Torque adjusting mechanism

A torque adjusting mechanism including a shaft, a main body, and an adjusting device is provided. The main body has a circular wall and a through hole disposed therein for coupling to the shaft. The adjusting device disposed on the main body includes an adjusting hole, an adjusting button and an elastic body disposed inside the adjusting hole. The adjusting hole is perpendicular to the through hole and penetrates the circular wall. The adjusting button coupled to the adjusting hole can be adjusted along the adjusting hole. One end of the elastic body contacts with the adjusting button and the other end presses on the shaft. Therefore, the elastic body can provide a predetermined torque between the shaft and the main body and further increase the torque between the main body and the shaft.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
RELATED APPLICATIONS

The present application is based on, and claims priority from, Taiwan Application Serial Number 94201025, filed Jan. 19, 2005, the disclosure of which is hereby incorporated by reference herein in its entirety.

BACKGROUND

1. Field of the Invention

The invention relates to a torque adjusting mechanism and, in particular, to an elastic torque adjusting mechanism.

2. Description of the Related Art

To adjust the torque between two devices rotating with respect to each other and coupled by a shaft, a torque adjusting mechanism is often provided between the shaft and the pivoting devices. The conventional torque adjusting mechanism usually is a fixing device penetrating through the pivoting devices. The fixing device, for example, has a set of nut and bolt or a rivet. The method of adjusting the torque is to adjust the tightness between the nut and bolt or the depth of the rivet. This kind of torque adjusting method is very hard to provide a stable torque, for the contact area between the two pivoting devices and the head of bolt and the nut or the deformed rivet head.

When using the nut and bolt as the fixing device, they may become more loose or tight as the pivoting devices rotate because of the friction between them. Therefore, it is hard to maintain a stable torque.

When using the rivet as the fixing device, one hit the rivet to determine its connection. Once a predetermined torque is reached, it is hard to be loosened. The connection part is worn as the two pivoting devices rotate. Little by little, a gap is formed between them to weaken the torque. One then has to hit the rivet again to regain the torque. If one wants to separate the two pivoting devices, the rivet has to be destroyed. The destroyed rivet can no longer be used in the torque adjusting mechanism. That is, a new rivet has to be used in order to re-couple the two pivoting devices.

Moreover, if the two pivoting devices have a different hole size than the fixing device, they cannot rotate about the same center. It is then very difficult to adjust the orientations of the devices with high precision.

SUMMARY OF THE INVENTION

Accordingly, an objective of the invention is to provide a torque adjusting mechanism to control the torque using the coupling interface between the shaft and the main body of the torque adjusting mechanism.

Another objective of the invention is to provide a torque adjusting mechanism assembled from components that can easily be taken apart.

A further objective of the invention is to provide an adjusting base that has a torque adjusting mechanism with good coaxiality to accurately adjust the orientation of a supported apparatus.

To achieve the above objectives, the disclosed torque adjusting mechanism of the present invention includes a shaft, a main body, and an adjusting device. The main body has a circular wall and a circular through hole, whose diameter is slightly larger than that of the shaft, disposed therein for coupling to the shaft. The adjusting device disposed on the main body includes an adjusting hole, an adjusting button, and an elastic body. The adjusting hole is perpendicular to the through hole and penetrates the circular wall. The adjusting button coupled to the adjusting hole can be adjusted along the adjusting hole when an external force acts upon. The adjusting button is fixed inside the adjusting hole when no external force is imposed thereon. The elastic body is disposed inside the adjusting hole. One end of the elastic body contacts with the adjusting button, and the other end presses on the shaft.

Before adjusting the adjusting button, the elastic body provides a predetermined torque between the shaft and the main body. The adjusting button presses on the elastic body to in turn press on the shaft for increasing the torque between the shaft and the main body when the adjusting button is moved toward the shaft.

BRIEF DESCRIPTION OF THE DRAWINGS

These and other features, aspects and advantages of the invention become apparent by reference to the following description and accompanying drawings which are given by way of illustration only, and thus are not limitative of the invention, and wherein:

FIG. 1A is a top view of the disclosed torque adjusting mechanism;

FIG. 1B is a cross-sectional view of A-A in FIG. 1A;

FIG. 2 is a three-dimensional view of the disclosed torque adjusting mechanism;

FIG. 3 is an exploded three-dimensional view of the disclosed torque adjusting mechanism;

FIG. 4 is a top view of the disclosed torque adjusting mechanism with two adjusting devices;

FIG. 5 is a top view of the disclosed torque adjusting mechanism in another embodiment of the invention;

FIG. 6A is a side view of the adjusting base having three of the disclosed torque adjusting mechanisms; and

FIG. 6B shows the back of the adjusting base in FIG. 6A.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

The present invention is apparent from the following detailed description, which proceeds with reference to the accompanying drawings, wherein the same references relate to the same elements.

As shown in FIGS. 1A, 1B, 2, and 3, the disclosed torque adjusting mechanism includes a shaft 100, a main body 200, and an adjusting device 400.

The main body 200 has a circular wall, and the central portion of the circular wall is a circular through hole 210, the diameter of the circular through hole 210 is slightly larger than that of the shaft 100, for coupling to the shaft 100.

The adjusting device 400 disposed on the main body 200 is used to adjust the torque between the main body 200 and the shaft 100. The adjusting device 400 includes an adjusting hole 410, an adjusting button 420, and an elastic body 430.

The adjusting hole 410 is perpendicular to the through hole 210 and penetrates the circular wall of the main body 200. The adjusting button 420 coupled to the adjusting hole 410 can be adjusted to move along the adjusting hole 410 when an external force acts upon. The adjusting button 420 is fixed inside the adjusting hole 410 when no external force is imposed thereon. The adjusting hole 410 and the adjusting button 420 have coupled threads.

The elastic body 430 is disposed inside the adjusting hole 410. One end of the elastic body 430 contacts with the adjusting button 420, and the other end presses on the shaft 100.

The above embodiment is a torque adjusting mechanism with only one adjusting device 400. The adjusting device 400 presses in only one direction on the shaft 100, making both the shaft 100 and the main body 200 separate from the center.

Therefore, as shown in FIG. 4, when the torque adjusting mechanism with two adjusting device 400 is used to adjust the torque, the adjusting devices 400 are disposed at equal interval on the main body 200. The adjusting devices 400 press in opposite directions on the shaft 100 to reduce the deviations of the shaft 10 and the main body 200 from the center.

As shown in FIG. 5, when one uses a torque adjusting mechanism with three adjusting devices 400 to adjust the torque, the pressing directions and forces are more homogeneous. After tuning, the deviations of the shaft 100 and the main body 100 are further reduced. In other words, the more the number of adjusting devices 400 is, the more homogeneous the pressing force on the shaft 100 is and the less deviations there are, for maintaining good coaxiality and increasing the stability of the torque.

As shown in FIG. 5, the torque adjusting mechanism uses an elastic body 430 with a longer elastic stroke to increase the adjusting range and precision of the torque.

The disclosed torque adjusting mechanism of the present invention further includes a pad 300 between the shaft 100 and the main body 200. The elastic body 430 presses on the pad 300, indirectly pressing the shaft 100 to distribute the pressing force. The pad 300 is an unclosed circular structure made of an erosion-resistant material to reduce the possible erosion due to the friction among the shaft 100, the main body 200, and the elastic body 430 during rotation.

As shown in FIGS. 1B and 3, the shaft 100 includes an accommodation space 140 on the circumference of part of the shaft wall where the shaft 100 is coupled to the through hole 210. The accommodation space 140 is used to accommodate the pad 300 to prevent it from separating from the shaft 100. Alternatively, the main body 200 also contains an accommodation space 240, located on the circumference of part of the circular wall to accommodate the pad 300 and prevent it separating from the main body 200. Moreover, the shaft 100 and the main body 200 respectively simultaneously contain the accommodation space 140, the accommodation space 240, which respectively located on part of the wall that couples the shaft 100 and the main body 200 to prevent the pad 300 from separating from the shaft 100 and the main body 200. The contact between the pad 300 and the accommodation spaces 140, 240 prevent the shaft 100 and the main body 200 from deviating away from the axis.

Moreover, the shaft 100 contains a blocking portion 150 located on one of its end. The blocking portion 150 protrudes from the wall of the shaft 100 and has a shape that forbids it from penetrating through the through hole 210. This prevents the main body 200 from sliding out of the shaft 100 from the end with the blocking portion 150.

Within the scope of the invention, the shapes of various components are not limited to those shown in the drawings. As long as the disclosed functions can be achieved, the components can have any desired shapes.

The present invention can be applied to various apparatuses. For example, the invention is used in an adjusting base, as shown in FIGS. 6A and 6B. The adjusting base includes a base 901 and a movable arm 800. The movable arm 800 contains a first torque adjusting mechanism 810, a first arm 820, a second torque adjusting mechanism 830, a second arm 840, and a third torque adjusting mechanism 850.

The first torque adjusting mechanism 810 has a perpendicularly coupled shaft 101. One end of the first arm 820 is coupled to the main body 201 of the first torque adjusting mechanism 810. The second torque adjusting mechanism 830 is the extended line of the axis of the shaft 102. The first torque adjusting mechanism 810 is the extended line of the axis of the shaft 101. The extended lines meet perpendicularly and couple at the other end of the first arm 820. One end of the second arm 840 is coupled to the main body 202 of the second torque adjusting mechanism 830. The third torque adjusting mechanism 850 is coupled to the other end of the second arm 840 by the main body 203. The extended line of the axis of the shaft 103 of the third torque adjusting mechanism 850, and the extended line of the axis of the shaft 102 of the second torque adjusting mechanism 830, are coupled perpendicularly. The support apparatus 902, such as a thin display device, is coupled perpendicularly to the shaft 103 of the third torque adjusting mechanism 850. Pads 903 are provided among the torque adjusting mechanisms 810, 830, 850, the arms 820, 840, and between the base 901 and the apparatus 902. The end surfaces of the shafts 101, 102 are fixed by a fixing device 904 with the pads 903, so that each torque adjusting mechanism has smooth motions and all the elements are prevented from separation. One end surface of the shaft 103 is further provided with a blocking portion 905 to limit the rotating angle of the shaft 103. Accordingly, the first torque adjusting mechanism 810 is used to adjust the rotating angle of the apparatus 902 in the left and right directions. The second torque adjusting mechanism 830 is used to adjust the tilting angle of the apparatus 902 in the up and down directions. The third torque adjusting mechanism 850 is used to adjust the horizontal angle of the apparatus 902. The arms are used to extend the distances between the torque adjusting mechanisms or between the apparatus and the torque adjusting mechanisms.

As shown in FIGS. 6A and 6B, the first torque adjusting mechanism 810 has the shaft 101 coupled with the base 901 , and the main body 201 coupled to the first arm 820. However, if the main body 201 is coupled to the base 901 , and the shaft 101 is coupled to the first arm 820 (not shown), the first torque adjusting mechanism 810 can also achieve the same effect. Accordingly, the coupling means between the second torque adjusting mechanism 830 and the third torque adjusting mechanism 850 can also be achieved by exchanging the coupling positions of the shafts 102, 103 and the main bodies 202, 203.

In the preferred embodiment, we use three torque adjusting mechanisms to constitute a multi-joint movable arm. In accord with practical situations, the number of torque adjusting mechanisms and multi-joint movable arms can be increased or decreased. For example, if there is only one torque adjusting mechanism, the arm can be eliminated and the apparatus is directly coupled to the torque adjusting mechanism. Alternatively, one may also use other types of torque adjusting mechanisms. Such variations should be construed in the scope of the invention.

From the preferred embodiment, the invention has the following advantages:

    • 1. The coupling interface between the shaft and the torque adjusting mechanism controls the magnitude of the torque, increasing the stability of the torque.
    • 2. Simple collapsible components are employed to form the torque adjusting device for the convenience of element replacement and maintenance.
    • 3. The adjusting base formed from a torque adjusting mechanism with good coaxiality can be used to adjust the orientation of an apparatus with high precision.

While the invention has been described by way of example and in terms of the preferred embodiment, it is to be understood that the invention is not limited to the disclosed embodiments. To the contrary, it is intended to cover various modifications and similar arrangements as would be apparent to those skilled in the art. Therefore, the scope of the appended claims should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements.

Claims

1. A torque adjusting mechanism, comprising:

a shaft;
a main body having a circular wall with a circular through hole formed in the center thereof for coupling to the shaft;
at least one adjusting device on the main body for adjusting the torque between the main body and the shaft, the adjusting device comprising: an adjusting hole perpendicular to the wall of the through hole and penetrating through the circular wall of the main body; an adjusting button coupled to the adjusting hole to move back and forth along the wall of the adjusting hole under an external force and to stay fixed inside the adjusting hole when there is no external force; and an elastic body disposed inside the adjusting hole, with one end contacting with the adjusting button and the other end pressing on the shaft to provide a predetermined torque; wherein when the adjusting button is adjusted to move toward the shaft, the adjusting button presses on the elastic body to press on the shaft for increasing the torque between the main body and the shaft.

2. The torque adjusting mechanism of claim 1, further comprising a pad with an unclosed circular structure, disposed between the shaft and the main body; wherein the elastic body presses directly on the pad and indirectly on the shaft for distributing the pressing force.

3. The torque adjusting mechanism of claim 2, wherein the pad is made of an erosion-resistant material to reduce the frictional erosion among the shaft, the main body, and the elastic body during the rotation.

4. The torque adjusting mechanism of claim 2, wherein the shaft comprises an accommodation space formed on the circumference of the part where the shaft is coupled to the main body to accommodate the pad, preventing the pad from separating.

5. The torque adjusting mechanism of claim 2, wherein the main body has an accommodation space formed on the circumference of the through hole to accommodate the pad, and prevent the pad from separating.

6. The torque adjusting mechanism of claim 2, wherein each of the shaft and the main body respectively has an accommodation space formed on the walls where the shaft and the main body are coupled respectively, to prevent the pad from separating from the shaft and the main body, and to prevent the shaft and the main body from having axial deviations through the contact between the pads and the accommodation spaces.

7. The torque adjusting mechanism of claim 1, wherein the shaft has a blocking portion disposed on one end of the shaft and protruding from the wall of the shaft, to prevent the main body from sliding out of the shaft.

8. The torque adjusting mechanism of claim 1, wherein the elastic body comprises a longer elastic stroke to increase the torque adjusting range and precision.

9. The torque adjusting mechanism of claim 1, further comprising a plurality of adjusting mechanisms disposed at equal intervals on the main body.

10. An adjusting base for supporting an apparatus and adjusting the orientation of the apparatus, the adjusting base comprising:

a base; and
a torque adjusting mechanism provided between the base and the apparatus,
the torque adjusting mechanism comprising: a shaft; a main body having a circular wall with a circular through hole formed in its center for coupling to the shaft; at least one adjusting device on the main body for adjusting the torque between the main body and the shaft, the adjusting device comprising at least: an adjusting hole perpendicular to the wall of the through hole and penetrating through the circular wall of the main body; an adjusting button coupled to the adjusting hole to move back and forth along the wall of the adjusting hole under an external force and to stay fixed inside the adjusting hole when there is no external force; and an elastic body disposed inside the adjusting hole with one end contact with the adjusting button and the other end pressing on the shaft to provide a predetermined torque.

11. The adjusting base of claim 10, further comprising an arm disposed between the apparatus and the torque adjusting mechanism to extend the distance between the apparatus and the torque adjusting mechanism.

12. The adjusting base of claim 10, wherein the adjusting mechanism is disposed at equal intervals on the main body.

13. The adjusting base of claim 10, wherein the apparatus is a thin display device.

14. An adjusting base, comprising:

a base; and
a movable arm disposed between the base and an apparatus, comprising:
a plurality of torque adjusting mechanisms, each comprises: a shaft; a main body having a circular wall with a circular through hole formed in its center for coupling to the shaft; at least one adjusting device on the main body for adjusting the torque between the main body and the shaft, the adjusting device comprising at least: an adjusting hole perpendicular to the wall of the through hole and penetrating through the circular wall of the main body; an adjusting button coupled to the adjusting hole to move back and forth along the wall of the adjusting hole under an external force and to stay fixed inside the adjusting hole when there is no external force; and an elastic body disposed inside the adjusting hole with one end in contact with the adjusting button and the other end pressing on the shaft to provide a predetermined torque; and a plurality of arms coupled to the torque adjusting mechanisms to form a multi-joint movable arm to support the apparatus and to adjust the orientation of the apparatus.

15. The adjusting base of claim 14, wherein the adjusting mechanisms are disposed at equal intervals on the main body.

16. The adjusting base of claim 14, wherein the apparatus is a thin display device.

Patent History
Publication number: 20060175154
Type: Application
Filed: Nov 8, 2005
Publication Date: Aug 10, 2006
Inventor: Huan-Tsung Lin (Hsinchu)
Application Number: 11/268,460
Classifications
Current U.S. Class: 188/67.000
International Classification: B65H 59/10 (20060101);