Intragastric device for treating obesity
An apparatus and method comprising at least one intragastric member or artificial bezoar made of a digestive-resistant or substantially indigestible material that is introduced into a gastric lumen of a mammal for the treatment of obesity. The intragastric member or artificial bezoar is typically at inserted into the gastric lumen in a partially compacted configuration, whereby it is then manipulated into, or allowed to assume, a second expanded configuration sufficiently large to remain within the reservoir of the stomach during normal activities and not be passed through the pylorus into the intestines. In animals, the present invention has been found to be effective in achieving weight loss over a several month period, while being easy to place and retrieve.
This application is a continuation of c-pending U.S. patent application Ser. No. 10/151,720, filed May 17, 2002, which claims the benefit of U.S. Provisional Application No. 60/291,790, filed May 17, 2001, and U.S. Provisional Application No. 60/360,353, filed Feb. 27, 2002, each of which are entitled “Intragastric Device For Treating Obesity”.
TECHNICAL FIELDThis invention relates to medical devices, and more particularly to obesity treatment devices that can be placed in the stomach of a patient to reduce the size of the stomach reservoir.
BACKGROUND OF THE INVENTIONIt is well known that obesity is a very difficult condition to treat. Methods of treatment are varied, and include drugs, behavior therapy, and physical exercise, or often a combinational approach involving two or more of these methods. Unfortunately, results are seldom long term, with many patients eventually returning to their original weight over time. For that reason, obesity, particularly morbid obesity, is often considered an incurable condition. More invasive approaches have been available which have yielded good results in many patients. These include surgical options such as bypass operations or gastroplasty. However, these procedures carry high risks, and are therefore not appropriate for most patients.
In the early 1980s, physicians began to experiment with the placement of intragastric balloons to reduce the size of the stomach reservoir, and consequently its capacity for food. Once deployed in the stomach, the balloon helps to trigger a sensation of fullness and a decreased feeling of hunger. These balloons are typically cylindrical or pear-shaped, generally range in size from 200-500 ml or more, are made of an elastomer such as silicone, polyurethane, or latex, and are filled with air, water, or saline. While some studies demonstrated modest weight loss, the effects of these balloons often diminished after three or four weeks, possibly due to the gradual distension of the stomach or the fact that the body adjusted to the presence of the balloon. Other balloons include a tube exiting the nasal passage that allows the balloon to be periodically deflated and re-insufflated to better simulate normal food intake. However, the disadvantages of having a inflation tube exiting the nose are obvious.
The experience with balloons as a method of treating obesity has provided uncertain results, and has been frequently disappointing. Some trials failed to show significant weight loss over a placebo, or were ineffective unless the balloon placement procedure was combined with a low-calorie diet. Complications have also been observed, such as gastric ulcers, especially with use of fluid-filled balloons, and small bowel obstructions caused by deflated balloons. In addition, there have been documented instances of the balloon blocking off or lodging in the opening to the duodenum, wherein the balloon may act like a ball valve to prevent the stomach contents from emptying into the intestines.
Unrelated to the above-discussed methods for treating obesity, it has been observed that the ingestion of certain indigestible matter, such as fibers, hair, fuzzy materials, etc., can collect in the stomach over time, and eventually form a mass called a bezoar. In some patients, particularly children and the mentally handicapped, bezoars often result from the ingestion of plastic or synthetic materials. In many cases, bezoars can cause indigestion, stomach upset, or vomiting, especially if allowed to grow sufficiently large. It has also been documented that certain individuals having bezoars are subject to weight loss, presumably due to the decrease in the size of the stomach reservoir. Although bezoars may be removed endoscopically, especially in conjunction with a device known as a bezotome or bezotriptor, they, particularly larger ones, often require surgery.
What is needed is a intragastric member that provides the potential weight loss benefits of a bezoar or intragastric balloon without the associated complications. Ideally, such a device should be well-tolerated by the patient, effective over a long period of time, sizable for individual anatomies, and easy to place and retrieve.
SUMMARY OF THE INVENTIONThe foregoing problems are solved and a technical advance is achieved by an illustrative obesity treatment apparatus comprising at least one intragastric member or artificial bezoar made of a digestive-resistant or substantially indigestible material that is introduced into a gastric lumen of a mammal in a first configuration. The intragastric member or artificial bezoar is typically inserted into the gastric lumen in a partially compacted configuration, whereby it is then manipulated into, or allowed to assume, a second expanded configuration sufficiently large to remain within the reservoir of the stomach during normal activities and not be passed through the pylorus and into the intestines. In animals, the present invention has been found to be effective in achieving weight loss over a several month period, while being easy to place and retrieve. Another advance is that the present invention can be effective at a smaller volume within the stomach than existing intragastric members, such as balloons.
In one aspect of the invention, the obesity treatment apparatus comprises a plurality of elongate plastic strips joined in the middle by a retaining mechanism, such as a nylon thread, so that the intragastric device has a shape suggestive of a butterfly or bow-tie. Alternatively, the intragastric member can comprise a folded or pleated sheet, elongated fibers or hairs, or other materials that can assume the expanded configuration while not causing trauma to the stomach wall of the patient.
In another aspect of the invention, the obesity treatment apparatus comprises a plurality of intragastric members, such as the embodiments described above, which are coupled together in a set or grouping within the gastric lumen. The intragastric members are introduced individually into the gastric lumen, and then attached using a coupling mechanism, which may extend from the intragastric members themselves, or they can be introduced as a set, depending on the diameter and design used. A tether tied to the device, such a nylon thread (e.g., fishing line), can be used to assist in coupling the plurality of intragastric members together. Additional components may also be used with the coupling mechanism to facilitate placement of the set and/or separation of the individual intragastric members. For example, specially configured plastic or metal pieces can be attached to the line bundling the set of intragastric members together to enhance visibility of the line for cutting with a endoscopic scissor or scalpel, or to provide a hard surface against which the cutting instrument can be applied to more easily sever the line. Irrespective of whether the obesity treatment device includes a single intragastric member, or a coupling of intragastric members, the principal requirement is that, once in the stomach, it attains a shape and size that cannot pass through or lodge in the pyloric sphincter.
In another aspect of the invention, the obesity treatment device includes a delivery system, such as one or more catheters, to place the intragastric members within the gastric lumen. In one embodiment, one or more intragastric members are mounted on a catheter or overtube and secured with cotton threads extending through the passageway of the delivery catheter via oppositely placed apertures. A metal wire or loop is then withdrawn, severing the threads and releasing the intragastric member(s) into the gastric lumen. The individual intragastric members are then coupled together by drawing them together via the attached tethering threads, then secured with a device such as a rubber patch pushed by an introduced metal tube or similar device.
Other delivery systems of the present invention involve constraining the intragastric members, then releasing them in the gastric lumen. These can include pushing the intragastric member(s) from an outer delivery catheter, typically by use of pusher member within the delivery catheter passageway. Other methods include constraining the intragastric member(s) with a splittable or dissolvable film or sheath that allows that device to be deployed in a compact configuration, then allowed to expand when the outer wrapping or sheath is split by the operator, or is allowed to dissolve away over time in the stomach. In the latter example, a delivery catheter may not be necessary.
While a delivery catheter or other delivery system can be used to deliver the intragastric members of the present invention, it has been shown that the intragastric members can generally be placed endoscopically or blindly by pulling them into the gastric lumen using a pair of forceps or some other retrieval grasping or device.
In yet another aspect of the invention, the intragastric member can comprise a plurality of expandable members that are constrained into a first configuration for introduction into the gastric lumen, whereby the device is manipulated to allow it to assume a second, expanded configuration for residing in the stomach. One such example is an intragastric member having a plurality of strips arranged concentrically and secured at each end with a tether fixedly attached at the first end and extending through an internal portion of the device. The second end attachment is adapted to slide over the tether, and can be drawn or urged toward the first end attachment to cause the expandable members to bow outward so as to increase the overall volume of the device.
In still yet another aspect of the invention, the intragastric members can be pre-coupled together with a coupling mechanism, such as a nylon fishing line, prior to introduction into the gastric lumen. Because the volume of the grouping in the stomach increases over time due to mucous accumulation or other factors, a single device having the overall size of the grouping (e.g., four devices grouped together) may not be readily removed. However, by severing the line comprising the grouping mechanism, the individual intragastric devices of the grouping can be removed one at a time by using an endoscope and retrieval device.
In yet another aspect of the invention, the intragastric member can comprise a single strip of material having a series of apertures space along the length thereof, wherein the strip of material is bundled into a series of folds by passing a nylon thread through the apertures and cinching the strip of material together. The intragastric member is inserted into the gastric lumen by passing the apertures of the strip of material over a wire guide, preferably in separate bundles, until the entire strip has been accumulated and bundled together inside the gastric lumen with a nylon thread. The nylon thread can be cut to allow the bundles to separate, thereby facilitating its removal by grasping and pulling one end of the strip.
It has also been contemplated that more than one grouping may be used at a time. For example, two or more independent groupings of intragastric devices floating freely in the stomach may be utilized.
These and other advantages, as well as the invention itself, will become apparent in the details of construction and operation as more fully described below. Moreover, it should be appreciated that several aspects of the invention can be used with other types of intragastric devices or procedures used for the treatment of obesity.
BRIEF DESCRIPTION OF SEVERAL VIEWS OF THE DRAWINGSSeveral embodiments of the present invention will now be described by way of example with reference to the accompanying drawings, in which:
The obesity treatment apparatus 10 of the present invention depicted in
Many well-known plastics have suitable properties, including selected polyesters, polyurethanes, polyethylenes, polyamides, silicone, or other possible materials. Mammalian hair has been found to form natural bezoars, and thus, is also a possible material. However, some materials, such as certain polyamides, have been found to expand over time, which can be an undesirable property. Most other natural materials are generally much less resistant to acids and enzymes, and would therefore typically require treatment or combination with resistant materials to function long term, unless a shorter-term placement is intended or desired.
In the preferred embodiments, the digestive-resistant or indigestible member 12 comprises a low density polyethylene having a thickness of about 40-50 microns. Fluorinated ethylene propylene, ethylene vinyl acetate copolymer, nylon, or types of polymers that are biocompatible and to which food will generally not adhere may also be utilized.
Feasibility studies have been primarily limited to placement in pigs with both 8 cm and 16 cm intragastric members being used, both having a total volume of about 40 ml when placed in the stomach of the animal. Although the experiments were designed to establish the safety of the device, significant weight loss was nevertheless observed in the test animals. Although no gastric ulcers were found in animals with polyester intragastric members, there was a 20% incidence of gastric ulcers in animals having polyamide devices.
Results from human trials may lead to modifications in the configuration being depicted in the figures of this application. Nevertheless, it is already understood that the dimensions shape, and construction of the intragastric member can be quite variable and still produce the desired results. For example,
In the illustrative embodiments, the retaining element 34 (see
Deployment of intragastric member 11 can be accomplished in a number of ways, depending on the size, number, and configuration of the devices, or according to physician or patient preference.
In order to create an obesity treatment apparatus 10 that will be retained in the stomach, it may be necessary that the intragastric members 11 be coupled together to form a grouping or set 45 of intragastric members.
To assist the operator in cutting the line 46 to release the grouping 45, two different coupling components 47, 48 are included in the illustrative embodiment. The first coupling component 47 comprises a curved polymer piece which is traversed by the line 46 in such a manner that the line 46 can be readily visualized under the scope, thereby providing a place to grasp and/or cut the line with an instrument extending from the endoscope. The second coupling component 48 comprises a fishing line swivel, which being metal, can be readily visualized, as well as providing a hard surface against which a cutting instrument can be applied to sever the line 46, especially if the line has proved difficult to cut using other methods. It also provides an easily accessible point on the apparatus 10 which can be grabbed with a forceps or other device.
In the embodiment of the intragastric member 100 shown in
The intragastric member 100 is bundled by passing a nylon thread 110 through an aperture 112 in the strip 102 at the center of the each loop 104. As best seen in
The embodiment of the intragastric member 100 shown in
As shown in
Once the distal end of the wire guide 118 is positioned in the gastric lumen, the first bundle 114 is threaded over the proximal (rearward) end by passing the apertures 112 over the wire guide 118. A plastic tube 122 is then positioned over the proximal end of the wire guide 118, and slid towards the distal end of the wire guide 118 so as to push the folds 104 of the first bundle against the nylon tubing 120. This procedure is then repeated by threading subsequent bundles 114 over the wire guide 118 and pushing them against the previously inserted bundles 114 until all of the bundles 114 have been inserted into the gastric lumen. The bundles 114 are then secured together by pushing a small rubber stopper or similar device 124 (see
To remove the intragastric member 100 from the gastric lumen, the nylon thread 110 is typically cut so as to release the folds 104. One end of the strip 102 is then grasped by an endoscopic or similar device and pulled out of the patient.
In the embodiment of the intragastric member 200 shown in
The intragastric member 200 is bundled by passing a nylon thread 210 through an aperture 212 in each strip 202 at the center of the each loop 204. As best seen in
The embodiment of the intragastric member 200 shown in
As shown in
Once the distal end of the wire guide 218 is positioned in the gastric lumen, the first bundle 214 is threaded over the proximal (rearward) end by passing the apertures 212 over the wire guide 218. A pusher tube 222, which may be plastic, metal or some other suitable material, is then positioned over the proximal end of the wire guide 218, and slid towards the distal end of the wire guide 218 so as to push the folds 204 of the first bundle 214, which remain bundled by tie 216, against the nylon disc 220.
In the preferred embodiment shown, one or more of the apertures 212 in each bundle 214 have an increased diameter that is sufficient to allow one more folds 204 to slide over the outside of the pusher tube 222. This permits the portion of the strips 202 connected between adjacent bundles 214 to be guided (extended) along the wire guide 218 without interfering with the deployment of each bundle 214. In the preferred embodiment shown, those apertures 212 having an increased diameter are approximately 9-10 mm in diameter.
This procedure is then repeated by threading subsequent bundles 214 over the wire guide 218 and pushing them against the previously inserted bundles 214 until all of the bundles 214 have been inserted into the gastric lumen. The bundles 214 are then secured together by pushing a small rubber stopper or similar device 224 (see
To remove the intragastric member 200 from the gastric lumen, the nylon thread 210 is typically cut so as to allow the intragastric member 200 to separate in separate bundles (see
As best seen in
The above-described embodiments, particularly the embodiments of
Alternatively, the strip 302 can be compressed by sliding a tube (not shown) along one or both halves of the loop 306. In addition, the intragastric member 300 can be inserted in bundles (see
An anchor stent (not shown) could be utilized to temporarily secure the end of the nylon thread 304 (or the end 308 of the loop 306) inside the gastric lumen during the insertion procedure. For example, an anchor stent enclosing a portion of the nylon thread 304 would be inserted into the pylorus and lodged therein. One end of the nylon thread 304 (or loop 306) enclosed within the anchor stent is then removed therefrom and pulled out of the subject. The other end of the nylon thread 304 (or loop 306) remains attached to the anchor stent. The intragastric device 300 can then be inserted into the gastric lumen by pushing or sliding the strip 302 (or bundles) down the nylon thread 304 (or loop 306), the end of which remains secured within the gastric lumen by the anchor stent. Once the insertion procedure is removed, then the anchor stent and any excess nylon thread 304 is removed.
Experimental testing of the present invention has been conducted on mammals. In particular, an embodiment of an intragastric member similar to the embodiment shown in
Any other undisclosed or incidental details of the construction or composition of the various elements of the disclosed embodiment of the present invention are not believed to be critical to the achievement of the advantages of the present invention, so long as the elements possess the attributes needed for them to perform as disclosed. The selection of these and other details of construction are believed to be well within the ability of one of even rudimentary skills in this area, in view of the present disclosure. Illustrative embodiments of the present invention have been described in considerable detail for the purpose of disclosing a practical, operative structure whereby the invention may be practiced advantageously. The designs described herein are intended to be exemplary only. The novel characteristics of the invention may be incorporated in other structural forms without departing from the spirit and scope of the invention.
Claims
1. An intragastric device for the treatment of obesity, the intragastric device comprising a digestive-resistant material that is expandable from a first configuration to a second configuration, the first configuration being sufficiently small to permit introduction of said intragastric device into a gastric lumen of a mammal, the second configuration being sufficiently large to prevent said intragastric device from passing through the mammal's pylorus, wherein said intragastric device is configured to function as an artificial bezoar, and further wherein said digestive-resistant material has been one of folded, gathered, bundled, tied, collected, manipulated and organized to form a volume displacing mass in the second configuration.
2. The intragastric device according to claim 1 wherein said digestive-resistive material comprises one or more elements selected from the group consisting of plastic, nylon, polyesters, polyurethanes, polyethylenes, polyamides, silicone and biocompatible polymers to which food will generally not adhere.
3. The intragastric device according to claim 1 wherein said digestive-resistive material comprises one or more elements selected from the group consisting of high-density polyethylene, low-density polyethylene, fluorinated ethylene propylene and ethylene vinyl acetate copolymer.
4. The intragastric device according to claim 1 wherein the digestive-resistant material has a resilience which is biased towards the second configuration.
5. The intragastric device according to claim 1 wherein said digestive-resistant material comprises a continuous strip of material that has been folded to form a plurality of loops, said plurality of loops being connected together in the second configuration to form the volume displacing mass, the mass having a shape suggestive of a butterfly or bow-tie.
6. The intragastric device according to claim 5 wherein the continuous strip of material is folded to form a plurality of bundles in the first configuration, each of said bundles comprising a plurality of loops connected together to form a shape suggestive of a butterfly or bow-tie, and wherein said plurality of bundles are connected together in the second configuration to form the volume displacing mass.
7. The intragastric device according to claim 6 wherein each of the bundles is introduced into the gastric lumen of the mammal separately.
8. (canceled)
9. (canceled)
10. (canceled)
11. (canceled)
12. The intragastric device according to claim 1 wherein said digestive-resistant material comprises a plurality of strips of material that have been connected together in the second configuration to form the volume displacing mass, the mass having a shape suggestive of a butterfly or bow-tie.
13. The intragastric device according to claim 12 wherein the plurality of strips of material have been connected together to form a plurality of bundles in the first configuration, each of said bundles comprising a plurality of strips of material connected together to form a shape suggestive of a butterfly or bow-tie, and wherein said plurality of bundles are connected together in the second configuration to form the volume displacing mass.
14. The intragastric device according to claim 13 wherein each of the bundles is introduced into the gastric lumen of the mammal separately.
15. (canceled)
16. (canceled)
17. (canceled)
18. (canceled)
19. The intragastric device according to claim 1 wherein said digestive-resistant material comprises a sheet of material that has been folded or pleated in the second configuration to form the volume displacing mass, the mass having a shape suggestive of a butterfly or bow-tie.
20. (canceled)
21. The intragastric device according to claim 1 wherein said digestive-resistant material comprises a continuous thread of nylon that has tied in the second configuration to form a ball-like volume displacing mass.
22. The intragastric device according to claim 21 wherein the continuous thread of nylon is tied to form a plurality of ball-like masses in the first configuration, and wherein said plurality of ball-like masses are connected together in the second configuration to form the volume displacing mass.
23. The intragastric device according to claim 22 wherein each of said bundles is introduced into the gastric lumen separately.
24. (canceled)
25. (canceled)
26. (canceled)
27. (canceled)
28. (canceled)
29. (canceled)
30. (canceled)
31. (canceled)
32. The intragastric device according to claim 1 wherein the digestive-resistant material is distributed throughout the mass in the second configuration.
33. The intragastric device according to claim 32 wherein void spaces are distributed throughout the mass in the second configuration, the void spaces allowing the passage of gastric fluid into or through the intragastric device.
34. The intragastric device according to claim 32 wherein the mass comprises a substantially homogeneous cross-section.
35. The intragastric device according to claim 1 wherein the digestive-resistant material comprises a surface having a first contact point and a second contact point, the first contact point being spaced apart from the second contact point in the first configuration, the first contact point being in contact with the second contact point in the second configuration.
36. The intragastric device according to claim 1 wherein the digestive-resistant material comprises a substantially planar material.
37. The intragastric device according to claim 1 wherein the digestive-resistant material comprises an elongate material having a length that is substantially longer than its width or thickness.
38. The intragastric device according to claim 1 wherein the volume displacing mass comprises a flexible or dynamic shape that conforms to the gastric lumen of the mammal.
39. The intragastric device according to claim 1 wherein the volume displacing mass is free-floating within the gastric lumen of the mammal.
40. The intragastric device according to claim 1 wherein the digestive-resistant material is substantially non-elastic.
41. The intragastric device according to claim 1 wherein the digestive-resistant material is substantially non-expandable.
42. The intragastric device according to claim 1 wherein the digestive-resistant material is substantially non-inflatable.
43. The intragastric device according to claim 1 wherein a coupling mechanism is provided to one of fold, gather, bundle, tie and organize the digestive-resistant material to form the volume displacing mass in the second configuration.
44. The intragastric device according to claim 43 wherein the coupling mechanism comprises a suture, the suture binding the digestive-resistant material together to form the volume displacing mass in the second configuration.
45. The intragastric device according to claim 1 wherein the digestive-resistant material is reconfigurable from the second configuration to a third configuration while in the gastric lumen of the mammal, the third configuration having a size and shape permitting removal of digestive-resistant material from the gastric lumen of the mammal.
46. The intragastric device according to claim 45 wherein a coupling mechanism is provided to one of fold, gather, bundle, tie and organize the digestive-resistant material to form the volume displacing mass in the second configuration, and further wherein the coupling mechanism is adapted to facilitate reconfiguration of the digestive-resistant material from the second configuration to the third configuration.
47. The intragastric device according to claim 46 wherein the coupling mechanism comprises a suture, the suture binding the digestive-resistant material together to form the volume displacing mass in the second configuration, the suture being severable to facilitate reconfiguration of the digestive-resistant material from the second configuration to the third configuration.
48. An intragastric device for the treatment of obesity, the intragastric device comprising a digestive-resistant non-fluid material that is manipulated from a first configuration to a second configuration, the first configuration being sufficiently small to permit introduction of said intragastric device into a gastric lumen of a mammal, the second configuration being sufficiently large to prevent said intragastric device from passing through the mammal's pylorus, wherein said digestive-resistant material is manipulated to form a three-dimensional volume in the second configuration, further wherein the digestive-resistant material is substantially distributed throughout the three-dimensional volume in the second configuration.
49. An intragastric device for the treatment of obesity, the intragastric device being manipulated from a first configuration to a second configuration, the first configuration permitting introduction of said intragastric device into a gastric lumen of a mammal, the second configuration preventing said intragastric device from passing through the mammal's pylorus, wherein said intragastric device is configured to function as an artificial bezoar when in the second configuration, further wherein the intragastric device comprises a digestive-resistant material that is manipulated from the first configuration to the second configuration, the digestive-resistant material being distributed to form a volume-displacing substantially homogeneous mass in the second configuration.
50. An intragastric device for the treatment of obesity, the intragastric device being manipulated from a first configuration to a second configuration, the first configuration comprising a first shape that is sufficient to permit introduction of said intragastric device into a gastric lumen of a mammal, the second configuration comprising a second shape that is sufficient to prevent said intragastric device from passing through the mammal's pylorus, wherein said intragastric device is configured to function as an artificial bezoar when in the second configuration, further wherein the intragastric device comprises a digestive-resistant non-fluid material that is gathered upon itself in the second configuration to form a volume-displacing mass, the mass comprising a distribution of said digestive-resistant non-fluid material.
51. An intragastric device for the treatment of obesity, the intragastric device comprising one or more intragastric members comprising a digestive-resistant material and being deployable in a first configuration sized for introduction into the stomach of a mammal, wherein said one or more intragastric members are organizable upon deployment within said stomach to form a mass of said digestive-resistant material having a second configuration defining a volume effective to substantially reduce the available reservoir within said stomach, said mass of digestive-resistant material being further configured to prevent passage through the pylorus of said mammal.
52. The intragastric device according to claim 51 wherein said mass of digestive-resistant material includes adaptations for facilitating a third configuration of said mass while within said stomach, said third configuration having a size and shape permitting removal of digestive-resistant material from said stomach.
53. The intragastric device according to claim 52 wherein said adaptations comprises a suture that binds said mass of digestive-resistant material in the second configuration, further wherein said suture is severed to facilitate the third configuration of said mass.
Type: Application
Filed: Dec 12, 2005
Publication Date: Jul 13, 2006
Inventors: Kiyoshi Hashiba (Sao Paulo), Vihar Surti (Winston-Salem, NC)
Application Number: 11/301,120
International Classification: A61B 17/08 (20060101);