Self flushing luer activated blood sampling devices

A blood sampling device for allowing a fluid pressure measurement and a fluid sample to be taken from a patient, having an inlet port configured to receive blood from the patient, an outlet port configured to be coupled to a monitoring channel having an infusion fluid, a sampling port configured for extraction of blood from the patient, a sampling channel configured to self-flush, after extraction, the blood with the infusion fluid, and an auxiliary channel for self-flushing the sampling channel.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
FIELD OF THE INVENTION

The invention relates generally to blood sampling devices, such as is commonly used at a blood sampling site, and more particularly to self flushing luer activated blood sampling devices.

DESCRIPTION OF THE RELATED ART

Blood sampling systems, such as Venous Arterial blood Management Protection (VAMP) systems, provide a safe and convenient method for withdrawing blood samples from a patient. Conventional VAMP systems typically consist of a fluid (e.g. pressure monitoring) line with a reservoir, a shutoff valve and a sampling site. The proximal end of the fluid line is coupled to an intravenous (IV) needle that is inserted into a patient's vein or artery. The distal end of the fluid line is coupled to pressure monitoring lines or continuous IV infusion or saline lines.

In the quiescent state, the shutoff valve is open allowing the solution from the IV bag to be gravity fed through the fluid line and the IV needle into the patient. To obtain a blood sample, the reservoir is slowly moved to an open position allowing the reservoir to fill with IV solution. The shutoff valve, located downstream from the reservoir, is then placed in a closed position preventing fluid from flowing through the valve. A needle of a syringe is inserted into the sampling site and blood is extracted therefrom. Some blood sampling systems utilize a luer configuration to couple the syringe or blood extractor to the sampling site. After the blood has been drawn, the needle is removed from the sampling site and the reservoir is slowly returned to the closed position, thereby reestablishing the connection between the patient's circulatory system and the IV infusion or saline line.

Generally, a VAMP system uses a conventional stopcock to isolate the reservoir from the sampling site while allowing for the patient's blood to be extracted through the proximal end of the fluid line. This allows blood sampling without degrading the quality of the pressure waveform when monitoring patient blood pressure, and still maintains a closed blood sampling system.

While the VAMP system facilitates blood sampling without the need to puncture another needle or cannula into the patient, application of this technology has an undesirable consequence. For example, residual blood left in sampling sites can become a significant source of contamination and infection. Typically, the exterior surface of the sampling site is swabbed clean of any residual blood. However, the interior of the sampling sites cannot be swabbed clean. Furthermore, sampling sites with luer access, such as the CLAVE® Connector from ICU Medical Inc., do not have a flush exterior surface that can be swabbed clean. As a result, residual blood inside the luer can be a source of contamination and infection or can dry up and clog the luer access.

With an increasing demand for improved blood sampling systems, there remains a continuing need in the art for a blood sampling system that self-flushes once the blood sampling procedure is completed so as to prevent contamination, infection and blood clotting. It is to such improvements that the present invention is directed.

BRIEF DESCRIPTION OF THE DRAWINGS

Many of the advantages, object and features of the invention will become readily appreciated by reference to the following detailed description when considered in conjunction with the accompanying drawings in which like reference numerals description like parts throughout the figures, and wherein:

FIG. 1 is a perspective view of a Venous Arterial blood Management Protection (VAMP) system.

FIGS. 2A and 2B illustrate cross-sectional views of a blood sampling device with a paddle in accordance with an embodiment of the present invention.

FIGS. 3A and 3B illustrate cross-sectional views of a blood sampling device with a ball valve in accordance with an embodiment of the present invention.

FIGS. 4A and 4B illustrate cross-sectional views of a blood sampling device with a ball cock in accordance with an embodiment of the present invention.

FIGS. 5A and 5B illustrate cross-sectional views of a blood sampling device with a paddle in accordance with an embodiment of the present invention.

FIGS. 6A and 6B illustrate cross-sectional views of a blood sampling device with a slide in accordance with an embodiment of the present invention.

FIGS. 7A and 7B illustrate cross-sectional views of a blood sampling device with a ball cock positioned in the monitoring channel, in accordance with an embodiment of the present invention.

SUMMARY OF THE INVENTION

A blood sampling device configured to prevent contamination, infection and blood clotting. The blood sampling device allows fluid pressure measurement and blood sampling to be taken from a patient. The blood sampling device has an inlet port configured to receive blood from the patient, an outlet port configured to be coupled to a monitoring channel having an infusion fluid, a sampling port configured for extraction of blood from the patient, a sampling channel configured to self-flush, after extraction, the blood with the infusion fluid, and an auxiliary channel for self-flushing the sampling channel.

In one embodiment, the blood sampling device includes a rotatable paddle coupled to the sampling channel and orients the sampling channel to align with the auxiliary channel for self-flushing. In another embodiment, the blood sampling device has a ball valve configured to selectively allow the blood or the infusion fluid to flow through the sampling channel or the auxiliary channel. In one embodiment, the sampling port may be configured to allow a needle to draw the blood while blocking access to the auxiliary channel. In another embodiment, the blood sampling device has a slide with an opening that selectively allows the flow of blood through the sampling channel or the flow of the infusion fluid through the auxiliary channel. In one embodiment, the blood sampling device has a stop cock that can selectively allow fluid to pass through at least one of the sampling channel, the auxiliary channel, or the monitoring channel. The stop cock may be configured to stop the flow of infusion fluid when the blood is being extracted.

The different embodiments of the blood sampling devices described herein advantageously do not require flushing with a physiological saline solution after a blood sample has been drawn. The blood sampling devices are “self flushing” after blood sampling, which provides a convenient benefit to the healthcare provider, and greater safety to the patient, by eliminating the potential for embolization of clotted blood if the sample site is not flushed properly.

DETAILED DESCRIPTION

Methods and systems that implement the embodiments of the various features of the invention will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the invention and not to limit the scope of the invention. Reference in the specification to “one embodiment” or “an embodiment” is intended to indicate that a particular feature, structure, or characteristic described in connection with the embodiment is included in at least an embodiment of the invention. The appearances of the phrase “in one embodiment” or “an embodiment” in various places in the specification are not necessarily all referring to the same embodiment. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. In addition, the first digit of each reference number indicates the figure in which the element first appears.

FIG. 1 is a perspective of a Venous Arterial blood Management Protection (VAMP) system 100. The VAMP system 100 may include a fluid line 105 having a proximal end 110 and a distal end 115 relative to the patient. The VAMP system 100 may also include a blood sampling device 120, a valve 125 and a reservoir 130. The proximal end 110 of the fluid line 105 is coupled to an intravenous (IV) needle that is inserted into a patient's vein or artery. The distal end 115 of the fluid line 105 is coupled to pressure monitoring lines and/or continuous IV infusion (saline) line.

To draw a sample of blood from the patient, the valve 125 is moved to a closed position, the reservoir 130 is moved to a closed position, and a syringe is attached to the blood sampling device 120 to draw blood from the patient. After the sample is drawn from the patient, the syringe is detached from the blood sampling device 120, the reservoir 130 is moved to an open position, and the valve 125 is moved to an open position.

FIGS. 2A and 2B are cross-sectional views of a blood sampling device 200 in accordance with an embodiment of the present invention. The blood sampling device 200 may include a diaphragm 205 (e.g., a septum), a luer 210, a sampling channel 215, a monitoring or IV channel 220, an auxiliary channel 225, a passageway 235 and a paddle 230. The luer 210 can be configured to receive or attach to a cannula, which is attached to a syringe (not shown in the Figure). The sampling channel 215 can be used for blood sampling, and the monitoring channel 220 can be used for monitoring the patient's blood pressure. The auxiliary channel 225 allows the blood sampling device 200 to “self flush” after blood sampling is completed.

The paddle 230 can be hinged to the blood sampling device 200 to allow for rotational movement about a central axis. The paddle is coupled to the passageway 235, such that when the paddle 230 is rotated, the passageway 235 rotates the axis as well. The passageway 235 provides a path for blood to flow from the patient's circulatory system through the sampling channel 215 and into the syringe.

The blood sampling device 200 can operate in a blood sampling mode (FIG. 2A) and a pressure monitoring mode (FIG. 2B). To draw a sample of blood from the patient, the valve 125 (shown in FIG. 1) is closed to stop the flow of IV infusion fluid to the patient. Next, the paddle 230 is rotated to a first position, shown in FIG. 2A, that allows blood to flow through the sampling channel 215, the passageway 235 and into the syringe. After the sample is drawn from the patient, the valve 125 is opened and the paddle 230 can be rotated to a second position, shown in FIG. 2B, that allows the IV infusion fluid to flow through the auxiliary channel 225 and the passageway 235. Hence, this embodiment provides a “self-flushing” mechanism that clears blood residue after blood sampling.

FIGS. 3A and 3B are cross-sectional views of a blood sampling device 300 in accordance with an embodiment of the invention. The blood sampling device 300 may include the diaphragm 205, the luer 210, the sampling channel 215, the monitoring channel 220, the auxiliary channel 225 and a ball valve 305. The ball valve 305 has a passageway 310 to allow fluid to pass therethrough.

The blood sampling device 300 can operate in a blood sampling mode (FIG. 3A) and a pressure monitoring mode (FIG. 3B). To draw a sample of blood from the patient, the valve 125 (shown in FIG. 1) is closed to stop the flow of IV infusion fluid to the patient. Once a sample is drawn from the patient, the valve 125 is opened to allow the flow of IV infusion fluid to the patient. In the blood sampling mode, the ball valve 305 is rotated to a first position that allows blood to flow through the sampling channel 215, the passageway 310 and into the syringe. In the pressure monitoring mode, the ball valve 305 is rotated to a second position that blocks the flow of fluid through the sampling channel 215 and allows the flow of IV infusion fluid through the auxiliary channel 225 and the passageway 310. Hence, this embodiment provides a “self-flushing” mechanism that clears blood residue after blood sampling.

FIGS. 4A and 4B are cross-sectional views of a blood sampling device 400 in accordance with an embodiment of the invention. The blood sampling device 400 may include the diaphragm 205, the luer 210, the sampling channel 215, the monitoring channel 220, the auxiliary channel 225 and a stop cock 405. The stop cock 405 has a T-shaped passageway 410 that can selectively allow fluid to pass therethrough to the sampling channel 215, the auxiliary channel 225, or the monitoring channel 220.

The blood sampling device 400 can operate in a blood sampling mode (FIG. 4A) and a pressure monitoring mode (FIG. 4B). To draw a sample of blood from the patient, the valve 125 (shown in FIG. 1) is closed to stop the flow of IV infusion fluid to the patient. Once a sample is drawn from the patient, the valve 125 is opened to allow the flow of IV infusion fluid to the patient. In the blood sampling mode, the stop cock 405 is positioned to selectively allow blood flow through the passageway 410, the sampling channel 215 and a segment of the auxiliary channel 225. In the pressure monitoring mode, the stop cock 405 is positioned to block the flow of fluid through the sampling channel 215, while selectively allowing the flow of the fluid through the sampling channel 215, the auxiliary channel 225, and the monitoring channel 220. Hence, this embodiment provides a “self-flushing” mechanism that clears blood residue after blood sampling.

FIGS. 5A and 5B are cross-sectional views of a blood sampling device 500 in accordance with an embodiment of the invention. The blood sampling device 500 may include the diaphragm 205, the luer 210, the sampling channel 215, the monitoring channel 220 and the auxiliary channel 225.

The blood sampling device 500 can operate in a blood sampling mode (FIG. 5A) and a pressure monitoring mode (FIG. 5B). To draw a sample of blood from the patient, the valve 125 (shown in FIG. 1) is closed to stop the flow of IV infusion fluid to the patient. Next, a syringe tip 505 is inserted through the diaphragm 205. When inserted, the syringe tip 505 allows blood to flow through the sampling channel 215, while blocking the flow of fluid through the auxiliary channel 225. After the blood sample is drawn from the patient, the syringe tip 505 is removed and the valve 125 is reopened. When the syringe tip 505 is removed, as shown in FIG. 5B, the IV infusion fluid can flow from the auxiliary channel 225 to the sampling channel 215, or vica versa. Hence, this embodiment provides a “self-flushing” mechanism that clears blood residue after blood sampling.

FIGS. 6A and 6B are cross-sectional views of a blood sampling device 600 in accordance with an embodiment of the invention. The blood sampling device 600 may include the diaphragm 205, the luer 210, the sampling channel 215, the monitoring channel 220, the auxiliary channel 225 and a slide 605. The slide 605 has a passageway 610 to allow fluid to pass therethrough.

The blood sampling device 600 can operate in a blood sampling mode (FIG. 6A) and a pressure monitoring mode (FIG. 6B). To draw a sample of blood from the patient, the valve 125 (shown in FIG. 1) is closed to stop the flow of IV infusion fluid to the patient. Once a sample is drawn from the patient, the valve 125 is opened to allow the flow of IV infusion fluid to the patient. In the blood sampling mode (FIG. 6A), the slide 605 is positioned to selectively allow blood flow through the passageway 610 and the sampling channel 215, while closing one end of the auxiliary channel 225. In the pressure monitoring mode (FIG. 6B), the slide 605 is positioned to block the flow of fluid through the sampling channel 215 and allows the flow of the IV infusion fluid through the auxiliary channel 225 and the passageway 610. Hence, this embodiment provides a “self-flushing” mechanism that clears blood residue after blood sampling.

The different embodiments of the blood sampling devices described herein advantageously do not require flushing with a physiological saline solution after a blood sample has been drawn. The blood sampling devices are “self flushing” after blood sampling, which provides a convenient benefit to the healthcare provider, and greater safety to the patient, by eliminating the potential for embolization of clotted blood if the sample site is not flushed properly. In one embodiment, the blood sampling devices may eliminate the need for the valve 125. In another embodiment, the fidelity of the pressure wave form can be enhanced by isolating the sampling channel 215 septum from the monitoring channel 220.

FIGS. 7A and 7B are cross-sectional views of a blood sampling device 700 in accordance with an embodiment of the invention. The blood sampling device 700 may include the diaphragm 205, the luer 210, the sampling channel 215, the monitoring channel 220, the auxiliary channel 225 and a stop cock 705. The stop cock 705 has a T-shaped passageway 710 that can selectively allow fluid to pass therethrough to the sampling channel 215, the auxiliary channel 225, or the monitoring channel 220. The stop cock 705 is coupled to the monitoring channel 220 to control the flow of the IV infusion fluid through the monitoring channel 220, while allowing for the self-flushing capability after blood sampling.

The blood sampling device 700 can operate in a blood sampling mode (FIG. 7A) and a pressure monitoring mode (FIG. 7B). To draw a sample of blood from the patient, the stop cock 705 (shown in FIG. 1) is rotated to a position that stops the flow of IV infusion fluid to the patient. Once a sample is drawn from the patient, the stop cock 705 is rotated back to allow the flow of IV infusion fluid to the patient while self-flushing the passageway 710, the sampling channel 215, and the auxiliary channel 225.

In the blood sampling mode, the stop cock 705 is positioned to selectively allow blood flow through the passageway 710, the sampling channel 215 and a segment of the auxiliary channel 225. In the pressure monitoring mode, the stop cock 705 is positioned to allow the flow of fluid through the sampling channel 215, the auxiliary channel 225, and the monitoring channel 220. Hence, this embodiment provides a “self-flushing” mechanism that clears blood residue after blood sampling, while eliminating the need for a valve 125 upstream in the monitoring channel 220 to stop the flow of IV infusion fluid.

Claims

1. A sampling device, comprising:

an inlet port configured to receive a first fluid;
an outlet port configured to be coupled to a monitoring channel having a second fluid;
a sampling port configured for extraction of the first fluid; and
a sampling channel configured to self-flush, after extraction, the first fluid with the second fluid.

2. The sampling device of claim 1 further comprising an auxiliary channel for self-flushing the sampling channel.

3. The sampling device of claim 2 further comprising a paddle coupled to the sampling channel and rotatable to allow the sampling channel to align with the auxiliary channel for self-flushing.

4. The sampling device of claim 2 further comprising a ball valve configured to selectively allow a fluid to flow through the sampling channel or the auxiliary channel.

5. The sampling device of claim 2 wherein the sampling port is configured to allow a needle to draw the first fluid while blocking access to the auxiliary channel.

6. The sampling device of claim 2 further comprising a slide with an opening that selectively allows the flow of the fluid through the sampling channel or the auxiliary channel.

7. The sampling device of claim 2 further comprising a stop cock having a T-shaped passageway that can selectively allow fluid to pass through the sampling channel, the auxiliary channel, or the monitoring channel.

8. The sampling device of claim 8 wherein the stop cock is configured to stop the flow of second fluid when the first fluid is being extracted.

9. The sampling device of claim 8 wherein the stop cock isolates the sampling port from the outlet port.

10. The sampling device of claim 1, wherein the sampling port is configured to receive a syringe.

11. The sampling device of claim 1, wherein the sampling port is configured to receive a cannula.

12. An apparatus for allowing a fluid pressure measurement and a fluid sample to be taken from a patient, comprising:

an inlet port configured to receive a first fluid from the patient;
an outlet port configured to be coupled to a monitoring channel having a second fluid;
a sampling port configured for extraction of the first fluid from the patient;
a sampling channel configured to receive the first fluid during extraction; and
a self-flushing means for cleaning the sampling channel with the second fluid.

13. The apparatus of claim 12, wherein the sampling port is configured to receive a syringe.

14. The apparatus of claim 12, wherein the sampling port is configured to receive a cannula.

15. A blood sampling device, comprising:

an inlet port configured to receive blood from the patient;
an outlet port configured to be coupled to a monitoring channel having an infusion fluid;
a sampling port configured for extraction of blood from the patient;
a sampling channel configured to self-flush, after extraction, the blood with the infusion fluid; and
an auxiliary channel for self-flushing the sampling channel.

16. The blood sampling device of claim 15 further comprising a rotatable paddle coupled to the sampling channel and orients the sampling channel to align with the auxiliary channel for self-flushing.

17. The blood sampling device of claim 15 further comprising a ball valve configured to selectively allow the blood or the infusion fluid to flow through the sampling channel or the auxiliary channel.

18. The blood sampling device of claim 15 wherein the sampling port is configured to allow a needle to draw the blood while blocking access to the auxiliary channel.

19. The blood sampling device of claim 15 further comprising a slide with an opening that selectively allows the flow of blood through the sampling channel or the flow of the infusion fluid through the auxiliary channel.

20. The blood sampling device of claim 15 further comprising a stop cock that can selectively allow fluid to pass through at least one of the sampling channel, the auxiliary channel, or the monitoring channel.

Patent History
Publication number: 20060155212
Type: Application
Filed: Jan 10, 2006
Publication Date: Jul 13, 2006
Inventor: James Madonia (Huntington Beach, CA)
Application Number: 11/329,406
Classifications
Current U.S. Class: 600/573.000
International Classification: A61B 5/00 (20060101);