or physical fatigue. The prior art also does a poor job at providing a fatigue free workstation. In the area of teleconferencing applications, the computer workstation must be capable of real-time graphic and voice communications. The prior art workstations do not provide the means to accomplish that type of communications. In addition, conventional prior art workstations do not provide the ergonomically designed hardware support necessary for real-time electronic mail communications, while connected to either in Local Area Network communication means or remote communication means.
SUMMARY OF THE INVENTIONThe disclosed invention solves the shortcomings of the prior art by arranging the standard workstation components so that it results in an integrated ergonomically designed universal workstation. The primary feature of the workstation is that its display device is oriented so that its screen angle is inclined at an angle. A transparent graphic tablet or stylus encoding means is placed over the display screen such that tablet or encoding area is parallel to the screen and above with a minimum space between them. Thus the tablet and screen appear to be one surface to the user. The display and tablet combination can be made to be adjustable through a multiplicity of screen angles. When the user writes with the stylus onto the tablet-surface and the surface is oriented at an angle of about 30 degrees, a natural writing and display surface exits, which provides a surprisingly synergistic and natural man-computer interface. In addition, the same workstation can be used for standard personal computing.
Accordingly, the present invention has for its first object a computer workstation with a display device oriented at an inclined angle near the horizontal such that the user can write, sketch or draw on the display screen-tablet surface it a natural manner, where it results in a new and surprising tele-writing, tele-drawing, and voice-graphics conferencing system.
Another important object of this invention is to provide an ergonomically designed computer workstation integrating text, graphics, and voice means for the purpose of general purpose computing and communications.
A still another important object of this invention is to provide for a human-computer interface that results in a natural, easy to use, and useful computer workstation, personal computer, computer terminal, personal workstation, and/or computer console.
A further object of this invention is to allow precise hand controlled stylus pointing, sketching, writing, or drawing functions by a user for data entry into a computer means, computer network, distributed network, or communication system.
A still further object of this invention is to provide a workstation with graphic input and output means integrated with two way telephone voice means, such that real-time teleconferencing is made possible from the same workstation herein.
Another important object of this invention is to provide a computer based workstation capable of real-time electronic mail functions. This would involve communicating alphanumeric text, graphics, and images to remote locations, and having a capability of transmitting the user's hand writing, including his or hers personal signature, via electronic mail messages.
A further object of this invention is to provide an improved computer workstation for Computer-Aided Design and Computer-Aided Design and Drafting applications, as well as general purpose high resolution graphic image rendering systems.
Still further objects and advantages will become apparent from a consideration of the ensuing description and drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The disclosed invention can be described with reference to the perspective view of
The graphic tablet surface 18 may consist of a thin layer of a transparent material such as indium tin oxide or other suitable material; thus it cannot be distinguished for the display screen 16 in
A telephone means 28 may be located on table support means near the display device and keyboard. The addition of the telephone means to the computer workstation provides for both voice and data communications, simultaneously. The telephone means may be connected to the computing means 24 via an electrical telephone-computer cable 29. Specific circuitry in the computing means may integrate the voice signals with text/graphic data, well known to those skilled in the art. The computing means may be connected to an external communication means for transmitting and receiving data to and from a communications network 52. The electrical connection to the communications network is via an external communications cable 49. The communications network 52 is defined to be any appropriate communication system or network, in which data is transmitted and/or received to and from local or remote devices. Examples of such a communication network include the conventional telephone system, private telephone exchanges, computer local area networks, wide area networks, RS-232 serial interface, and many other types of communication systems. The telephone means 28 may be a speaker-type telephone, where the hands of the user are free to type on the keyboard or to write with the hand-held stylus. In an alternative embodiment, the telephone means may be connected directly to the communications network without going though the computer means. In an alternative embodiment, the computing means' functions may be incorporated into the display control circuitry.
The computer keyboard unit 12 may be a standard alphanumeric type keyboard or a special application specific keyboard design. As shown in
The computer workstation 10 may be realized with several types of computers or processors, having a wide range of processing powers, capabilities and sizes. Typically, the computing means 24 will have a central processing unit, internal memory, arithmetic logic unit, internal data bus, memory bus, device controllers, and other component well known to those skilled in the art. The computing means 24 will also process stored programs, algorithms and software, including but not limited to machine language, operating system, assembly languages, high level computational languages, and application software. The software may include text and graphic primitive programs to assist in the generation and manipulation of text and graphic workstation functions. Such software is known to those skilled in the field.
The means to encode a stylus position over the tablet area into electrical signals can be accomplished by several techniques. Among the prior art of encoding means are (1) measurement of x and y time delays via surface acoustic wave, (2) surface resistive sheet, (3) membrane pressure, (4) magnetic field means and (5) air acoustic means. In some embodiments, the tablet surface maybe a thin film applied to the display screen. In other embodiments, the tablet or encoding area may represent an area on the display screen, without a physical embodiment; i.e., air space between sensors. There are many types of graphic tablets that are presently on the market, including the SummaSketch® fro m Summagraphics Corporation, E-Z Image™ from Ovonic Systems Inc., or Scriptel™ from Scriptel Corporation. Typically, the stylus position is measured at a rate of about 100-500 points/second in both the x and y directions over the tablet's active area. The tablet electronics, located near the tablet, in the stylus, or on the tablet-computer interface card, converts these measurements into a digital code (encoded) and arranged into digital words or bytes (typically, 8 or 16 bits long). The resolutions of these devices are in the 200-300 dots/inch range.
As presented in
Many types of CRT display monitors could be used in the workstation, but it is preferred that a relatively high resolution (70 dots/inch or higher) flat screen type be used. One possible candidate CRT that is presently available is the Zenith™ Data System's Model ZCM-1490 Flat Screen CRT Monitor. This monitor is a color CRT display capable of displaying the IBM® V GA Standard 620×480 pixels at a center screen pitch of 0.28 millimeters. This resolution is sufficient for reasonable quality graphics. The main advantage of the monitor is its flat screen. For the invention disclosed here, the flat screen results in a natural writing surface, when combined with a graphic tablet. Other curved surface CRTs could be used, but a flat screen is a preferred embodiment. Although either monochrome or color display could be used, color displays are preferred, because they can produce a high brightness background color, for example white. A bright display background is important in order to reduce the perceived glare from the display-tablet screen. Of course, color displays are also preferred because of improved human information recognition, well known in the human factors field.
Instead of a CRT display monitor, the workstation may be embodied with a flat panel display device. One possible embodiment is shown in shown in
Since a relatively high resolution display device is required in this system, the active matrix liquid crystal display (LCD) panel is a preferred flat panel technology of choice. The advantages of LCD panels are their low power, light weight, VGA resolution, and the possibility of color. Presently, the disadvantages of LCDs are their high cost, low brightness, low contrast, and limited grey scale and color. The other display technologies have even greater limitations, making it difficult to realize a useful display device. This however, may change in the future when improvements in flat panel display technology will undoubtedly be made. The electrical signals between a flat panel display and the computing means, carried by cable 42 of
The other elements of
If the workstation mode is selected in element 66 of
Following element 96 of
The scope of the invention disclosed here should be determined by the appended claims and their legal equivalents, rather than by the examples given above.
Claims
1. A method for information sharing on a personal computer comprising the following steps in any order:
- a) executing a communication program in cooperation with a personal computer operating system;
- b) communicating data under control of the personal computer operating system to and from a second roughly equivalent personal computer at a remote location via an external communications network;
- c) conferring information between another personal computer system in a peer to peer manner in cooperation with the communicating data step using said computer program and an external communication function; and
- d) adapting said personal computer system for multiple data input devices.
2. A computer program residing on a computer readable medium, comprising instructions for causing one or more personal computer systems to:
- a) communicate information to and from another roughly same type personal computer system remotely located in cooperation with an operating system with a window graphical user interface capable of single window operation while communicating information,
- b) communication information via an external remote communications network in a roughly peer-to-peer process, such a user has the option to execute programs
- c) control downloading of information from said roughly same type personal computer system via the external remote communication network, wherein said information is processed;
- d) control uploading of information to said roughly same type personal computer via the external remote communication network, wherein said information is processed; and
- e) process said information for communication to and from the remote personal computer, such that said communication of information is for a business purpose.
3. A computer program as recited in claim 2, in which the computer program is communicating information for the purpose of conferencing and application sharing.
4. A computer program as recited in claim 2, in which the information communicated includes audio or voice information.
5. A computer program as recited in claim 2, in which the information communicated includes audio and video information.
Type: Application
Filed: Dec 23, 2005
Publication Date: May 11, 2006
Inventor: Richard Ditzik (Bonita, CA)
Application Number: 11/315,318
International Classification: G09G 5/00 (20060101);