Particles comprising a non-conducting or semi-conducting core, which are coated with a hybrid conducting layer, production methods thereof and uses of same in electrochemical devices

Mixture of particles comprising a non-conducting or semi-conducting nucleus covered with a hybrid conductor coating and hybrid conductor chains located between the particles of the mixture to constitute a conductivity network, that is prepared by mechanical crushing. Due to a very good conductivity of the network, a low resistivity, a very good capacity under elevated current and/or a good density of energy, these mixtures of particles are advantageously incorporated in anodes and cathodes of electrochemical generators, resulting in highly performing electrochemical systems.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The present invention relates to mixtures of particles containing a non-conducting or semi-conducting nucleus and a hybrid conducting coating, as well as a connection of hybrid conducting chains.

The present invention also relates to processes allowing to prepare these particles and their use for example in the field of electrochemical devices, such as rechargeable electrochemical generators.

An object of the present invention consists of anodes and cathodes containing such particles and electrochemical systems, for example supercapacitors thus obtained.

STATE OF THE ART

Hydro-Québec which is at the origin of U.S. Pat. No. 5,521,026 is one of the pioneers in the field of co-crushing carbon with oxides. In this document, the co-crushing of a carbon in the presence of a solvent is described as capable of being used to prepare materials that increase electrical conductivity of cathodes for lithium polymer batteries. Thus, an oxide of the type Vox is co-crushed with carbon black.

In PCT Application published under number WO 02/46101 A2, the synthesis of the material Li4Ti5O12 is described as capable of being carried out in the presence of carbon. In this case, carbon is mainly instrumental for obtaining nano-particles and for preventing the formation of agglomerates.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1/7: is a schematic illustration of a particle of Li4Ti5O12 with simple coating of carbon as obtained by the synthesis process described in WO 02/46101 A2.

FIG. 2/7: is a schematic illustration of a simple network of particles of Li4Ti5O12 with simple coating of carbon as obtained by the synthesis process described in WO 02/46101 A2.

FIG. 3/7: is a schematic illustration of a network of particles, according to the present invention, containing a nucleus of Li4Ti5O12 and a hybrid coating of carbon C1 and of carbon C2.

FIG. 4/7: shows the beneficial role of Carbon 2 with carbon orientation, when calendering.

FIG. 5/7: illustrates a device of the High Energy Ball Milling type used for the preparation of particles according to the invention with a nucleus of Li4Ti5O12.

FIG. 6/7: is a schematic illustration of a particle whose nucleus consists of Li4Ti5O12, as coated according to an embodiment of the present invention, in which the mixed hybrid conductor consists of particles of graphite and of Ketjen black.

FIG. 7/7: is a schematic illustration of a mixture of particles according to FIG. 6/7 and the conductivity network produced at the level of these particles through conducting hybrid chains based on graphite and Ketjen black.

SUMMARY OF THE INVENTION

The present invention relates to a mixture of particles comprising a non-conducting or semi-conducting nucleus. The nuclei of these particles are covered with a hybrid conducting coating, and hybrid conducting chains located between the particles of the mixture constitute therein a conductivity network.

These mixtures of particles may be prepared by means of processes including at least the preparation of a mixture of at least one non-conducting or semi-conducting material with a conducting material, and the addition of a second conducting material to the mixture obtained; or at least the preparation of a mixture of at least one non-conducting or semi-conducting material with at least two conducting materials; or at least the preparation of a mixture of conducting materials and mixing thereof with at least one non-conducting or semi-conducting material.

In view of a very good network conductivity, a low resistivity, a very good capacity under elevated current and/or a good energy density, these particles are advantageously incorporated into the anodes and cathodes of electrochemical generators, to produce highly performing electrochemical systems.

DESCRIPTION OF THE INVENTION

The first object of the present invention consists in a mixture of particles comprising a non-conducting or semi-conducting nucleus, the nuclei of said particles being at least partly covered with a hybrid conducting coating and said particles being at least partly connected with one another through hybrid conducting chains, i.e. by means of chains consisting of at least two types of conducting particles of different nature and that produce a network of electrical conductivity.

Electrical conductivity, i.e. the capacity of a substance to be an electrical current conductor, may be defined as the reverse of the resistivity according to the following formula:
σ=1/ρ

Since the intensity of an electrical field in a material may be expressed by the formula E=V/1, the Ohm's law may be rewritten in terms of currents of density J−I/A and one then obtains to the formula J=σE.

On the other hand it is well known that electronic conductivity varies depending on the materials used according to an amplitude order of 27. The materials are thus divided into 3 large families:

    • conducting metals such that σ>105 (Ω·m)−1;
    • semi-conductors with 10−6<σ<105(Ω·m)−1;
    • insulating materials such that σ<10−6( 6 ·m)−1.

These large families are those to which reference in made within the framework of the present application.

On the other hand, within the framework of the present invention, hybrid conducting coating (also called hybrid mixture) means any coating consisting of at least two different conducting materials. The term coating includes for example the deposit of a more or less perfect layer at the surface of a particle and the more or less uniform surrounding of particles with conducting particles that are at least partially connected together.

One may also mention as coating, those that comprise a mixture of at least two different conducting materials and in particulate form, some particles of the coating of a first nucleus being interconnected with particles of the coating of a second nucleus located in the mixture of particles proximate to said first nucleus.

One may thus mention hybrid conducting coatings consisting of a layer of particles of at least two different conducting materials, a portion at least of the particles of one of the conducting materials covering a first nucleus and being interconnected with conducting particles covering a second nucleus located proximate the first nucleus in the mixture of particles, and thus producing a network of electrical conductivity.

By way of examples of such hybrid conducting coatings, within the framework of the present invention, one may mention a hybrid coating that comprises:

    • a first layer of particles of a first conducting material, said first layer at least partly covering, preferably between 50 and 90%, more preferably at least 80%, of the surface of said nuclei; and
    • a second layer of particles of a second conducting material, preferably 10 to 50% (more preferably about 20%) of said particles of the second conducting material being connected together to form a network of electrical conductivity.

Advantageously, the nuclei of particles comprise a material s elected from the group consisting of phosphates, nitrides, oxides or mixtures of two or more of them.

According to an advantageous embodiment, at least 70% by weight of the nucleus of particles that constitute mixtures according to the invention, preferably comprises at least one metallic oxide such as a metallic oxide in which more than 65% by weight consists of a lithium oxide.

Lithium oxide is covered or not with carbon and preferably, lithium oxide has a spinel structure.

Particularly interesting mixtures of particles are those in which the lithium oxide is selected from the group consisting of the oxides of formula:

    • Li4Ti5O12;
    • Li(4-α)ZαTi5O12, in which a is higher than 0 and lower than or equal to 0.33; and
    • Li4ZβTi(5-β)O12 in which β is higher than 0 and/or lower than or equal to 0.5,

Z represents a source of at least one metal preferably selected from the group consisting of Mg, Nb, Al, Zr, Ni, and Co.

Preferably, at least 65% by weight of the nucleus of these particles consists of Li4Ti5O12, Li(4-α)ZαTi5O12, Li4ZβTi(5−β)O12 or a mixture thereof parameters α and β being such as previously defined.

A particularly interesting sub-family of mixtures of particles according to the invention consists of mixtures in which the nucleus of particles consists of Li4Ti5O12, Li(4-α)ZαTi5O12, Li4ZβTi(5−β)O12 or a mixture of two or them, with α and β being such as previously defined.

Advantageously, in these particles, the constituent material of the nucleus of particles is of the semi-conductor type and it consists of at least one element selected from the group consisting of Si, Si preferably doped with Ge, Ge, InSb and a mixture thereof.

According to another variant, the nucleus of particles is a non conductor and it consists of at least one material selected from the group consisting of glasses, mica, SiO2 and mixtures thereof.

In the particles according to the invention, the nuclei advantageously contain at least one of the lithium oxides covered with carbon described and/or obtained by one of the processes described in PCT Application WO 02/46101 A2, the content thereof being incorporated by reference in the present Application.

Particularly interesting properties, such as electrochemical properties, are obtained by using metallic oxides of formula LiMn0.5Ni0.5O2, LiMn0.33Ni0.33Co0.33O2, Li4Ti5O12, Li2TiCO3, LiCoO2, LiNiO2, LiMn2O4 or mixtures thereof.

In the mixtures of particles of the invention, the carbon contents are such that the total carbon present represents 1 to 6%, preferably about 2% of the total weight of the mixture of particles.

According to a preferred embodiment, the coating of particles of the invention consists of a hybrid mixture of carbon, and/or a carbon-metal hybrid mixture.

In the case of a carbon-metal hybrid mixture, the metal may for example be selected from the group consisting of silver, aluminum and corresponding mixtures.

When the hybrid coating is of the carbon type, it advantageously comprises at least two different forms of carbon, hereinafter called Carbon 1 and Carbon 2.

Carbon 1 is then advantageously a carbon of low crystallinity. The crystallinity of the particles of Carbon 1 that are present in the mixtures of particles object of the invention, is characterized by a d002, measured by X-ray diffraction or by Raman spectroscopy, higher than 3.39 Angstroms.

Carbon 2 is normally of the graphite type and/or of the high crystallinity carbon type. The crystallinity of the particles of Carbon 2, measured by X-ray diffraction or by Raman spectroscopy, is characterized by a d002 that is lower than 3.36 Angströms. Preferably, Carbon 2 is a natural, synthetic or exfoliated graphite.

Carbon 2 is advantageously selected so as to present a specific surface area measured according to the BET method, that is lower than or equal to 50 m2/g and/or with an average size that varies from 2 to 10 micrometers.

Particularly interesting electrochemical properties are also obtained with mixtures of particles in which Carbon 2 consists of at least one graphite selected from the group of synthetic graphite, natural graphite, exfoliated graphite or mixtures of these graphite.

Carbon 1 is advantageously selected so as to present a specific surface area, measured according to the BET method, that is higher than or equal to 50 m2/g.

A preferred sub-family of mixtures of particles according to the invention consists of mixtures containing particles of Carbon 1 whose dimension varies from 10 to 999 nanometers.

Preferably, the weight percentage of Carbon 1 represents, in the coating made of Carbon 1 and Carbon 2, from 1 to 10% and, it is preferably substantially identical to the quantity of Carbon 1.

The sub-families made of mixtures of powders in which the average diameter of the nucleus of particles, as measured by means of a scanning microscope, varies from 50 nanometers to 50 micrometers, preferably between 4 and 10 micrometers, more preferably in which the average diameter of the particles is of the order of 2 micrometers, are of particular interest within the framework of applications in electrochemical systems.

These mixtures of particles are characterized by at least one of the following properties: a very good local conductivity, a very good network conductivity, a low resistivity, a very good capacity under elevated current and a good density of energy.

Thus, the local conductivity of the mixtures of particles according to the invention is normally higher than 10−6 (Ohm-m) and is preferably higher than or equal to 10−5 (Ohm-m), as measured by the four points method.

The network conductivity, on its part, is normally between 2.6×10−3 and 6.2×10−3 as measured by the four points method, and is preferably lower than 6.0×10−03 (Ohm-m).

According to an advantageous embodiment, the powders of the invention have a D50 of about 7 micrometers.

A second object of the present invention resides in the process for preparing mixtures of particles in accordance with the first object of the present invention. These processes advantageously comprise at least one of the following steps:

    • a) preparation of a mixture of at least one non-conducting or semi-conducting material with a conducting material, and the addition of a second conducting material to the mixture obtained;
    • b) preparation of a mixture of at least one non-conducting or semi-conducting material with at least two conducting materials; and
    • c) preparation of a mixture of conducting materials and mixing thereof with at least one non-conducting or semi-conducting material.

According to an advantageous embodiment for carrying out the processes of the invention, mixing of the materials is carried out by mechanical crushing of the type HEBM, Jar milling, Vapor jet milling and preferably by HEBM. These processes are normally carried out at a temperature lower than 300 degrees Celsius, preferably at a temperature between 20 and 40° Celsius, more preferably at room temperature.

As a matter of fact, synthesis temperatures that are too high may cause degradation of the particle structure, for example by irreversibly deforming them such as by production of CO2 from carbon present in the reaction.

According to another variant, mixing of a plurality of carbon is carried out by chemical means before the step of synthesizing Li4Ti5O12.

According to another alternative, one of the conducting materials (Carbon 1) is obtained by thermal treatment of a polymer type precursor. The polymer may then be selected from the group consisting of natural polymers and modified natural polymers as well as mixtures thereof.

Thus, by way of example of polymers that can be used for the preparation of mixtures of particles of the invention, sugars, chemically modified sugars, starches, chemically modified starches, gelatinized starches, chemically modified starches, chemically modified and gelatinized starches, cellulose, chemically modified cellulose and mixtures thereof may be mentioned. By way of preferred example, cellulose acetate is mentioned.

Mixing of the plurality of carbon that is introduced in the reaction mixture may also be carried out by physical mixture, after synthesizing Li4Ti5O12.

A third object of the present invention consists of cathodes, such as electrochemical generator cathodes (preferably recyclable electrochemical generators) comprising a mixture of particles such as those defined in the first object of the present invention and/or of particles that can be obtained by a process according to the second object of the present invention.

A fourth object of the present invention consists of electrochemical generator anodes (preferably recyclable electrochemical generators) comprising particles such as those defined in the first object of the present invention and/or particles that can be obtained by a process according to the third object of the present invention.

A fifth object of the present invention consists of lithium type electrochemical generators including at least one electrolyte, at least one metallic lithium anode and at least one Li4Ti5O12 and/or Li(4-α)ZαTi5O12 and/or Li4ZβTi(5-β)O12, the cathode in said generator being such as defined in the third object of the present invention.

These generators are advantageously of the type that are rechargeable and/or recyclable.

Among these electrochemical generators, of particular interest are those of the lithium ion type comprising an anode as defined in the fourth object of the invention, preferably an anode of the type Li4Ti5O12 and/or of the type Li(4-α)ZαTi5O12 and/or of the type Li4ZβTi(5-β)O12, and a cathode of the type LiFePO4, LiCoO2, LiMn2O4 and/or LiNiO2.

Preferably, in these generators, the anode and/or the cathode are provided with an aluminum current collector that is full or of the Exmet type (expanded metal).

Such electrochemical generators are generally interesting in that they require no previous preparation of the battery. Advantageously, in these generators, the electrolyte is a dry polymer, a gel, a liquid or a ceramic.

A sixth object of the present invention consists of hybrid type supercapacitors comprising at least one electrolyte, at least one anode as defined in the fourth object of the invention, preferably an anode of the type Li4Ti5O12 and/or of the type Li(4-α)ZαTi5O12 and/or of the type Li4ZβTi(5-β)O12, and a cathode of the graphite or carbon with large specific surface area type.

These supercapacitors normally require no previous preparation of the supercapacitor.

Preferably, the supercapacitors of the invention are such that the anode and/or the cathode are provided with an aluminum current collector that is full or of the Exmet type (expanded metal).

Advantageously, also in these supercapacitors, the electrolyte is a dry polymer, a gel, a liquid or a ceramic.

The electrochemical systems according to the invention are also interesting in that they can be prepared without any addition of additional carbon.

DESCRIPTION OF THE PREFERRED EMBODIMENTS OF THE INVENTION

1—Addition of Carbon Particles that Constitute the Hybrid Coating after Synthesis from Li4Ti5O12

Li4Ti5O12 is obtained from a binary mixture of TiO2 and Li2CO3 that is roasted at 850° C. during 18 hours. The Li4Ti5O12 that is obtained is then mixed with two different types of carbon: a Carbon 1 also designated C1 and a Carbon 2 also designated C2.

Carbon 1: this is a carbon with low cristallinity and preferably having a specific surface area BET≦50 m2/g. Carbon 1 may be a carbon black, or any other type of conducting additive.

Carbon 2: this is a carbon with high cristallinity and preferably having a BET surface area≦50 m2/g. Carbon 2 may be a natural graphite or a synthetic graphite that may possibly-be exfoliated.

2—Role of the Two Carbon:

Carbon 1: the role is double. The first one is to coat the particle so as to ensure a local conductivity of the particle as this will appear on FIG. 1/7.

The second role of the low cristallinity carbon is to form a conductivity network between the particles of the same type as those illustrated in FIG. 1/7, which ensures conductivity in the electrode. Indeed, preparation of the electrode is carried out without any carbon additive.

The electronic network and the inter-particle conductivity are also ensured by Carbon 1 as this will appear also from FIG. 2/7.

Carbon 2: Carbon 2 is a graphite type of carbon and it allows first, surprisingly, to improve conductivity of the electrode by forming constitutive knots of homogenous distribution stations of electrical conductivity. These stations appear in the illustration of FIG. 3/7.

The good conductivity of graphite allows to decrease the resistivity of the electrode, which advantageously allows the battery to operate under high current densities.

The second role of graphite is with respect to the process. Graphite has the characteristics of a lubricating and hydrophobic material. When spreading the electrode, graphite allows to control the porosity of the electrode. Such a roller leveling of the electrodes moreover allows to orient the particles towards the basal plan, as this appears on FIG. 4/7, i.e. parallel to the surface of the electrode support; which provides a maximum conductivity to the electrode.

During the extrusion process, because of its lubricating properties, graphite permits an ease of extrusion as well as a homogenous thickness for the electrode. Moreover, it increases extrusion speed. These technical advantages result in a reduced cost for the production of the electrodes. In addition, when it is used for the preparation of electrodes under dry conditions, graphite helps in lubricating the nozzle tip of the extruder and makes it possible to prevent metal deposits at the surface of the nozzle tip.

3—Preparation of the Particles

Tertiary Mixture:

According to an advantageous embodiment of the present invention, a ternary mixture comprising (M1) (Li4Ti5O12+C1+C2) is obtained by high energy crushing HEMB (High Energy Ball Mill). For this purpose, a metal crucible is used. The M1 mixture is introduced in the crucible, and steel balls in a free volume ratio of 1/3, 1/3 and 1/3 are disposed in the crucible as illustrated in FIG. 5/7.

The conditions of mixing by HEBM are very important, one of the most important is to prevent destruction of the crystallinity of Carbon C2. Indeed, the particle size of carbon C2 must not decrease below 1 micrometer.

4—Preparation of the Electrode:

The electrode is prepared from a mixture of M1 and PVDF. This mixture is carried out in a ternary solvent comprising N-methylpyrrolydone (NMP), acetone, toluene, as this is described in the Patent of Hydro-Québec WO 01/97303 A1 the content thereof being incorporated by reference in the present Application.

The conductivity of t he paste obtained is intrinsically ensured par the M1 mixture (Li4Ti5O12+C1+C2), without adding additional carbon which has a positive impact on the energy density of the battery which in this case is not penalized by the additional weight of another source of carbon.

5—Advantage of the Synthesis of Li4Ti5O12

In this case, the quaternary mixture (M2) comprises TiO2, Li2CO3, C2 carbon (graphite) and a carbon precursor (polymer or other).

The M2 mixture is then introduced into a metallic crucible. A co-crushing of the HEBM type is carried out in order to obtain an intimate mixture. The mixture obtained is thereafter placed in a quartz tube to be heated therein. Synthesis is then finalized in the presence of an inert atmosphere in order to carbonize the polymer.

Once the synthesis is over, the Li4Ti5O12 product is coated with low crystallinity carbon and high crystallinity graphite. Preparation of the electrodes is equivalent to that described in paragraph 4 hereinabove.

EXAMPLES

The examples which follows are given by way of illustration and must not be interpreted as constituting any kind of limitation of the definition of the invention.

Example 1

A mixture of Li4Ti5O12, Ketjen black and a natural graphite of Brazilian source, in a volume ratio of 80.77/7.32/2.5 is crushed by HEBM during 1 hour. Particles having a nucleus of Li4Ti5O12, whose average size is 5 micrometers, and with a hybrid coating of graphite and Ketjen black are thus obtained. Their average thickness is 2 micrometers.

Example 2

A mixture of Li4Ti5O12, Ketjen black and graphite in a volume ratio of 40/2.5/2.5 is prepared by the method described in preceding example 1.

Example 3

A mixture of Li4Ti5O12, Ketjen black and graphite in a volume ratio of 81.06/3.51/2.5 is prepared as in example # 1. The total weight of carbon added corresponds to about 6% of the weight of the total mixture.

Example 4

A mixture of LiMn0.5Ni0.5O2, that is non conducting, Ketjen black and natural graphite of Brazilian source in a weight ratio of 94/3/3 is crushed by Hosokawa Mechanofusion during 1 hour. The particles obtained have a nucleus of LiMn0.5Ni0.5O2, an average size of 7 μm and a hybrid coating of graphite+Ketjen black and a thickness of 3 μm. Resistivity of the coated material, measured by the four point method, is 5×10−4 Ohm-m.

Determinations of electrochemical performances of the particles prepared are reported in the following table 1.

TABLE 1 Resistivity C/24 Capacity in Examples Particle size Ohm-m mAh/g 1 7 6 × 10−3 165 2 7 2 × 10−3 160 3 7 4 × 10−3 162 4 10 9 × 10−3 200

The high levels of electrochemical properties shown for example by means of these examples are used to prepare highly performing electrochemical systems.

Although the present invention has been described by way of specific embodiments, it is understood that many variations and modifications may be associated with said embodiments, and the present invention aims at covering such modifications, uses or adaptations of the present invention following in general, the principles of the invention and including any variation of the present description which will become known or is conventional in the field of activity of the present invention, and which may apply to the essential elements mentioned above, in accordance with the scope of the following claims.

Claims

1. Mixture of particles comprising a non-conducting or semi-conducting nucleus, the nuclei of said particles being at least partially covered with a hybrid conductor coating and said particles being at least partially connected through hybrid conducting chains which provide a network of electrical conductivity.

2. Mixture according to claim 1, in which the particles comprise a non-conducting or semi-conducting nucleus and a coating, at least partially made of a hybrid conductor material, and in which said particles are at least partially interconnected through hybrid conducting chains.

3. Mixture according to claim 2, in which the coating comprises a mixture of at least two different conducting materials and in particle form, some particles of the coating of a first nucleus being interconnected with particles of the coating of a second nucleus located in the mixture of particles proximate said first nucleus.

4. Mixture of particles according to claim 3, in which the coating comprises:

a first conducting material at least partially covering the surface of said nuclei; and
a second conducting material in which particles are connected together to constitute an electrical conductivity network.

5. Mixture according to any one of claim 1, in which the nuclei comprise at least one phosphate, one nitride, one oxide or a mixture of two or more of them.

6. Mixture according to claim 5, in which the nucleus of said particles, in major portion consists of at least one metal oxide.

7. Mixture according to claim 64, in which the metal oxide, for more than 65% by weight, consists of a lithium oxide.

8. Mixture according to claim 7, in which the lithium oxide is carbon coated.

9. Mixture according to claim 6, in which the nucleus consists of a lithium oxide of spinel structure.

10. Mixture of particles according to claim 6, in which the lithium oxide is selected from the group consisting of oxides of the formula:

Li4Ti5O12;
Li(4-α)ZαTi5O12, in which a is higher than 0 and lower than or equal to 0.33, Z represents a source of at least one metal; and
Li4ZβTi(5-β)O2 in which β is higher than 0 and/or lower than or equal to 0.5, Z represents a source of at least one metal.

11. Mixture according to claim 10, in which at least 65% of the nucleus of the particles consists of Li4Ti5O12, Li(4-α)ZαTi5O12, Li4ZβTi(5-β)O12 or a mixture thereof, α and β having the values defined in claim 10.

12. Mixture according to claim 10, in which the nucleus of particles is a lithium oxide of spinel structure and consists of Li4Ti5O12, Li(4-α)ZαTi5O12, Li4ZβTi(5-β)O12 or a mixture thereof, α and β having the values defined in claim 10.

13. Mixture according to claim 1, in which the nucleus of said particles is semi-conducting and consists of a material selected from the group consisting of Si, doped Si, or Ge, Ge and InSb.

14. Mixture according to claim 1, in which the nucleus of said particles is non conducting and consists of a material selected from the group consisting of glasses, mica and SiO2.

15. Mixture according to claim 1, in which the particles have a D50 of 7 micrometers.

16. Mixture according to claim 9, in which Z represents a particle of a metal selected from the group consisting of Mg, Nb, Al, Zr, Ni and Co.

17. Mixture according to claim 10, in which the metal oxide has the formula LiMn0.5Ni0.5O2, LiMn0.33Ni0.33Co0.33O2, Li4Ti5O12, Li2TiCO3, LiCoO2, LiNiO2 or LiMn2O4.

18. Mixture according to claim 1 containing from 1 to 6% by weight of carbon in said mixture.

19. Mixture according to claim 18, containing about 2% by weight of carbon in said mixture.

20. Mixture according to claim 1, in which the coating consists of a hybrid mixture of carbon, and/or a carbon-metal hybrid mixture.

21. Mixture according to claim 20, in which the metal is selected from the group consisting of silver, aluminum and mixtures thereof.

22. Mixture according to claim 20, in which the hybrid carbon mixture comprises at least two different conducting forms of carbon, hereinafter designated Carbon 1 and Carbon 2.

23. Mixture according to claim 22, in which Carbon 1 is a low crystallinity carbon.

24. Mixture according to claim 23, in which the crystallinity of the particles of Carbon 1, measured by X-ray diffraction and/or by Raman spectroscopy, is characterized par a d002 higher than 3.36 Angströms.

25. Mixture according to claim 22, in which Carbon 2 is a graphite and/or a high crystallinity carbon.

26. Mixture according to claim 25, in which the crystallinity of the particles of Carbon 2, measured by X-ray diffraction is characterized by a d002 lower than 3.36 Angstroms.

27. Mixture according to claim 26, in which Carbon 2 is a natural graphite, a synthetic graphite or an exfoliated graphite.

28. Mixture according to claim 22, in which Carbon 1 has a specific surface area, measured according to the BET method, that is higher than or equal to 50 m2/g.

29. Mixture according to claim 28, in which the particles of Carbon 1 that are used have an average size that varies from 10 to 999 nanometers.

30. Mixture according to claim 22, in which the particles of Carbon 2 have a specific surface area measured according to the BET method, that is lower than or equal to 50 m2/g.

31. Mixture according to claim 22, in which the particles of carbon 2 that are used, have a size that varies from 2 to 10 micrometers.

32. Mixture according to claim 22, in which Carbon 2 consists of at least one graphite selected from the group consisting of synthetic graphite, natural graphite, exfoliated graphite and mixtures of two or more of these graphite.

33. Mixture according to claim 22, in which the weight percentage of Carbon 1 represents from 1 to 10% of the total weight of the coating composed of Carbon 1 and Carbon 2.

34. Mixture according to claim 22, in which the quantity of Carbon 1 is substantially identical to the quantity of Carbon 2.

35. Mixture according to claim 1, in which the average diameter of the nucleus of said particles varies from 50 nanometers to 30 micrometers.

36. Mixture according to claim 35, characterized in that the average diameter of said nucleus is of the order of 2 micrometers.

37. Mixture according to claim 1, in which the average size of said particles, measured according to the electronic scanning microscope method, is between 4 and 30 micrometers.

38. Mixture according to claim 1, having at least one of the following properties: a very good local conductivity, a very good network conductivity, a low resistivity, a very good capacity under elevated current and a good density of energy.

39. Mixture according to claim 36, having a local conductivity, measured according to the four point method, that is higher than 10−6 (Ohm-m).

40. Mixture of particles according to claim 38 having a network conductivity, measured according to the four point method, that is between 2.6×10−3 and 6.2×10−3.

41. Process for preparing a mixture of particles such as defined in claim 1, comprising at least one of the following steps:

a) preparation of a mixture of at least one non-conducting or semi-conducting material with a conducting material, and the addition of a second conducting material to the mixture obtained;
b) preparation of a mixture of at least one non-conducting or semi-conducting material with at least two conducting materials; and
c) preparation of a mixture of conducting materials and mixing thereof with at least one non-conducting or semi-conducting material.

42. Process for preparing a mixture of particles according to claim 41, in which mixing of materials is carried out by mechanical crushing of the type HEBM, Jar milling, or Vapor jet milling.

43. Process for preparing a mixture of particles according to claim 41 carried out at a temperature lower than 300 degrees Celsius.

44. Process for preparing a mixture of particles according to claim 41, in which the nuclei of said particles are based on Li4Ti5O12 and the coating is based on a mixture of carbon, mixing of carbon being carried out chemically, before the step of synthesing particles of Li4Ti5O12.

45. Process according to claim 41, in which at least one of the conductor materials (Carbon 1) is obtained by thermal treatment of a polymer type precursor.

46. Process according to claim 45, in which the polymer is selected from the group consisting of natural polymers, modified natural polymers as well as mixtures thereof.

47. Process according to claim 46, in which the polymer is selected from the group consisting of sugars, chemically modified sugars, starches, chemically modified starches, gelatinized starches, chemically modified starches, chemically modified and gelatinized starches, cellulose, chemically modified cellulose and mixtures thereof.

48. Process according to claim 47, in which the polymer is a cellulose acetate.

49. Process according to claim 44, in which mixing of carbon is carried out by physical admixing, after Li4Ti5O12 synthesis.

50. Cathode for electrochemical generator comprising a mixture of particles such as these defined in claim 1.

51. Anode for electrochemical generator comprising particles as defined in claim 1.

52. Electrochemical generator of the lithium type including at least one metallic lithium anode and at least one cathode as defined in claim 50.

53. Electrochemical generator according to claim 52, preferably of the rechargeable and/or recyclable type.

54. Electrochemical generator of the lithium type including at least one metallic lithium anode as defined in claim 50, at least one cathode and comprising at least one electrolyte.

55. Electrochemical generator according to claim 52, in which at least one anode and/or at least one cathode are provided with an aluminum current collector that is full or of the Exmet type (expanded metal).

56. Electrochemical generator according to claim 52 requiring no previous preparation of the battery.

57. Generator according to claim 52, in which the electrolyte is a dry polymer, a gel, a liquid or a ceramic.

58. Hybrid type supercapacity comprising at least one electrolyte, at least one anode, as defined in claim 51, and at least one cathode of the graphite or large surface area carbon type, requiring no previous preparation of the supercapacitor.

59. Supercapacity according to claim 58, in which at least one anode and/or at least one cathode are provided with an aluminum current collector that is full or of the Exmet type (expanded metal).

60. Supercapacity according to claim 59, in which the electrolyte is a dry polymer, a gel, a liquid or a ceramic.

61. Electrochemical system according to claim 52, characterized in that the electrode is prepared without any addition of additional carbon.

62. Mixture according to claim 4, in which between 50 and 90% of the first conducting material is covering the surface of said nuclei; and between 10 and 50% of the particles of the second conducting material are connected together to constitute an electrical conductivity network.

63. Mixture according to claim 4, in which about 80% of the first conducting material is covering the surface of said nuclei; and about 20% of the particles of the second conducting material are connected together to constitute an electrical conductivity network.

64. Mixture according to claim 6, in which the nucleus of said particles consists for at least 70% of at least one metal oxide.

65. Mixture according to claim 36, having a local conductivity, measured according to the four point method, that is higher than or equal to 10−5 (Ohm-m).

66. Mixture of particles according to claim 38 having a network conductivity, measured according to the four point method, that is lower than 6.0×10−03 (Ohm-m).

67. Process for preparing a mixture of particles according to claim 41, in which mixing of materials is carried out by mechanical crushing of the type HEBM.

68. Process for preparing a mixture of particles according to claim 41, carried out at a temperature between 20 and 40° Celsius.

69. Process for preparing a mixture of particles according to claim 41, carried out at room temperature.

70. Cathode for electrochemical generator comprising a mixture of particles capable of being obtained by a process according to claim 41.

71. Cathode for electrochemical generator comprising a mixture of particles comprising a non-conducting or semi-conducting nucleus, the nuclei of said particles being at least partially covered with a hybrid conductor coating and said particles being at least partially connected through hybrid conducting chains which provide a network of electrical conductivity and particles capable of being obtained by a process according to claim 46.

72. Anode for electrochemical generator comprising particles capable of being obtained by a process according to claim 41.

73. Anode for electrochemical generator comprising particles comprising a non-conducting or semi-conducting nucleus, the nuclei of said particles being at least partially covered with a hybrid conductor coating and said particles being at least partially connected through hybrid conducting chains which provide a network of electrical conductivity and particles capable of being obtained by a process according to claim 41.

74. Electrochemical generator according to claim 52, in which the anode is of the Li4Ti5O12 and/or Li(4-α)ZαTi5O12 and/or Li4ZβTi(5-β)O12 type.

75. Electrochemical generator according to claim 54, in which the anode is of the Li4Ti5O12 and/or Li(4-α)ZαTi5O12 and/or Li4ZβTi(5-β)O12 type; and the cathode is of the LiFePO4, LiCoO2, LiMn2O4 and/or LiNiO2 type.

76. Hybrid type supercapacity comprising at least one electrolyte, at least one anode, of the Li4Ti5O12 and/or Li(4-α)ZαTi5O12 and/or Li4ZβTi(5-β)O12 type and at least one cathode of the graphite or large surface area carbon type, requiring no previous preparation of the supercapacitor.

Patent History
Publication number: 20060115732
Type: Application
Filed: Jul 10, 2003
Publication Date: Jun 1, 2006
Inventors: Karim Zaghib (Quebec), Patrick Charest (Quebec), Abdelbast Guerfi (Quebec), Michael Perrier (Montreal, Quebec), Kimio Kinoshita (Cupertino, CA)
Application Number: 10/521,365
Classifications
Current U.S. Class: 429/231.100; 252/500.000; 252/520.210; 252/507.000; 429/231.500
International Classification: H01M 4/48 (20060101); H01B 1/00 (20060101); H01B 1/06 (20060101); H01B 1/12 (20060101); H01B 1/02 (20060101);