Protective device for armored vehicles, particularly for protecting against hollow-charge projectiles

A protective device for protecting armored vehicles from hollow-charge projectiles includes at least one protective module that is mounted in front of the exterior of a wall to be protected. The protective module is moved out of an inoperative position, in which it is situated in a predetermined position, and into an active position, in which at least partial areas of the protective module have a greater distance from the wall to be protected compared to the inoperative position. The protective module can be constructed from a number of components, which can be displaced relative to one another and which, as a result of a displacing motion and/or pivotal motion, can be displaced out of the inoperative position and into the active position in which they are interlocked.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description

The invention relates to a protective device for armored vehicles, in particular against hollow-charge projectiles, with at least one protective module that is arranged in front of an exterior side of a wall to be protected.

Such protective modules are known. They can be formed as passive or as reactive plating and can be effective as protection against hollow charge (HL) projectiles or impact (KE) projectiles depending on the design. Several of the types of designs of these protective modules are explained, for example, in EP 0 922 924 B1 and EP 0 379 080 A2, as well as in DE 41 14 809 C2 and DE 195 09 899 C2.

In particular with protective modules for protection against HL-projectiles, it is known that the protective effect is greater the greater the distance between the protective module and the wall to be protected, since the deflection path of the disrupted penetrator is of greater significance for efficiency based on the continuing lateral movement after contact against the protective module. If, however, the protective modules are disposed at the greatest possible distance from the wall to be protected, the contour of the vehicle to be protected increases overall, so that the prescribed loading masses no longer can be adhered to.

The invention is based on the object of constructing a protective device of the type described above and in the preamble to claim 1 in such a manner that for defense of the threat, the greatest possible distance of the protective module from the wall to be protected is achievable; on the other hand, however, the contour of the vehicle and in particular the prescribed loading masses are not increased.

The solution of this object takes place according to the present invention with the features of the characterizing parts of claim 1. Advantageous embodiments of the invention are described in the dependent claims. The wording of the patent claims is made by reference to the content of the following description.

The basic idea of the invention is to form the protective module to be moveable in such a manner that it can be moved from an inoperative position, in which it is positioned as closely as possible to the wall to be protected, into an active position, in which it has a substantially greater distance at least partially from the wall to be protected than in the inoperative position.

The movement of the protective module can take place in different ways depending on its structure and arrangement. As explained subsequently with reference to the embodiments, here linear movements, in particular linear motions that take place orthogonally to the wall to be protected, can be used as well as pivoting motions. The motions can be produced by means of simple mechanical drive devices, that is, manual as well as electrical, electromechanical, hydraulic, or pneumatic drive devices. It is also possible to produce the motion of the protective module from the inoperative position into the active position with pyrotechnical means.

The protective modules can be constructed in a known manner in a sandwich-like manner from multiple, layered plates. However, they also can be constructed as a buckling sheet louver with a plurality of inclined layers, for example.

In order to achieve effective protection against HL-projectiles as well as against KE-projectiles, it was noted to be advantageous when a second protective module is fixedly disposed between the moveable first protective module and the wall to be protected, whereby the structure can be such that the first protective module serves in a first line for protection against HL-projectiles and the second protective module serves in a first line for protection against KE-projectiles. It is further possible to construct the protective module as a passive plating as well as an active plating.

Next, embodiments of the protective devices according to the present invention will be described in greater detail with reference to the accompanying figures.

In the drawings:

FIG. 1 shows a partial section through an armored vehicle with a first embodiment of a protective device with a protective module disposed in the inoperative position;

FIG. 2 shows the protective device according to FIG. 1 with the moveable protective module in the active position;

FIG. 3 shows a variation of the protective device of FIGS. 1 and 2 in an illustration analogous to FIG. 2, in which the protective module is moved into a second active position;

FIG. 4 shows a further embodiment of a protective device with a protective module disposed in the inoperative position in an illustration analogous to FIG. 1; and

FIG. 5 shows the protective device of FIG. 4 with the moveable protective module in the active position.

In FIGS. 1 and 2, a first embodiment of a protective device for an armored vehicle is shown, whereby only the parts that are essential for illustrating the protective device are shown, namely a part of the vehicle shell or vehicle body with a roof plate 1 and the side wall 2 to be protected. On the outer surface of the side wall 2, first a KE-protective module 6 is fixedly disposed, which can be structured in a known manner and is not explained in detail below. An HL-protective module is arranged outside of this KE-protective module. This HL-protective module is constructed of two plate elements 4.1 and 4.2, which in a known manner, for example, can comprise two plates that are separated from one another by air space. The plate element 4.1 is outwardly pivotable around a pivot axis 5.1 arranged parallel to the side wall 2 in the area of the roof plate 1. The edge 4.11 of the plate element 4.1 facing the pivot axis 5.1 is attached to a corresponding pivot lever 5.11. The plate element 4.2 is outwardly pivotable around a pivot axis 5.2 running parallel to the side wall 2 and parallel to the pivot axis 5.1. The pivot axis 5.2 is disposed beneath the pivot axis 5.1 on the side wall 2. The edge 4.21 faxing this pivot axis 5.2 is attached to a corresponding pivot lever 5.21.

In the position shown in FIG. 1, both plate elements 4.1 and 4.2 are disposed in the inoperative position parallel to one another and parallel to the side wall 2. In this inoperative position, in which they lie directly on top of one another in the shown embodiment, they have the least possible distance to the side wall 2 and lie within a spatially defined contour 3 of the vehicle.

The plate elements 4.1 and 4.2 are pivotable outwardly into an active position from the inoperative position shown in FIG. 1 in opposite pivot motions; the active position is shown in FIG. 2. In this active position, the edges 4.12 or 4.22 of the plate elements facing away from the pivot axes 5.1 and 5.2 directly adjoin one another. These edges are constructed such that they interlock in one another upon reaching the active position in the manner shown in FIG. 2, and therewith have a roof-shaped form facing outwardly, comprised of the two plate elements 4.1 and 4.2. In this position, the protective module projects outwardly over the contour 3, and as a result of the inclined position of both plate elements 4.1 and 4.2, an optimal protection against incoming HL-projectiles is achieved.

With this structure of the protective device, it is therefore possible to load the vehicle into a transport aircraft, for example, in the inoperative position of the protective module, in which the prescribed loading mass is maintained. In use of the vehicle or also first in case of a threat, the protective module is moved from the inoperative position into the active position and can be moved back again into the inoperative position after termination of the threat or for loading.

FIG. 3 shows a variation of the protective device according to FIGS. 1 and 2, in which a still greater distance of the protective module from the side wall of the vehicle to be protective is achievable. In FIG. 3, components which correspond to the embodiment of FIGS. 1 and 2 are provided with the same reference numerals and an apostrophe.

In the inoperative position (not shown) of the protective module, both plate elements 4.1′ and 4.2′ lie on top of one another and parallel to the side wall 2′ in front of the outer side of the KE-protective module 6′ within the vehicle contour 3′, analogously to the situation of FIG. 1. Also, the plate elements 4.1′ and 4.2′ are pivotable about pivot axes 5.1′ or 5.2′ that run parallel to one another and to the side wall 2′, and the outward pivoting motion takes place by means of a drive device (not shown). In this manner, analogously to the embodiment of FIG. 1, both plate elements 4.1′ and 4.2′ first are pivotable from the inoperative position into a first active position (likewise not shown), in which they again adopt a roof-shaped position relative to one another, in which both outer edges are interlocked in one another. In this first active position, already a greater distance from the side wall 2′ is achieved. According to FIG. 3, the protective module now can be moved into a second active position. In this connection, the pivot axis 5.1′ is disposed on the outer end of the piston rod 7.1 of a piston cylinder drive 7, and the pivot axis 5.2′ is disposed on a guided holding rod 8. By means of the piston cylinder drive 7, which is disposed above the roof plate 1′, the protective module comprised of the plate elements 4.1′ and 4.2′ can be displaced outwardly in a displacing motion, which runs essentially orthogonally to the side wall 2′, and therewith the distance of the protective module to the side wall 2′ is increased, providing a still better protection against incoming HL-projectiles.

FIGS. 4 and 5 show another embodiment of a protective device for an armored vehicle, of which only the roof plate 11 and the side wall 12 to be protected are shown, analogously to FIG. 1. Again, a KE-protective module 16 is fixedly mounted in front of the side wall 12, and outside of the KE-protective module, the moveable HL-protective module 14 is disposed, which in this case is constructed as an individual, fixedly assembled component in the form of a buckling sheet louver with a plurality of sheets 19 running at an angle to the side wall 12. The sheets 19 are arranged with an intermediate air space. In the inoperative position shown in FIG. 4, the protective module 14 is disposed substantially within the vehicle contour 13. The protective module 14 is moveable from this inoperative position, in a direction that runs essentially orthogonally to the side wall 12, into an active position, which is shown in FIG. 5. In this active position, it lies with an essentially greater distance to the side wall 12 outside of the vehicle contour 13. To achieve the motion, the protective module 14 is connected on the upper side shown in FIG. 4 via a swivel joint 15.1 with the piston rod 17.1 of a piston cylinder drive 17, which is disposed above the roof plate 11. On the lower side shown in FIG. 4, the protective module 14 is guided via a roller 15.2 on a linear guide 18. In this manner, upon deployment of the piston rod 17.1, the protective module 14 moves from the inoperative position of FIG. 4 into the active position of FIG. 5 and if necessary, back into the inoperative position.

In the active position of FIG. 5, a substantially improved protection against incoming HL-projectiles is achieved as a result of the greater distance from the side wall 12. In the inoperative position, in contrast, the vehicle can be loaded into a transport aircraft, for example, as a result of the reduced vehicle contour.

Claims

1-18. (canceled)

19. A protective device for armored vehicles for protection against hollow-charge projectiles, comprising:

at least one protective module mounted in front of a wall to be protected, wherein the at least one protective module is moveable from an inoperative position, in which the at least one protective module is disposed in a fixed, predetermined position, into an active positive, wherein in the active position at least partial areas of the at least one protective module have a greater distance from the wall to be protected than when in the inoperative position.

20. The protective device of claim 19, wherein the at least one protective module comprises a fixedly assembled component and is moveable from the inoperative position into the active position in a linear direction running essentially orthogonally to the wall to be protected.

21. The protective device of claim 19, wherein the at least one protective module comprises multiple components that are moveable relative to one another, wherein said components are moveable, respectively, in a displacing and/or pivoting motion from the inoperative position into the active position, and wherein in the active position, the components are interlocked with one another.

22. The protective device of claim 21, wherein the at least one protective module comprises two plate elements, wherein the plate elements are pivotable relative to one another about pivot axes, wherein said pivot axes are disposed to be parallel to one another and parallel to the wall to be protected, wherein the plate elements are designed and disposed in such a manner that in the inoperative position, the plate elements are layered on top of one another and disposed parallel to one another and to the wall to be protected, wherein during movement into the active position, each plate element is vertically pivotable about a predetermined angle, and wherein pivoting movements of the plate elements run in opposite directions, such that in the active position, edges of the plate elements facing away from the pivot axes are adjacent one another and upon reaching the active position, the plates interlock into one another.

23. The protective device of claim 21, wherein the components of the at least one protective module are moveable from a first active position, in which they interlock in one another, into a second active position in a linear direction running essentially orthogonally to the wall to be protected, wherein in the second active position, at least partial areas of the at least one protective module have a greater distance from the wall to be protected than in the first active position.

24. The protective device of claim 19, wherein the at least one protective module is moveable back from the active position into the inoperative position.

25. The protective device of claim 23, wherein movements of the at least one protective module from the inoperative position into the first and/or second active position and/or back into the inoperative position take place by means of a drive device.

26. The protective module of claim 25, wherein the drive device is a mechanical drive device.

27. The protective module of claim 25, wherein the drive device is an electrical or mechanical drive device.

28. The protective device of claim 25, wherein the drive device is a hydraulic drive device.

29. The protective device of claim 25, wherein the drive device is a pneumatic drive device.

30. The protective device of claim 23, wherein movement of the at least one protective module from the inoperative position into the first and/or second active position take place via pyrotechnical means.

31. The protective device of claim 21, wherein the components that are moveable relative to one another are sandwich-like, multiple layers of plates.

32. The protective device of claim 19, wherein the at least one protective module is formed as a buckling sheet louver with a plurality of layers arranged inclined to the wall to be protected.

33. The protective device of claim 19, comprising first and second protective modules, wherein the second protective module is fixedly disposed between the first protective module that is moveable from a inoperative position into at least one first position and the wall to be protected.

34. The protective device of claim 33, wherein the first protective module is formed as protection against hollow-charge projectiles and the second protective module is formed as protection against impact projectiles.

35. The protective device of claim 33, wherein at least one of the first and second protective modules is formed as passive plating.

36. The protective device of claim 33, wherein at least one of the first and second protective modules is formed as reactive plating.

Patent History
Publication number: 20060162538
Type: Application
Filed: Feb 28, 2004
Publication Date: Jul 27, 2006
Inventors: Michael Pfennig (Kassel), Gerd Kellner (Jungharis-Strasse)
Application Number: 10/548,918
Classifications
Current U.S. Class: 89/36.080
International Classification: F41H 7/02 (20060101);