Display hold-down systems and methods

Disclosed are systems and methods comprising a display apparatus having at least one integral mounting point, a display enclosure base coupled to the display apparatus via the at least one integral mounting point, and at least one hold-down bracket assembly providing a hold-down point between the display apparatus and the display enclosure base.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS-REFERENCE TO RELATED APPLICATION

The present application claims benefit of priority to co-pending U.S. Provisional Patent Application No. 60/639,111, entitled “Display Hold-Down Systems and Methods, filed Dec. 23, 2004, the disclosure of which is hereby incorporated herein by reference.

DESCRIPTION OF RELATED ART

Computers and other electronic equipment utilize electronic displays, such as liquid crystal display (LCD) panels, gas plasma panels, and the like. For example, notebook computers, tablet computers, personal digital assistants (PDAs), and cellular telephones often utilize a LCD panel display apparatus or a gas plasma display apparatus disposed in a display enclosure. Similarly, entertainment systems, such as portable digital versatile disk (DVD) systems and flat panel televisions often use a LCD panel display apparatus or gas plasma display apparatus disposed in a display enclosure.

Typical display apparatus, such as a LCD display apparatus, which may be acquired by an electronic device original equipment manufacturer for integration into an electronic device, such as a notebook computer, comprise a metal frame surrounding the actual display to provide support structure and attachment points. For example, a frame of a typical LCD display apparatus may include integral mounting points, e.g., holes machined therein to accept mounting screws, along sides thereof. Although certain display apparatus, e.g., some 16:9 aspect ratio or “wide screen” displays, provide integral mounting points along 4 sides of a mounting frame, many commercially available display apparatuses provide integral mounting points only along 2 sides of a mounting frame. Accordingly, a display apparatus may be attached to a display enclosure making up a notebook computer display along only 2 sides (e.g., the 2 sides parallel to an X-axis of the display apparatus).

The display apparatus of such displays are often subject to appreciable motion, shock, and deflection pressure. For example, a notebook computer may be subject to substantial g-forces when transported by a user. Additionally, items, such as cell phones, power adaptors, etcetera, may be transported with a notebook computer which, when disposed in juxtaposition with a portion of the panel display, may cause substantial deflection pressure to be applied thereto.

Although the display apparatus of the aforementioned displays may be relatively rigid, such display apparatus is prone to planar deflection (e.g., the display surface bowing along the 2 sides parallel a Y-axis of the display apparatus) when exposed to motion, shock, deflection pressure, etcetera. Planar deflection of a display apparatus may result in the display surface contacting other structure, such as the keycaps, pointing stylus, or wrist rests of a notebook computer when the notebook computer is in a closed clamshell configuration. Such contact may result in marks being left on the display surface from dust, organic oil residues, etcetera. Additionally, such contact may result in the notebook computer being unintentionally awakened from a power conserving sleep due to the display apparatus engaging a pointing stylus or other input mechanism during transport. Even more problematic, such contact may result in the display apparatus being permanently damaged. For example, contact between the display surface and a hard surface, such as keycaps, may result in a hole or surface irregularity being worn into one or more layers of the display mechanism. A LCD display may comprise one or more thin membranes, such as polarizing layers, disposed upon a glass or other substrate which, when repeatedly contacted by a hard surface may develop the aforementioned holes or surface irregularity.

Various techniques have been used in the past to prevent display surfaces of such displays from contacting other structures or to prevent damage resulting therefrom. For example, spacers, such as may be made of rubber or other materials, have been used along the periphery of the display to maintain a spacing between a display surface and other structure sufficient to accommodate planar deflection without contact between the display surface and other structure. As one example, it may be determined that the expected maximum planar deflection associated with a display apparatus of an electronic device will be 2.5 mm. Accordingly, spacers may be implemented, particularly along the sides having no attachment points coupling the display apparatus to a display enclosure, which are sized (e.g., 3 mm) to provide a space accommodating the expected planar deflection without contact between the display surface and other structure. However, size is often an issue with respect to electronic devices, such as notebook computers. For example, the aforementioned spacing may consume 10-15% of the overall size in a corresponding dimension. Therefore, the use of such spacers is not without drawback.

Resilient pads, such as may be made of rubber or other materials, have been used (often in combination with spacers along the periphery of the display) to interface with one or more portions of a display surface and thereby prevent the display surface from contacting other structure, such as keycaps, pointing stylus, or wrist rests of a notebook computer, which presents a hard surface that may damage the display apparatus. For example, rubber pads have been disposed upon notebook computer wrist rest surfaces to interface with portions of a display surface appreciably toward the middle of the display surface and thus provide sufficient support of the display surface to prevent contact with other structure when a smaller gap is used than with the use of spacers along the edge of the display alone. However, such resilient pads have met with disapproval from some users due to their interfacing with the display surface leaving marks from dirt or oils thereon. Moreover, some users have expressed dissatisfaction with the feel of such pads against their hands during use of the notebook computer. Accordingly, the use of such pads is not without drawback.

Another technique used to prevent the display surface from contacting other structure has been through the use of more rigid materials or material configurations in the display enclosure (often in combination with spacers along the periphery of the display). For example, added plastic material, e.g., in the form of thicker surfaces and/or rib structures, may be used to make more rigid a display enclosure comprised of plastic. Alternatively, special materials, such as magnesium or engineered composites, may be used to provide a more rigid enclosure. The use of such more rigid materials or material configurations reduces the amount of planar deflection experienced, thus allowing smaller spacers (or perhaps no spacers) to be used. However, the foregoing typically results in added cost, weight, and/or size. Accordingly, the use of such more rigid materials or material configurations is not without drawback.

Although it is possible to manufacture display apparatus in aspect ratios other than the aforementioned 16:9 aspect ratio having integral mounting points along 4 sides of a mounting frame, such display apparatus configurations have heretofore not been widely available. Electronic equipment manufacturers often prefer to integrate widely available components, such as the aforementioned display apparatus, into their products in order to decrease costs and/or to ensure parts availability. Accordingly, display apparatus having integral mounting points only along 2 sides of a mounting frame continue to be used, despite the above-described planar deflection associated with the display surface bowing along the 2 sides having apparatus) and despite the drawbacks associated with the various techniques used to prevent display surfaces from contacting other structure or to prevent damage resulting therefrom.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 shows a perspective view of a partially assembled display assembly adapted according to an embodiment of the invention;

FIG. 2 shows detail with respect to a hold-down bracket of the embodiment of FIG. 1;

FIG. 3 shows detail with respect to a hold-down bracket of the embodiment of FIG. 1;

FIG. 4 shows a more fully assembled display assembly of the embodiment of FIG. 1; and

FIG. 5 shows a still more fully assembled display assembly of the embodiment of FIG. 1.

DETAILED DESCRIPTION

Directing attention to FIG. 1, a partially assembled display assembly adapted according to an embodiment of the invention is shown as display 100. Display 100 comprises a flat panel display, e.g., LCD display, as may be used in an electronic device such as a notebook computer, a tablet computer, a personal digital assistant (PDA), a cellular telephone, a digital versatile disk (DVD) system, and/or the like.

Display 100 of the illustrated embodiment comprises display apparatus 120, such as may comprise a LCD display panel, disposed in display enclosure base 130. Display enclosure base 130 may comprise, for example, a portion of a portable computer clamshell case. Display apparatus 120 comprises frame 121 surrounding the viewing or display surface thereof. Frame 121 has a plurality of integral mounting points along the 2 sides which are parallel to an X-axis of display apparatus 120. Specifically, integral mounting points 122 are disposed along side 123 of frame 121 and corresponding integral mounting points 122 are disposed along opposite side 124 of frame 121.

In a typical display configuration, without any embodiments of the present invention, integral mounting points 122 would provide the only points for fastening display apparatus 120 to display enclosure base 130. In such a configuration, display apparatus 120 may experience an appreciable amount of planar deflection due to a lack of support along the 2 sides which are parallel to a Y-axis of display apparatus 120, shown here as sides 125 and 126 (e.g., the display surface may be deformed in a slight “U” shape). For example, a typical display apparatus providing integral mounting points along only 2 opposite sides may deform or sag on the order of 2 mm, which in a notebook configuration presenting an overall thickness of 25-38 mm may be sufficient for a display surface of display apparatus 120 to contact keycaps of the notebook computer base.

However, the illustrated embodiment of display 100 comprises hold-down bracket assemblies 110, disposed along sides 125 and 126 of display apparatus 120 (e.g., disposed along the edge of frame 121 at sides 125 and 126), of an embodiment of the present invention. Accordingly, display apparatus 120 of the illustrated embodiment is provided hold-down points with respect to display enclosure base 130 in addition to integral mounting points 122.

Although hold-down bracket assemblies 110 of the illustrated embodiment are shown as being disposed equidistantly spaced along 2 sides of display apparatus 120, embodiments of the invention may utilize various hold-down bracket spacing and positions. For example, a single hold-down bracket may be utilized at the center of a side of display apparatus 120, such as where display apparatus 120 is the size of a traditional notebook computer display. Hold-down brackets of embodiments of the present invention may be utilized at any position (e.g., any position not otherwise provided an integral mounting point, at an integral mounting point position, etcetera). However, the presence of other structure, such as latch mechanisms, hinges, signal cables, etcetera, may suggest particular placements and/or prevent particular placements of hold-down brackets of embodiments of the invention. In general, however, the longer the distance between integral mounting points, the larger the number of hold-down points desired.

Hold-down bracket assemblies 110 of the illustrated embodiment are shown in a symmetrical implementation, e.g., hold-down brackets of a first side are disposed in juxtaposition with hold-down brackets of a second side. However, an asymmetrical arrangement may instead be implemented according to some embodiments of the present invention. For example, a single hold-down bracket may be implemented in the center of a first side while 2 equidistantly spaced hold-down brackets are implemented with respect to a second side of the display apparatus.

The use of hold-down points, such as those provided by hold-down bracket assemblies 110, disposed at positions not otherwise corresponding to integral mounting points 122, provides a more rigid display configuration. For example, a degree of freedom of movement or flexibility is eliminated or minimized through the use of hold-down bracket assemblies 110 of the illustrated embodiment to provide hold-down points with respect to display apparatus 120. Through the use of such hold-down points appreciably less planar deflection is experienced with respect to display apparatus 120. Accordingly, smaller spacers, or no spacers, may be utilized in a display configuration implementing hold-down brackets according to embodiments of the invention, thereby facilitating a thinner form factor for electronic devices. Additionally or alternatively, some embodiments use no resilient pads to support a surface of display apparatus 120, thereby avoiding marks left upon display apparatus 120 from interfacing with such pads. Moreover, providing more fastening points (e.g., integral mounting points and/or hold-down points) with respect to display apparatus 120, and frame 121 thereof, results in a display structure which is overall more rigid, enabling the use of less expensive, lighter, and/or thinner materials (e.g., plastic) in the enclosure material. In addition to facilitating embodiments of electronic devices which are thin (compact) without experiencing permanent damage to or undesired marks on the surface of their respective displays, embodiments of the invention provide increased user satisfaction in providing a low weight solution having a rigid display assembly.

FIGS. 2 and 3 provide additional detail with respect to hold-down bracket assemblies 110 of an embodiment of the invention. Specifically, FIG. 2 shows an embodiment of hold-down bracket assemblies 110 disposed along the lower side of display apparatus 120 of FIG. 1 and FIG. 3 shows an embodiment of hold-down bracket assemblies 110 disposed along the upper side of display apparatus 120 of FIG. 1. The specific configurations illustrated in FIGS. 2 and 3 are illustrative of hold-down bracket configurations which may be implemented according to embodiments of the present invention. However, various configurations of hold-down brackets, including implementations in which the same configuration of hold-down brackets are used along multiple sides of a display apparatus and/or different configurations of hold-down brackets are used on a same side of a display apparatus, may be implemented according to embodiments of the invention.

Hold-down bracket assembly 110 of FIG. 2 is shown to include hold-down bracket 211 attached to a portion of display enclosure base 130 by fastener 212. Fastener 212 illustrated in FIG. 2 comprises a screw. However, any number of fasteners, such as rivets, bolts, adhesive, etcetera, which provide sufficient fastening strength to provide a hold-down point with respect to display apparatus 120 may be utilized in attaching hold-down bracket 211 to display enclosure base 130 according to embodiments of the invention.

The portion of display enclosure base 130 to which fastener 212 is attached illustrated in FIG. 2 comprises boss 231 integrated into the material of display enclosure base 130. Such a configuration provides a convenient and inexpensive technique for accepting fastener 212 because such a boss may be created during molding display enclosure base 130. However, other configurations of fastener receivers may be formed into display enclosure base 130 for use in a hold-down bracket assembly according to embodiments of the present invention, such as the configuration described below with respect to FIG. 3. Moreover, configurations of fastener receivers, such as nuts, washers, etcetera, may be utilized according to embodiments of the present invention which are not formed integral to display enclosure base 130. However, the use of these latter fastener receivers may require added handling during manufacturing and additional material costs.

Although various configurations of hold-down bracket 211 may be implemented according to embodiments of the invention, hold-down bracket 211 preferably provides a portion to interface with fastener 212 and a portion to interface with display apparatus 120. For example, hold-down bracket 211 may comprise a first portion to interface with display apparatus 120 sufficiently to resist substantial movement of display apparatus 120 when exposed to expected forces but which does not result in undesired interference with display apparatus 120. For example, the portion of hold-down bracket 211 which interfaces with display apparatus 120 of embodiments does not extend into a viewing area of the display apparatus. Moreover, the portion of hold-down bracket 211 of embodiments is sized not only to avoid obscuring a portion of the viewing area of display apparatus 120, but is further sized and disposed so as to avoid interference phenomena. For example, where display apparatus 120 comprises a LCD display, pressure on or near the viewing surface could cause distortion (referred to as “puddling”). Accordingly, hold-down bracket 211 of embodiments of the invention interfaces with a portion of frame 121 sufficiently removed from the viewing area of display apparatus 120 to avoid image distortion during normal use. Correspondingly, hold-down bracket assembly 110 is configured to provide sufficient pressure with respect to the interface between hold-down bracket 211 and display apparatus 120 to substantially eliminate a degree of freedom of movement without causing image distortion during normal use. Hold-down bracket 211 of embodiments comprises a second portion to interface with fastener 212 which is in the range of 5-6 mm wide in order to accommodate a fastener extended therethrough having a shaft diameter in the range of 2.5-3 mm.

Directing attention to FIG. 3, another embodiment of hold-down bracket assembly 110 is shown. The embodiment of FIG. 3 illustrates a fastener receiver configuration which is different than boss 231 of the embodiment illustrated in FIG. 2. Specifically, hold-down bracket assembly 110 of FIG. 3 utilizes receiver 331, comprised of a block of material of display enclosure base 130 having an interface therein for receiving a portion of fastener 212. As with boss 231 discussed above, such a configuration provides a convenient and inexpensive technique for accepting fastener 212 because such a receiver may be created during molding display enclosure base 130. However, such a receiver configuration may be desired over a boss configuration where other structure is disposed in the vicinity, where added strength is desired, etcetera.

The embodiment of hold-down bracket 311 illustrated in FIG. 3 presents a slightly larger area with respect to the portion interfacing with display apparatus 120. Such a configuration is desirable, for example, where display apparatus 120 is expected to be used in a vertical orientation where hold-down bracket 311 is disposed along a top side of display apparatus 120 and hold-down bracket 211 is disposed along a bottom side of display apparatus 120. For example, it might be expected that display 120 may shift downward slightly when repeatedly used in the above-described vertical orientation. Providing a slightly larger area with respect to the portion interfacing with display apparatus 120 along the top side may be relied upon to accommodate a slight downward shift in the position of display apparatus 120 without disengaging the hold-down apparatus disposed along the top side. Similarly, providing a slightly smaller area with respect to the portion interfacing with display apparatus 120 along the bottom side may be relied upon to accommodate a slight downward shift in the position of display apparatus 120 without causing puddling due to the hold-down bracket assembly interfering with display apparatus 120.

Hold-down brackets 211 and 311 may be formed of any material sufficiently strong to interface with display apparatus 120 and resist substantial movement of display apparatus 120 when exposed to expected forces. For example, hold-down brackets 211 and 311 may be comprised of steel, stainless steel, aluminum, composite resins, etcetera.

Hold-down brackets 211 and 311 of the embodiments illustrated in FIGS. 2 and 3 comprise an “S”-shaped tab, wherein a first end of the “S” provides an interface for engaging display apparatus 120 and a second end of the “S” provides an interface for fastener 212. Although an “S”-shaped tab configuration may not be utilized according to embodiments of the invention, in some embodiments the transition area between the first and second ends of the “S” provides a surface against which an edge of frame 121 is engaged (e.g., the illustrated “S”-shaped tab interfaces with display apparatus 120, including frame 121, in at least 2 planes). The transition area of the illustrated “S”-shaped tab provides a configuration in which display apparatus 120 is prevented from moving laterally with respect to display enclosure base 130. This restriction in movement of display apparatus 120 is in addition to the elimination of a degree of freedom of movement by an end of the “S”-shaped tab of FIGS. 2 and 3 engaging a front surface of frame 121. Accordingly, embodiments of the invention provide a hold-down bracket assembly that restricts movement of display apparatus 120 in at least 2 directions or in at least 2 planes.

Irrespective of the particular configuration of hold-down bracket assembly 110 implemented according to embodiments of the invention, hold-down bracket assemblies 110 provide hold-down points at positions other than the integral mounting points otherwise available with display apparatus 120. Accordingly, the use of hold-down bracket assemblies according to embodiments of the present invention avoids damage to a display surface of display apparatus 120 even when utilized in a thin or compact profile electronic device, such as a notebook computer. Moreover, use of hold-down bracket assemblies according to embodiments of the present invention provides a more rigid configuration of display assembly 100.

Directing attention to FIG. 4, a more fully assembled display assembly of the embodiment of FIG. 1 is shown as comprising bezel 430. Bezel 430 of the illustrated embodiment provides a cover to frame 121 and provides spaces 431. Spacers 431 may be positioned to maintain a minimum desired spacing between one or more surfaces of display assembly 100, e.g., a display surface of display apparatus 120, from other surfaces of an electronic device incorporating display assembly 100. Spacers 431 may be integral to bezel 430 or may be attached thereto. For example, spacers 431 may comprise a raised portion of a surface of bezel 430 molded from the material forming bezel 430. Alternatively, spacers 431 may comprise a separate part, such as may be formed of rubber or another material, attached to a surface of bezel 430, such as by an adhesive or friction fit. Such an embodiment of spacers 431 provides a cover to fasteners attaching bezel 430 to display enclosure base 130. Although spacers 431 are present in the illustrated embodiment, the use of hold-down bracket assemblies 110 minimizes planar deflection of display apparatus 120 such that spacers 431 are relatively small (thin), thereby facilitating a thinner or more compact electronic device utilizing display assembly 100.

Bezel 430 of the illustrated embodiment provides areas corresponding to hold-down bracket assemblies 110 for accepting a cover and/or spacer. Directing attention to FIG. 5, a still more fully assembled display assembly of the embodiment of FIG. 1 is shown wherein covers 531 are shown disposed over hold-down bracket assemblies 110. Covers 531 may provide an aesthetically pleasing means by which hold-down bracket assemblies may be accessed, such as for removal and/or adjusting a pressure applied by hold-down bracket 211. Additionally or alternatively, covers 531 may provide spacing as described above with respect to spacers 431. Although covers 531 may be utilized as spacers, the use of hold-down bracket assemblies 110 minimizes planar deflection of display apparatus 120 such that covers 531 are relatively small (thin), thereby facilitating a thinner or more compact electronic device utilizing display assembly 100.

Claims

1. A system comprising:

a display apparatus having at least one integral mounting point;
a display enclosure base coupled to said display apparatus via said at least one integral mounting point; and
at least one hold-down bracket assembly providing a hold-down point between said display apparatus and said display enclosure base.

2. The system of claim 1, wherein said display apparatus comprises a flat panel display selected from the group consisting of a liquid crystal display (LCD) and a gas plasma display.

3. The system of claim 1, wherein said at least one integral mounting point comprises a plurality of integral mounting points disposed only upon 2 sides of said display apparatus.

4. The system of claim 1, wherein said at least one hold-down bracket assembly is disposed at a position other than a position of said at least one integral mounting point.

5. The system of claim 4, wherein said position that said at least one hold-down bracket assembly is disposed is selected to reduce an amount of planar deflection experienced by said display apparatus.

6. The system of claim 1, wherein said at least one hold-down bracket assembly comprises:

a fastener; and
a hold-down bracket having a first portion and a second portion, wherein said first portion is adapted to engage said display apparatus and said second portion is adapted to engage said fastener.

7. The system of claim 6, wherein said first portion is adapted to engage said display apparatus without causing distortion of an image displayed by said display apparatus.

8. The system of claim 6, wherein said hold-down bracket comprises a transition area disposed between said first portion and said second portion, said first portion and said transition are cooperating to prevent movement of said display apparatus in at least 2 directions.

9. The system of claim 1, wherein said at least one hold-down bracket assembly comprises:

a fastener receiver.

10. The system of claim 9, wherein said fastener receiver is molded integral with said display enclosure base.

11. The system of claim 9, wherein said display enclosure base comprises a portion of a portable computer clamshell case.

12. A method comprising:

attaching a display apparatus to a display enclosure base using at least one mounting point integral to said display apparatus; and
attaching said display apparatus to said display enclosure base using at least one hold-down bracket assembly, said at least one hold-down bracket assembly providing a hold-down point for said display apparatus.

13. The method of claim 12, wherein said at least one mounting point integral to said display apparatus comprises a plurality of mounting points integral to said display apparatus disposed only upon 2 sides of said display apparatus.

14. The method of claim 12, wherein said attaching said display apparatus to said display enclosure base using said at least one hold-down bracket assembly comprises:

engaging a first portion of a hold-down bracket of said hold-down bracket assembly with said display assembly; and
engaging a second portion of said hold-down bracket with a fastener.

15. The method of claim 14 wherein said engaging said first portion of said hold-down bracket with said display assembly comprises:

providing an interface pressure between said hold-down bracket and said display assembly sufficiently small to avoid distorting an image displayed by said display assembly.

16. The method of claim 14, wherein said attaching said display apparatus to said display enclosure base using said at least one hold-down bracket assembly further comprises:

engaging a transition area of said hold-down bracket with an edge of said display assembly, wherein said transition area provides a “S” bend in said hold-down bracket between said first portion and said second portion.

17. The method of claim 12, wherein said attaching said display apparatus to said display enclosure base using said at least one hold-down bracket assembly comprises:

disposing said at least one hold-down bracket at a position different than each mounting point of said at least one mounting point integral to said display apparatus.

18. A method comprising:

reducing planar deflection of said display surface by implementing at least one hold-down bracket assembly with a display apparatus, wherein said at least one hold-down bracket assembly restricts movement of said display apparatus in at least 2 directions.

19. The method of claim 18, further comprising:

attaching said display apparatus to an enclosure using mounting points integral to said display apparatus, wherein said at least one hold-down bracket assembly is disposed at a positions other than a position of said mounting points integral to said display apparatus.

20. The method of claim 18, further comprising:

attaching said at least one hold-down bracket assembly to an enclosure assembly; and
engaging at least a portion of a hold-down bracket of said at least one hold-down bracket assembly with said display apparatus.

21. The method of claim 20, wherein said engaging said at least a portion of said hold-down bracket with said display apparatus comprises:

providing an area of interface between said hold-down bracket and said display assembly sized to avoid distorting an image displayed by said display assembly.

22. The method of claim 20, wherein said engaging said at least a portion of said hold-down bracket with said display apparatus comprises:

providing an interface pressure between said hold-down bracket and said display assembly sufficiently small to avoid distorting an image displayed by said display assembly.

23. The method of claim 20, wherein said at least one hold-down bracket assembly comprises a plurality of hold-down bracket assemblies.

24. A system comprising:

at least one hold-down bracket assembly implemented with respect to a display apparatus of said portable computer display assembly, wherein said at least one hold-down bracket assembly interfaces with said display apparatus in at least 2 planes.

25. The system of claim 24, wherein said at least one hold-down bracket assembly comprises:

a hold-down bracket having a first portion for interfacing with said display assembly, a second portion or interfacing with a fastener, and a transition area between said first and second portions and providing an “S” bend.

26. The system of claim 24, further comprising:

a plurality of mounting points integral to said display apparatus.

27. The system of claim 24, wherein said at least one hold-down bracket assembly is disposed at a position different than positions of said plurality of mounting points.

Patent History
Publication number: 20060138296
Type: Application
Filed: Jan 21, 2005
Publication Date: Jun 29, 2006
Inventor: Ronald Deluga (Spring, TX)
Application Number: 11/040,456
Classifications
Current U.S. Class: 248/346.010
International Classification: A63B 55/00 (20060101);