Insulated concrete form

A reinforcing band is embedded in one of said pair of foam walls of an ICF. This band extends between at least two of the connectors of the ICF. The band acts to reinforce the ICF so that it may better resist forces applied during concrete pouring.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND

This invention relates to an insulated concrete form (ICF) and a method of making same.

The construction of a wall of a high rise building formerly involved the erecting of a concrete form, pouring concrete into the form, removing the form to leave a wall, installing studs on the concrete wall, insulating the wall, and tacking wall boards to the studs.

This construction technique was radically altered with the advent of the insulated concrete form (ICF). A typical ICF has a pair of opposed expanded foam walls connected by connectors, with the ends of each connector embedded in the opposed foam walls. Each end of each connector terminates in a plate. The top surface of the walls of an ICF may have an array of cylindrical protuberances and the bottom surface of the ICF, corresponding female receptors.

With this arrangement, ICFs may be joined into stacks to form a building wall. Concrete may then be poured into the stacked ICFs. When the concrete dries, the building wall that is formed will already be insulated by the foam walls of the ICFs and the plates at the end of the connectors will act as studs to which wall board may be tacked. Thus, the use of ICFs results in a considerable saving in labour.

However, a drawback with ICFs is that they are not inherently strong. Consequently, when a large number of ICFs are stacked to form a large wall, the pressure applied to the ICFs, and particularly those near the bottom of the wall, can be considerable. This can lead to failure of the ICFs. This invention seeks to ameliorate this problem.

SUMMARY OF INVENTION

A reinforcing band is embedded in one of said pair of foam walls of an ICF. This band extends between at least two of the connectors of the ICF. The band acts to reinforce the ICF so that it may better resist forces applied during concrete pouring.

According to the present invention, there is provided an insulated concrete form (ICF), comprising: a pair of opposed expanded foam walls; a plurality of connectors extending between said opposed walls having end portions embedded in said opposed walls; a reinforcing band embedded in one of said pair of foam walls, said band extending between at least two of said connectors.

According to another aspect of this invention, there is provided, a method of fabricating an insulated concrete form comprising: placing connectors side-by-side; placing a band between adjacent connectors so as to extend into end portions of said adjacent connectors; expanding a pair of opposed foam walls around said end portions of said connectors and said band.

Other features and advantages will become apparent from a review of the drawings and the accompanying description.

BRIEF DESCRIPTION OF THE DRAWINGS

In the figures which illustrate example embodiments of the invention,

FIG. 1 is a partially cut away top perspective view of a corner ICF made in accordance with this invention,

FIG. 1A is perspective view of a portion of the ICF of FIG. 1,

FIG. 2 is a bottom perspective view of the ICF of FIG. 1,

FIG. 3 is a magnified partially cut away top perspective view of a portion of the ICF of FIG. 1,

FIG. 4 is a top view of the ICF of FIG. 1,

FIG. 5 is a partially cut away top perspective view of a straight wall section ICF made in accordance with this invention, and

FIG. 6 is a partially cut away top perspective view of a corner ICF made in accordance with another embodiment of this invention.

DETAILED DESCRIPTION

Turning to FIGS. 1 and 3, a corner insulated concrete form (ICF) 10 has a pair of opposed L-shaped expanded foam walls 12, 14. The walls are held together by a series of connectors 16 that extend between the walls and have end portions embedded in the walls. More specifically, each of the connectors 16 may have a central bridge 18 terminating at either end in a support plate 20 from which radiate fingers 22. The fingers 22 may, in turn, terminate in stud plate 24. The fingers 22 and stud plate 24 may be the end portion of a connector that is embedded in a wall 12 or 14.

With reference to FIGS. 1 and 4, the top of each of walls 12 and 14 are arrayed with cylindrical protuberances 26. Referring to FIG. 2, the bottom of each of the walls 12 and 14 have female receptors 28 sized to receive protuberances 26.

Turning to FIGS. 1, 1A and 3, a reinforcing band 30 is embedded in foam wall 12 and extends between the two connectors 16a, 16b that are on either side of the corner 32 of the ICF 10. Thus, the band 30 has a bend at corner 32. With the ICF horizontally disposed, the band may also extend horizontally. As best seen in FIG. 1A, stud plate 24 of connector 16b has a slot 40 extending between its side walls 36, 38. Ari end of the band 30 extends into this slot. Stud plate 24 of connector 16a has a similar slot. Indeed, for ease of manufacturing, each stud plate 24 of each connector 16 may have such a slot.

Band 30 may be fabricated out of metal, such as aluminum. Additionally, the band may have perforations 42. Optionally, the band may also extend through the slots of the remaining connectors 16 of ICF 10.

In order to fabricate ICF 10, four connectors 16 may be placed side-by-side in a jig (not shown). In this regard, the notches 46 (FIG. 3) in the central bridges 18 of the connectors may be used to support each connector in the jig. A band 30 of appropriate length may be bent in the middle and its ends inserted into slots 40 of connectors 16a, 16b. Next, foam walls 12 and 14 may be expanded around the end portions (fingers 22 and stud plates 24) of the connectors and the band. In this regard, the foam may expand through the perforations in the band thereby firmly embedding the band in the foam.

Optionally, the corner ICFs 10 may be fabricated in two different lengths.

With reference to FIG. 5 wherein like parts have been given like reference numerals, a straight walled ICF 50 made in accordance with teachings of this invention has opposed straight expanded foam walls 52, 54 where, again, the end portions of connectors 16 are embedded in these walls. A straight perforated metal band 70a may extend through the slots 40 at one end of each of the connectors 16 of the ICF 50 in wall 52. Additionally, a straight perforated metal band 70b may extend through the slots 40 at the opposite end of each of the connectors 16 of the ICF 50 in wall 54.

Fabrication of ICF 50 may proceed in the same fashion as described in conjunction with ICF 10.

Turning to FIG. 6, a modified corner ICF 10′ is identical to ICF 10 of FIG. 1 (and like parts have been given like reference numerals) expect that connectors 16′ omit the slots 40 of ICF 10 and the end portions of band 30′ are trimmed down in size. With these modifications, the ends of band 30′ are inserted in the opening between two of the fingers 22 of each of connectors 16a′ and 16b′ behind stud plate 24 and in front of support plate 20 of these connectors.

As a further option, instead of trimming the ends of the band and inserting these ends into openings in connectors 16a, 16b, the untrimmed band may simply extend between these connectors adjacent the outside face of plate 24 of each connector. This option is also available for the straight walled ICFs 50.

Although not shown, in similar fashion to band 30 (or 30′) a metal band may also be embedded in the wall 14 of corner ICF 10 (or 10′).

In use, a number of ICFs 10 (or 10′) and 50 may be interlocked using their male and female features 26, 28 to form building walls. In this regard, by staggering adjacent rows of the ICFs (with the two different length corner ICFs 10 facilitating this), one or more buildings walls may be integrally formed. Where only wall 12 of the corner ICFs are reinforced by band 30, wall 12 should be directed to the outside of the building walls. After erecting the building walls, concrete may be poured into the walls. The bands 30, 30′,70a, 70b act to reinforce the ICFs assisting the ICFs in withstanding the pressure imparted by the wet concrete. This pressure is particularly acute near the bottom of the building walls.

Corner ICFs are more susceptible to fail due to the pressure imparted by the wet concrete than are straight walled ICFs. Therefore, for some constructions it may be sufficient to only embed reinforcing bands in the corner ICFs. Further, the inside corner of wall 14 is less susceptible to fail than the outside corner of wall 12 of a corner ICF. Consequently, for some constructions, it may be sufficient to only embed reinforcing bands in the outside wall 12 of the corner ICFs. Further, while ICFs with reinforcing bands inserted into connectors may be stronger, for some wall constructions, bands that are embedded in the foams walls of the form so as to lie adjacent the outside face of the plates 24′ of the connectors may be sufficient.

While the reinforcing bands 30, 30′, 70a, 70b have been described as perforated metal bands, other band constructions could also be employed. For example, a molded plastic band, with or without perforations, could be used. In this regard, a molded plastic band could even be integrally molded with the connectors which support it.

ICFs are constructed with a variety of different styles of connectors and it will be apparent that the teachings of this invention have applicability to all such different styles. In this regard, where it is desired to insert the reinforcing band into the end portions of the connectors, a connector style lacking a suitable opening to receive the reinforcing band may be modified to provide a suitable opening, such as a slot.

Some ICFs lack male and female features to allow interlocking. With such ICFs, the forms may be interlocked with suitably configured brackets. Again, it will be apparent that the teachings of this invention have applicability to such ICFs.

Other modifications will be apparent to those skilled in the art and, therefore, the invention is defined in the claims.

Claims

1. An insulated concrete form (ICF), comprising:

a pair of opposed expanded foam walls;
a plurality of connectors extending between said opposed walls having end portions embedded in said opposed walls;
a reinforcing band embedded in one of said pair of foam walls, said band extending between at least two of said connectors.

2. The ICF of claim 1 wherein said end portions of said connectors have openings and wherein said band extends into end portion openings of said at least two of said connectors.

3. The ICF of claim 2 wherein each of said connectors comprises a central bridge terminating at either end in fingers which, in turn, terminate in a plate.

4. The ICF of claim 3 wherein said fingers define said openings.

5. The ICF of claim 3 wherein each of said openings is a slot extending between opposite side walls of said plate of each said connector.

6. The ICF of claim 2 wherein said band is a metal band.

7. The ICF of claim 6 wherein said metal band is perforated.

8. The ICF of claim 1 wherein said band is integrally formed with said at least two of said connectors.

9. The ICF of claim 8 wherein said band is a plastic band.

10. The ICF of claim 1 wherein said walls are horizontally elongated, said at least two of said connectors are horizontally spaced and wherein said band is horizontally directed.

11. The ICF of claim 1 wherein said band is a first band and further comprising a second band embedded in another of said pair of foam walls.

12. The ICF of claim 2 wherein said opposed expanded foam walls are L-shaped, such that said ICF defines a corner and wherein said band extends between connectors on either side of said corner.

13. The ICF of claim 11 wherein said one of said foam walls in which said band is embedded is an outside wall.

14. A method of fabricating an insulated concrete form comprising:

placing connectors side-by-side;
placing a band between adjacent connectors so as to extend into end portions of said adjacent connectors;
expanding a pair of opposed foam walls around said end portions of said connectors and said band.

15. The method of claim 14 wherein each connector of said connectors comprises a central bridge terminating at either end in fingers which, in turn, terminate in a plate.

16. The method of claim 15 wherein said placing comprises inserting each end of said band between fingers of one said connector.

17. The method of claim 15 further comprising trimming ends of said band down prior to said placing.

18. The method of claim 14 wherein each of said connectors terminate in a plate with a slot through its side walls and wherein said placing comprises inserting each end of said band through one said slot of one said connector.

19. The method of claim 14 wherein said band is perforated such that said expanding expands foam through said perforations.

Patent History
Publication number: 20060151677
Type: Application
Filed: Jan 12, 2005
Publication Date: Jul 13, 2006
Inventors: Michael McIvor (Port Hope), Cooper Stewart (Pelican Rapids, MN)
Application Number: 11/034,522
Classifications
Current U.S. Class: 249/36.000; 249/40.000
International Classification: E04G 11/18 (20060101); E04G 11/06 (20060101);