Semiconductor device and fabricating method thereof
A semiconductor device and fabricating method thereof in which a lightly doped drain junction is graded using a diffusion property of dopant implanted in heavily doped source/drain region are disclosed. An example semiconductor device includes a gate electrode having a gate insulating layer underneath and disposed on a semiconductor substrate; a pair of lightly doped regions separated from each other in the semiconductor substrate and aligned with the gate electrode; a pair of heavily doped regions separated from each other in the semiconductor substrate and partially overlapped with the pair of the lightly doped regions, respectively; and a pair of diffusion source/drain regions enclosing the pair of the lightly doped regions therein.
This application is a divisional application of U.S. application Ser. No. 11/021,056 filed on Dec. 23, 2004, which claims the benefit of Korean Application No. P2003-0096991 filed on Dec. 24, 2003, which is hereby incorporated by reference.
TECHNICAL FIELDThe present disclosure relates to a semiconductor device, and more particularly, to a semiconductor device and fabricating method thereof in which a lightly doped drain junction is graded using a diffusion property of dopant implanted in heavily doped source/drain region.
BACKGROUNDGenerally, the double diffused drain (DDD) structure has been used to improve the hot carrier effect and the like of a semiconductor device having a channel length greater than 0.35 μm. Such a device is not concerned about breakdown voltage (BVDss) between source and drain as well as roll-off of threshold voltage.
More recently, as channel length is shortened to achieve a high degree of integration in semiconductor devices to raise the short channel effect, the DDD structure is being used less. However, it is advantageous for a low power device to have high threshold voltage and BVDss in securing junction leakage. As a result, the DDD structure is employed in part. Yet, the short channel device still has the above-noted difficulty in employing the DDD structure. For instance, a transistor as a low power device having small leakage current tends to employ the LDD (lightly doped drain) structure instead of the conventional DDD structure to enhance the short channel effect due to the reduced channel length. As the junction configuration is modified, the breakdown voltage between source and drain is lowered. This may be explained as follows. When the LDD dopant increases, a junction between N-type LDD and a P-type well is abruptly formed to increase leakage from the junction region. Meanwhile, the known process of implanting additional P-type dopant is mainly used in improving leakage characteristic and capacitance by grading a junction profile, not in the LDD region but in the source/drain region.
Referring to
In general, the example apparatus and methods described herein provide a semiconductor device and fabricating method thereof, in which an LDD junction is graded using phosphorous dopant diffusion of a source/drain region and by which a roll-of characteristic of threshold voltage is enhanced as well as BVDss.
More specifically, an example semiconductor device includes a gate electrode having a gate insulating layer underneath a semiconductor substrate, a pair of lightly doped regions separated from each other in the semiconductor substrate to be aligned with the gate electrode, a pair of heavily doped regions separated from each other in the semiconductor substrate to be partially overlapped with a pair of the lightly doped regions, respectively, and a pair of diffusion source/drain regions enclosing a pair of the lightly doped regions therein, respectively. Preferably, a pair of the diffusion source/drain regions are heavily doped with additional dopant, which is preferably phosphor (P). More preferably, junction profiles of the lightly doped regions are graded due to lateral diffusion of the additional dopant.
An example method of fabricating a semiconductor device includes forming a gate electrode having a gate insulating layer underneath on a semiconductor substrate, forming a pair of lightly doped regions separated from each other in the semiconductor substrate to be aligned with the gate electrode, forming a spacer to a sidewall of the gate electrode, forming a pair of heavily doped regions separated from each other in the semiconductor substrate to be partially overlapped with a pair of the lightly doped regions, respectively, heavily doping the heavily doped regions with additional dopant, and diffusing the additional dopant in a lateral direction toward the lightly doped regions to form a pair of diffusion source/drain regions enclosing a pair of the lightly doped regions therein, respectively. Preferably, the additional dopant is phosphor (P), and, preferably, the additional dopant is diffused to enclose a pair of the lightly doped regions to avoid a double diffused drain (DDD) structure. Preferably, junction profiles of the lightly doped regions are graded due to lateral diffusion of the additional dopant and, preferably, the method further includes the step of forming a silicide layer on the gate electrode and a pair of the heavily doped regions.
The example semiconductor device described herein may be used to improve BVDss, which was degraded by high electric field impression on the source/drain region of the LDD semiconductor device and to improve the short channel effect.
In the example semiconductor described herein, an LDD region is enclosed by P-type dopant using lateral diffusion of the P-type dopant added to a source/drain region, whereby the BVDss characteristic and short channel effect are improved to enhance a process margin.
In the examples disclosed herein, P-type dopant is implanted in a source/drain region of a device applicable to a low power device and an LDD region is enclosed by the added P-type dopant using lateral diffusion of the P-type dopant. In doing so, the implantation energy and dopant are optimized to form a graded dopant profile of the LDD region to reduce an electric field impressed on the LDD junction, and the dopant profile is graded by lowering a junction depth of the LDD region to prevent the short channel effect and to improve a roll-of characteristic of threshold voltage. In particular, the examples described herein may be used to implement a MOS transistor, of which roll-of characteristic of threshold voltage and BVDss characteristic are improved by using P-type dopant diffusion after forming a gate sidewall spacer.
The examples described herein utilize the 0.18 μm standard CMOS process and may be fabricated using the operations described below. First, a gate is formed 2,500 Å thick. N or P-type LDD is formed. A sidewall spacer is provided to the gate. As ion implantation is carried out to form heavily doped source and drain regions. P-type dopant is heavily re-implanted to form a diffusion source/drain region. The LDD region is enclosed by the P-type dopant using lateral diffusion of the P-type dopant by optimizing a dose and implantation energy of the P-type dopant.
Referring to
Referring to
Referring to
Referring to
Referring to
Namely, to implement a lower power device of a short channel device below 0.18 μm, P-type dopant is additionally implanted into the N+ source and drain regions 35 to form the P-type diffusion source and drain regions 39, and a junction profile of the LDD region 34 is graded using the diffusion property of the P-type dopant. As a result, the examples described herein may be used to raise BVDss to enhance leakage current.
While the examples herein have been described in detail with reference to example embodiments, it is to be understood that the coverage of this patent is not limited to the disclosed embodiments, but, on the contrary, is intended to cover various modifications and equivalent arrangements included within the sprit and scope of the appended claims.
Claims
1. A semiconductor device comprising:
- a gate electrode having a gate insulating layer underneath and disposed on a semiconductor substrate;
- a pair of lightly doped regions separated from each other in the semiconductor substrate and aligned with the gate electrode;
- a pair of heavily doped regions separated from each other in the semiconductor substrate and partially overlapped with the pair of the lightly doped regions, respectively; and
- a pair of diffusion source/drain regions enclosing the pair of the lightly doped regions therein.
2. The semiconductor device of claim 1, wherein the pair of the diffusion source/drain regions are heavily doped with additional dopant.
3. The semiconductor device of claim 2, wherein the additional dopant is phosphor (P).
4. The semiconductor device of claim 2, wherein junction profiles of the lightly doped regions are graded due to lateral diffusion of the additional dopant.
Type: Application
Filed: Sep 20, 2005
Publication Date: Jun 29, 2006
Inventor: Sang Lee (Kyunggido)
Application Number: 11/230,697
International Classification: H01L 29/76 (20060101);