Virtual reality exercise system and method
System and method for providing virtual reality exercise equipment are disclosed. In one form, a virtual reality exercise system includes an exercise system including a video projector operably coupled to a media player. The exercise system responsive to video programming displayed by the video projector. A virtual reality control system is coupled to a platform of the exercise system and includes a mode selector operable to receive a mode of operation, a speed selector operable to receive a speed of operation and a scene selector operable to receive a scene to be displayed using the video projector.
The invention relates generally to exercise equipment, and more particularly to a virtual reality exercise system and method.
BACKGROUNDJust about any exercise done outdoors can also be done indoors, thanks to aerobic machines. Some of the more popular aerobic machines include treadmills, stationary bikes, steppers, and row machines to name a few. Treadmills are great because of their simplicity and are great for beginners. If a user has bad knees, weak ankles or back pain, a treadmill may be preferred to streets and sidewalks because it's kinder on the joints. Most conventional treadmills offer excellent shock absorption.
There are two basic types of treadmills, manual and electric. Manual treadmills are powered by the user. One advantage of a manual treadmill is that it is much more affordable than the automatic treadmill. Other advantages include lower maintenance and less costly repairs. However, manual treadmills are more difficult to accelerate, stop and maintain a consistent speed than electric treadmills. Also, manual treadmills seldom offer incline adjustments.
Most conventional treadmills are electric treadmills and are powered by a motor. Electric treadmills typically have two motors, one to drive the belt and the other for incline purposes. Typical electric treadmills include a continuous-duty motor that runs the belt with at least a 1.5 horsepower motor. Electric treadmills allow users to customize workouts through adjusting the running speed, range of incline and overall difficulty of the workout. Other advantages of electric treadmills include a quiet, smoother workout.
Stationary bikes are also available and are typically provided in two styles, upright and recumbent. Upright bikes simulate regular bikes, while recumbent bikes have bucket-style seats and pedals in front. These bikes offer more back support and provide less strain on the knees, while offering a terrific aerobic workout. Steppers, or stair climbers, are an excellent way to burn calories and tone the legs and buttocks. Users that typically like to ski, climb, hike, or run, most likely enjoy using the stepper to stay in shape.
Most aerobic exercise equipment is interactive in that they provide feedback, such as how many calories burned, the distance traveled, the amount of time elapsed, speed, etc. Some equipment includes a manual mode that allows a user to control the intensity of the workout and some offer pre-programmed workout options. These options include altering the speed, incline and difficulty of a workout.
BRIEF DESCRIPTION OF THE DRAWINGSOther advantages, features and characteristics of the invention, as well as methods, operation and functions of related elements of structure, and the combinations of parts and economies of manufacture, will become apparent upon consideration of the following description and claims with reference to the accompanying drawings, all of which form a part of the specification, wherein like reference numerals designate corresponding parts in the various figures, and wherein:
A system and method for providing virtual exercise equipment are disclosed. A virtual reality exercise system may be provide in association with multiple types of exercise equipment including, but not limited to, treadmills, stair steppers, elliptical bikes, cycling machines, rowing machines, etc. In one form, an exercise system operable to project video programming during use comprising includes a video projector coupled to a treadmill platform and operable to display video programming at a distance away from the treadmill platform. A virtual reality control system is coupled to the treadmill platform and includes a display and a scenery selection button operably coupled to a virtual reality processor. The scenery selection button is operable to allow a user to select a type of scenery to display using the video projector. A treadmill motor is provided and is operable to drive a belt coupled to the treadmill platform and an incline motor. Each motor operates in response to the video programming and based on the type of scenery selected.
In another form, a method for providing video programming for exercise equipment having a video projector to produce virtual reality environment during use is disclosed. The method includes determining a platform status of one or more controllable outputs associated with the exercise equipment and determining a selected scene to display using a video projector operably coupled to the exercise equipment. The method further includes generating a platform output based on the selected scene to control a portion of the exercise equipment and generating video programming based on the selected scene and the platform output. The method also includes controlling the portion of the exercise equipment using the output to simulate the generated video programming and displaying the video programming in synch with controlling the portion of the exercise equipment.
During use, virtual reality exercise system 10 allows for a user to run or jog on treadmill 19 as treadmill belt 16 is rotated using treadmill motor 15. As treadmill belt 16 is rotated, video projector 14 displays video programming on screen 18 to produce a selected scenery. For example, video projector 14 may display a jogging or running path within a park, a elongated beach, a hilly region, a metropolitan area, or any other type of scenery. Video programming is output by video projector 14 in synch with treadmill 19. For example, as incline motor 17 raises treadmill platform 12 to create an incline, video projector 14 displays a graphic representation of an uphill jogging trail, hilly region, mountain trail, etc. Similarly, as incline motor 17 is lowered, video projector 14 may display a level terrain on screen 18. In another embodiment, as treadmill motor increases or decreases in operating speed, video projector 14 outputs video programming at a faster or slower rate respectively.
In one embodiment, treadmill 19 may be operated in response to a predetermined video program. For example, as media associated with video programming is processed by virtual reality exercise system 10, treadmill 19 and associated platform motors are controlled by a virtual reality processor (not expressly shown) which alters the speed and incline of treadmill 19 based on video programming being displayed. For example, treadmill 19 would be synchronized with video programming being output and incline and speed of treadmill 19 would be altered based on the scene being displayed.
Display 23 may also display one or more of speed, time, distance, number of calories burned, heart rate. Virtual reality control system 22 may also include preset and/or customizable programming capabilities. For example, preset programs may be stored within virtual reality control system 22 for ease of access. In another embodiment, virtual reality control system 22 may also record a person's workout history and display 23 may display a workout log to a user.
In one embodiment, virtual reality control system 22 may automatically adjust incline, which changes depending upon the exerciser's heart rate as detected by heart rate monitor 30. For example, a heart rate may be communicated to virtual reality control system 22 via a wireless heart rate monitor (not expressly shown) and automatically adjusts the percentage or degree of incline to keep the person within their target heart range. Virtual reality control console 22 would detect the change and video programming may be altered in synch with changing the degree of incline accordingly.
During operation, virtual reality processing system 40 receives inputs from input controller 47 and platform sensor module 41 to determine a platform status for producing video programming and platform output controls. Virtual reality processor 41 analyzes sensory inputs to determine a current speed and incline of a platform and compares each input to a current media being displayed by media player 45. If a change in media is determined through analyzing future video segments or frames of the media as provided by media source 44, virtual reality processor 41 alters platform operating characteristics based on the video programming about to be played by media player 45.
In another embodiment, inputs provided by platform sensor module 42 and/or input controller 47 may be used to determine video programming to be played by media player 45. A user may manually adjust the speed and/or incline of an exercise equipment. As such, virtual processing system 40 may adjust the output and/or content of video programming being displayed by media output device 46. For example, if a user manually increases or decreases the speed of operation, virtual reality processor may increase the speed at which media player 45 outputs video programming. In a similar manner, as a user slows down the speed of operation, virtual reality processor may decrease the speed at which media player 45 output video programming. A user may also alter the type of media content being output through increasing or decreasing an incline of an exercise equipment. For example, a user may add incline to a treadmill thereby causing virtual reality processor 41 to request media from media source that may include a hill. Similarly, if an exercise bike is being used, a hill may be encountered, if a rowing machine is being used, an increase in a current may be used, if a stair stepper is being used steeper steps may be encountered. As such, a user providing manual control of an exercise equipment may alter video programming being output or displayed by media output device 46.
Upon obtaining media, a platform status of the exercise equipment is determined 67 and one or more control outputs 68 are provided to a platform controller based on the media to be displayed. For example, the speed and/or the incline of a treadmill may be adjusted accordingly. Video programming is then output to a media player 69 and a video projector displays or outputs video programming 70. At step 71, if a user selects the stop button, the method proceeds to step 72 and the platform is reduced to a stop 72 and the display is dimmed 73. If a stop button is not activated by a user, the method proceeds to step 67 where the status of the platform is determined and the method proceeds accordingly controlling the platform in response to the video programming being output. The method of
Note that although an embodiment of the invention has been shown and described in detail herein, along with certain variants thereof, many other varied embodiments that incorporate the teachings of the invention may be easily constructed by those skilled in the art. Benefits, other advantages, and solutions to problems have been described above with regard to specific embodiments. However, the benefits, advantages, solutions to problems, and any element(s) that may cause any benefit, advantage, or solution to occur or become more pronounced are not to be construed as a critical, required, or essential feature or element of any or all the claims. Accordingly, the invention is not intended to be limited to the specific form set forth herein, but on the contrary, it is intended to cover such alternatives, modifications, and equivalents, as can be reasonably included within the spirit and scope of the invention.
Claims
1. An exercise system operable to project video programming during use comprising:
- a video projector coupled to a treadmill platform and operable to display video programming at a distance away from the treadmill platform;
- a virtual reality control system coupled to the treadmill platform and including a scenery selection button operably coupled to a virtual reality processor, the scenery selection button operable to select a type of scenery to display using the video projector; and
- a treadmill motor operable to drive a treadmill belt coupled to the treadmill platform and an incline motor operable to incline the treadmill platform, each motor operable in response to the video programming and the type of scenery selected.
2. The system as recited in claim 1 wherein the virtual reality control system comprises:
- a virtual reality processor coupled to a platform sensor module operable to provide an operating status of the treadmill motor and the incline motor;
- an input controller coupled to the virtual reality processor and operable to input one or more parameters to determine the video programming;
- a platform controller operably coupled to the virtual reality processor, the treadmill motor, and the incline motor;
- wherein the platform controller receives inputs in response to the video programming; and
- a media player operably coupled to the virtual reality processor to play the video programming in synch with an operating speed of the treadmill motor.
3. The system as recited in claim 2 further comprises wherein the media player is operable to:
- increase the speed of playing the video programming when the treadmill motor increases the operating speed; and
- decrease the speed of playing the video programming when the treadmill motor decreases the operating speed.
4. The system as recited in claim 2 wherein the media source includes one of the following:
- a CD-ROM encoded with CD-ROM encoded video segments;
- a DVD encoded with DVD encoded video segments;
- a local video library storing plural local video segments; and
- a remote video library storing plural remote video segments.
5. The system as recited in claim 1 wherein the media player is an MPEG media player and the video programming is MPEG encoded video programming.
6. The system as recited in claim 5 wherein the virtual reality processor includes:
- a frame analyzer operable to determine a current frame based on encoded media within the MPEG encoded video programming;
- a speed analyzer operable to determine a current speed of the treadmill motor relative to the playing of the MPEG encoded video programming; and
- an incline analyzer operable to determine a current incline of the incline motor relative to the playing of the MPEG encoded video programming;
7. The system as recited in claim 5 wherein the scenery includes at least one of the following:
- a beach scene;
- a city scene;
- a country-side scene;
- a mountain scene;
- a desert scene; and
- a park scene.
8. The system of claim 1 further comprising;
- the treadmill motor operable to produce an operating speed between zero miles per hour and fifteen miles per hour; and
- the incline motor operable to provide an operating incline between one degree and twenty five degrees.
9. The system as recited in claim 1 comprising a heart rate monitor system operably coupled to the virtual reality processor, the virtual reality processor operable to provide video programming in response to a user's heart rate detected by the heart rate monitor system.
10. The system as recited in claim 1 further comprising a display coupled to the treadmill platform and operable to selectively display one or more of:
- distance traveled;
- elapsed time;
- calories burnt; and
- distance remaining.
11. A method for providing video programming for exercise equipment having a video projector to produce virtual reality environment during use comprising:
- determining a platform status of one or more controllable outputs associated with an exercise equipment;
- determining a selected scene to display using a video projector operably coupled to the exercise equipment;
- generating a platform output based on the selected scene to control a portion of the exercise equipment;
- generating video programming based on the selected scene and the platform output;
- controlling the portion of the exercise equipment using the platform output to simulate the generated video programming; and
- displaying the video programming in synch with controlling the portion of the exercise equipment.
12. The method as recited in claim 11 further comprising:
- accessing a sensor module to determine an operating speed of a motor associated with the exercise equipment; and
- altering the operating speed of the motor in response the video programming.
13. The method as recited in claim 11 further comprising:
- accessing a sensor module to determine an incline of a motor associated with the exercise equipment; and
- altering the incline using the motor in response the video programming.
14. The method as recited in claim 11 further comprising enabling a frame analyzer to determine the video programming to use in association with an operating status of the exercise equipment.
15. The method of claim 11 further comprising displaying the video programming using a video projector coupled to the exercise equipment.
16. The method of claim 11 further comprising:
- detecting a stop mode operable to stop the exercise equipment;
- reducing the platform output in response to detecting the stop mode; and
- dimming the video projector.
17. The method of claim 11 further comprising:
- determining a selected speed of operating the exercise equipment;
- determining a selected mode of operating the exercise equipment;
- determining a selected incline of operating the exercise equipment;
- generating a platform output control based on the selected scene, selected speed, selected mode, and selected incline to control a portion of the exercise equipment; and
- generating the video programming based on the selected scene, selected speed, selected mode, and selected incline.
18. A virtual reality exercise system comprising:
- an exercise system including a video projector operably coupled to a media player, the exercise system responsive to video programming displayed by the video projector;
- a virtual reality control system coupled to a portion of a platform of the exercise system, the control system comprising: a mode selector operable to receive a mode of operation; a speed selector operable to receive a speed of operation; and a scene selector operable to receive a scene to be displayed using the video projector; and
- a virtual reality processing system coupled to the virtual reality control system and an platform control module, the virtual reality control system operable to process the selected mode, the selected speed, and the selected scene to provide an output to the platform control module to control a portion of the exercise system.
19. The system of claim 18 further comprising
- wherein the selectable mode include at least one of a manual mode, random mode, pre-programmed mode;
- wherein the selectable speed range between zero and fifteen miles per hour;
- wherein the selectable scene includes one of: a beach scene; a city scene; a country-side scene; a mountain scene; a desert scene; and a park scene.
20. The system of claim 18 further comprises at least one of a treadmill exercise system, a stair climbing exercise system, a rowing exercise system, and a cycling exercise system.
Type: Application
Filed: Dec 8, 2004
Publication Date: Jun 8, 2006
Inventor: Ronnie Felix (Des Moines, WA)
Application Number: 11/007,137
International Classification: A63B 71/00 (20060101);