Wafer transfer device and method thereof
A wafer transfer device including a first supporting portion and a second supporting portion is provided. The first supporting portion has a first top surface, a first lateral surface and a second lateral surface. The first lateral surface has a norm line. The second supporting portion connected to the first supporting portion has a second top surface, a third and a fourth lateral surfaces. The third and the fourth lateral surfaces are respectively connected to the first and the second lateral surfaces. The first and the second top surfaces have a wafer receiving region for receiving a wafer. The third and the fourth lateral surfaces respectively intersect with a direct line parallel to the norm line at a first point and a second point. The width between the first lateral surface and the second lateral surface is larger than the width between the first point and the second point.
Latest Patents:
- EXTREME TEMPERATURE DIRECT AIR CAPTURE SOLVENT
- METAL ORGANIC RESINS WITH PROTONATED AND AMINE-FUNCTIONALIZED ORGANIC MOLECULAR LINKERS
- POLYMETHYLSILOXANE POLYHYDRATE HAVING SUPRAMOLECULAR PROPERTIES OF A MOLECULAR CAPSULE, METHOD FOR ITS PRODUCTION, AND SORBENT CONTAINING THEREOF
- BIOLOGICAL SENSING APPARATUS
- HIGH-PRESSURE JET IMPACT CHAMBER STRUCTURE AND MULTI-PARALLEL TYPE PULVERIZING COMPONENT
1. Field of the Invention
The invention relates in general to a wafer transfer device and method thereof, and more particularly to a wafer transfer device and method thereof which avoid scratching the wafer when the wafer is carried from or placed at a cassette or a boat.
2. Description of the Related Art
The manufacturing process of semiconductor includes dozens of complicated manufacturing steps, such as oxidization, diffusion, photolithograph, etching and physical or chemical vapor deposition. The whole manufacturing steps are almost conducted in a dust-free environment by automatic control to further improve the accuracy and precision in the manufacturing process of semiconductor and avoid man-caused micronic dusts and errors. The wafer is placed at a cassette or a boat, a mechanism similar to placing an optical disc at an optical disc housing, then a robot arm is used for moving a fork to remove the wafer from the cassette or the boat for the wafer to be transferred between the manufacturing stations.
Referring to FIGS. 1A˜1B, wherein
Referring to
However, when the robot arm 15 and the fork 10 receive an external force and vibrate, the fork 10 is likely to tilt. For example, the first corner 12a may become too high while the second corner 12b too low with respect to the wafers 16 and 16b. If the tile situation of the fork 10 occurs, when the fork 10 is inserted into the small clearance 19 between the wafers 16 and 16a, the lower second corner 12b may scratch the surface of the wafer 16b. Consequently, the damaged wafer 16b can not be used and will be wasted, not only increasing the faulty rate of wafer, but also jeopardizing a smooth process of wafer transfer. Moreover, the distortion in the relative position between the fork 10 and the cassette or boat 17, or the deformation in the cassette or boat 17 would inevitably cause the wafer 16b to be scratched by the first corner 12a or the second corner 12b of the fork 10.
SUMMARY OF THE INVENTIONThe object of the invention is to provide a wafer transfer device and method thereof whose design of making the terminal width of the second supporting portion smaller than the width of the first supporting portion largely transcends the restriction imposed in a conventional design which requires the fork to be of equal width. When the wafer transfer device disclosed in the invention transfers the wafer from or into the wafer storage unit, the wafer would not be scratched by the wafer transfer device in the event when the wafer transfer device tilts, not only reducing the faulty rate of the wafer but also facilitates a smooth flow of wafer transfer.
According to the object of the invention, a wafer transfer device comprising a first supporting portion and a second supporting portion is provided. The first supporting portion has a first top surface, a first lateral surface and a second lateral surface. A first width exists between the first lateral surface and the second lateral surface. The first lateral surface has a norm line. The second supporting portion, which is connected to the first supporting portion, has a second top surface, a third lateral surface and a fourth lateral surface. The third lateral surface and the fourth lateral surface are respectively connected to the first lateral surface and the second lateral surface. The first top surface and the second top surface have a wafer receiving region for receiving a wafer. The third lateral surface and the fourth lateral surface respectively intersect with a direct line parallel to the norm line at a first point and a second point. The first point and the second point have a second width existing between them. The second width is smaller than the first width.
According to another object of the invention, a wafer transfer method is provided. Firstly, a wafer transfer device comprising a first supporting portion and a second supporting portion is provided. The first supporting portion has a first top surface, a first lateral surface and a second lateral surface. A first width exists between the first lateral surface and the second lateral surface. The first lateral surface has a norm line. The second supporting portion, which is connected to the first supporting portion, has a second top surface, a third lateral surface and a fourth lateral surface. The third lateral surface and the fourth lateral surface are not parallel to each other but are respectively connected to the first lateral surface and the second lateral surface. The first top surface and the second top surface have a wafer receiving region for receiving a wafer. The third lateral surface and the fourth lateral surface respectively intersect with a direct line parallel to the norm line at a first point and a second point. The first point and the second point have a second width existing between them. The second width is smaller than the first width.
Next, the wafer transfer device is moved for carrying a wafer from a first wafer storage unit. The wafer is placed at the wafer receiving region. Finally, the wafer transfer device is moved for placing the carried wafer at a second wafer storage unit.
In the abovementioned wafer transfer device, the second supporting portion further includes a fifth lateral surface, which connects the third lateral surface and the fourth lateral surface, is perpendicular to the first lateral surface. The fifth lateral surface has a third width, which is smaller than the second width. The third lateral surface and the fourth lateral surface form an included angle which is an acute angle. In one embodiment, the fourth lateral surface and the second lateral surface can be parallel to each other and be connected to form a continuous surface. In another embodiment, the third lateral surface and the fourth lateral surface respectively tilt against the first lateral surface and the second lateral surface.
In other embodiment, the wafer transfer device further includes a connecting portion connected to the second supporting portion via the first supporting portion to be buckled with a move device. The move device is for moving the wafer transfer device forwardly and backwardly between a first wafer storage unit and a second wafer storage unit. Besides, the center of gravity of the wafer transfer device is positioned at the first supporting portion. The abovementioned move device includes a robot arm. The first wafer storage unit includes a cassette or a boat. The second wafer storage unit also includes a cassette or a boat.
According to another object of the invention, a wafer transfer method is provided. First, a wafer is placed on a wafer transfer device. The wafer transfer device includes a first supporting portion having a first top surface and a first end, and a second supporting portion having a second top surface, a wide end and a narrow end opposite to the wide end. The wide end is connected to the second end while the first top surface and the second top surface have a wafer receiving region for receiving a wafer. The width of the first end is substantially equal to the width the wide end. Then, the wafer transfer device is moved to a wafer storage unit. Finally, the wafer is placed on the wafer storage unit. In one embodiment of the invention, the first supporting portion further includes a second end opposite to the first end. The width of the second end is substantially equal to the width of the first end.
Other objects, features, and advantages of the invention will become apparent from the following detailed description of the preferred but non-limiting embodiments. The following description is made with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
Referring to FIGS. 2A˜2B, wherein
The second supporting portion 22, which is connected to the first supporting portion 21, has a second top surface 22a, a third lateral surface 22b and a fourth lateral surface 22c. The third lateral surface 22b and the fourth lateral surface 22c are not parallel to each other but are respectively connected to the first lateral surface 21b and the second lateral surface 21c. That is to say, the second supporting portion 22 can be a structure having a wide connecting end and a narrow terminal end. The second supporting portion 22 uses its wide connecting end to connect the first supporting portion 21, thereby transcending the restriction imposed in the design of a conventional fork. The first top surface 21a and the second top surface 22a have a wafer receiving region 24 for receiving a wafer 26. In the present embodiment, the wafer receiving region 24, which is a slot, has a slot bottom 24c. The edge of the slot bottom 24c has spacers 24a and 24b, which are respectively positioned at the first supporting portion 21 and the second supporting portion 22. The spacers 24a and 24b contact the peripheral non-active region of the surface 26a of the wafer 26, so that a safety distance is formed between the central active region of the surface 26a and the slot bottom 24c, avoiding the damage which would occur when the slot bottom 24c scratches the central active region of the surface 26a of the wafer 26 due to the collision between the central active region of the surface 26a of the wafer 26 and the slot bottom 24c.
In the second supporting portion 22, the third lateral surface 22b and the fourth lateral surface 22c respectively intersect with a direct line parallel to the norm line L3 at a first point and a second point, wherein the first point and the second point have a second width existing between them, while the second width is smaller than the first width S. Two direct lines L1 and L2 parallel to the norm line L3 are exemplified herein. The direct line L2 is closer to the narrow terminal end of the second supporting portion 22 than the direct line L1. The direct line L1 intersects with the third lateral surface 22b and the fourth lateral surface 22c at a first point A and a second point B. The first point A and the second point B have a second width T existing between them. The second width T is smaller than the first width S. Besides, the direct line L2 intersects with the third lateral surface 22b and the fourth lateral surface 22c at a first point C and a second point D, wherein the first point C and the second point C have a second width V existing between them. The second width V is smaller than the first width S and the second width T.
In the present embodiment, the second supporting portion 22 further includes a fifth lateral surface 22d, which connects the third lateral surface 22b and the fourth lateral surface 22c, is perpendicular to the first lateral surface 21b and the second lateral surface 21c. The fifth lateral surface 22d has a third width R in the y-direction. The third width R is smaller than the second width V and the second width T, and is also smaller than the first width S. Besides, the third lateral surface 22b and the fourth lateral surface 22c respectively tilt against the first lateral surface 21b and the second lateral surface 21c. The third lateral surface 22b and the fourth lateral surface 22c form an included angle θ, which is an acute angle. In one embodiment, the third lateral surface 22b and the fourth lateral surface 22c are inclined between the two parallel extending surfaces of the first lateral surface 21b and the second lateral surface 21c.
Moreover, the wafer transfer device 20 further includes a connecting portion 23, which is connected to the second supporting portion 22 via the first supporting portion 21, so that the center of gravity of the wafer transfer device G is positioned at the first supporting portion 21. The first supporting portion 21, the second supporting portion 22 and the connecting portion 23 can be a formed-in-one-piece structure, such as ceramic structure.
As shown in FIGS. 3A˜3D, the connecting portion 23 is for buckling with a move device 25. The move device 25 is used for moving the wafer transfer device 20 forwardly and backwardly between a first wafer storage unit 27 and a second wafer storage unit 29. The first wafer storage unit 27 has several first slots 27a arranged according to a descending order of height. Each of the first slots 27a is used for receiving an edge of a wafer, so that the wafer can be placed in the first wafer storage unit 27. Similarly, the second wafer storage unit 29 also has several second slots 29a arranged according to a descending order of height. Each of the second slots 29a is used for receiving an edge of a wafer, so that the wafer can be placed in the second wafer storage unit 29. The abovementioned move device 25 includes a robot arm or any device that can move the wafer transfer device 20. The first wafer storage unit 27 includes a cassette or a boat or any device that can store and separate the wafers. The second wafer storage unit 29 also includes a cassette or a boat or any device that can store and separate the wafer.
The process of using the wafer transfer device 20 to transfer the wafer 26 to the second wafer storage unit 29 from the first wafer storage unit 27 includes the following steps. Firstly, as shown in
Next, the move device 25 is used to vertically elevate the wafer transfer device 20, so that the wafer transfer device 20 moves along the direction of the arrow 31a (i.e., the z-direction) to carry the wafer 26 which is positioned at the wafer receiving region 24 as shown in
Following that, as shown in
Then, the move device 25 is used to vertically lower down the wafer transfer device 20, so that the wafer transfer device 20 is moved along the direction of the arrow 31c (i.e., the inverse of the z-direction) to place the wafer 26 at the second slot 29a. The edge of the wafer 26 is inserted into the second slot 29a as shown in
However, anyone who is skilled in the technology of the invention can understand that the technology of the invention is not limited thereto. For example, at least one lateral surface of the third lateral surface 22b and the fourth lateral surface 22c can be an arced surface such as a circularly arced surface or an oval-shaped arced surface for instance. Besides, at least one lateral surface of the third lateral surfaces 22b and 22c can have at least a corner, so that the second supporting portion 22 becomes a polygonal structure. The wafer transfer device 20 includes a fork and any other carrying wafer device.
If the fifth lateral surface 22d is omitted, the third lateral surface 22b and the fourth lateral surface 22c can be directly connected, so that the second supporting portion 22 can have a triangular structure. Besides, the third lateral surface 22b and the fourth lateral surface 22c can be directly connected to become an arced surface such as a circularly arced surface or an oval-shaped arced surface for instance.
The design of making the terminal width of the second supporting portion smaller than the width of the first supporting portion largely transcends the restriction imposed in a conventional design which requires the fork to be of equal width. When the wafer transfer device transfers the wafer from or into the wafer storage unit such as a cassette or a boat, the wafer would not be scratched by the wafer transfer device in the event when the wafer transfer device tilts, not only reducing the faulty rate of the wafer but also facilitates a smooth flow of wafer transfer.
Second Embodiment Referring to
In
In the second supporting portion 42, the third lateral surface 42b and the fourth lateral surface 42c respectively intersect with a direct line parallel to the norm line L3 at a first point and a second point. The first point and the second point have a second width existing between them. The second width is smaller than the first width S. The two direct lines L4 and L5 which are parallel to a norm line L3 are exemplified herein, wherein the direct line L5 is closer to the narrow terminal end of the second supporting portion 42 than the direct line L4. The direct line L4 intersects with the third lateral surface 42b and the fourth lateral surface 42c at a first point M and a second point N. The first point M and the second point N have a second width I existing between them. The second width I is smaller than the first width S. Besides, the direct line L5 intersects with the third lateral surface 42b and the fourth lateral surface 42c at a first point O and a second point P. The first point O and the second point P have a second width J existing between them. The second width J is smaller than the first width S and the second width I as well. In one embodiment, the third lateral surface 42b is inclined between the two parallel extending surfaces of the first lateral surface 21b and the second lateral surface 21c.
However, anyone who is skilled in the technology of the invention can understand that the technology of the invention is not limited thereto. For example, the first supporting portion 21, the second supporting portion 42 and the connecting portion 23 can be a formed-in-one piece structure, such as a ceramic structure. Since the distribution of the second supporting portion 42 is larger than that of the second supporting portion 22, the center of gravity Q of the wafer transfer device 40 is closer to the second supporting portion 44 than the center of gravity G of the wafer transfer device 20, but would still be positioned at the first supporting portion 21. The wafer transfer device 40 includes a fork and any other carrying wafer device.
In the present embodiment, the third lateral surface 42b can be an arced surface such as a circularly arced surface or an oval-shaped arced surface for instance. Besides, the third lateral surface 42b can have at least a corner, so that the second supporting portion 42 becomes a polygonal structure.
If the fifth lateral surface 42d is omitted, the third lateral surface 42b and the fourth lateral surface 42c can be directly connected, so that the second supporting portion 42 can have a triangular structure. The third lateral surface 22b can become an arced surface such as a circularly arced surface or an oval-shaped arced surface for instance.
Third Embodiment Referring to
Next, proceed to step 52: the move device 25 (a robot arm for instance) is used to move the wafer transfer device 20 to carry a wafer 26 from the first wafer storage unit 27 (a cassette or a boat for instance) to be placed at the wafer receiving region 24. Then, proceed to step 53: the move device 25 is used to move the wafer transfer device 20 to place the carried wafer 26 at the second wafer storage unit 29 (a cassette or a boat for instance). The move device 25 can be used to move the wafer transfer device 20, so that the wafer transfer device 20 can carry the wafer 26 to the first wafer storage unit 27 from the second wafer storage unit 29.
According to the above-mentioned embodiments, the wafer transfer device disclosed in the invention includes a first supporting portion and a second supporting portion. The first supporting portion includes a first top surface and a first end. The second supporting portion includes a second top surface, a wide end and a narrow end opposite to the wide end. The wide end is connected to the second end, while the first top surface and the second top surface have a wafer receiving region for receiving a wafer. The width of the first end is substantially equal to the width the wide end. In one embodiment of the invention, the first supporting portion further includes a second end opposite to the first end. The width of the second end is substantially equal to the width of the first end.
According to the above-mentioned embodiments, the wafer transfer method disclosed in the invention includes several steps. First, a wafer is placed on a wafer transfer device. The wafer transfer device includes a first supporting portion having a first top surface and a first end, and a second supporting portion having a second top surface, a wide end and a narrow end opposite to the wide end. The wide end is connected to the second end while the first top surface and the second top surface have a wafer receiving region for receiving a wafer. The width of the first end is substantially equal to the width the wide end. Then, the wafer transfer device is moved to a wafer storage unit. Finally, the wafer is placed on the wafer storage unit.
The wafer transfer device and method thereof disclosed in the above embodiments of the invention have the design of making the terminal width of the second supporting portion smaller than the width of the first supporting portion, largely transcending the restriction imposed in a conventional design which requires the fork to be of equal width. When the wafer transfer device transfers the wafer from or into the wafer storage unit such as a cassette or a boat, the wafer would not be scratched by the wafer transfer device in the event when the wafer transfer device tilts, not only reducing the faulty rate of the wafer but also facilitates a smooth flow of wafer transfer.
While the invention has been described by way of example and in terms of a preferred embodiment, it is to be understood that the invention is not limited thereto. On the contrary, it is intended to cover various modifications and similar arrangements and procedures, and the scope of the appended claims therefore should be accorded the broadest interpretation so as to encompass all such modifications and similar arrangements and procedures.
Claims
1. A wafer transfer device comprising:
- a first supporting portion having a first top surface, a first lateral surface and a second lateral surface, wherein a first width exists between the first lateral surface and the second lateral surface, while the first lateral surface has a norm line; and
- a second supporting portion, which is connected to the first supporting portion and has a second top surface, a third lateral surface and a fourth lateral surface, wherein the third lateral surface and the fourth lateral surface are respectively connected to the first lateral surface and the second lateral surface, while the first top surface and the second top surface have a wafer receiving region for receiving a wafer;
- wherein the third lateral surface and the fourth lateral surface respectively intersect with a direct line parallel to a norm line at a first point and a second point, a second width is created between the first point and the second point, and the second width is smaller than the first width.
2. The wafer transfer device according to claim 1, wherein the second supporting portion further comprising:
- a fifth lateral surface, which connects the third lateral surface and the fourth lateral surface and is perpendicular to the first lateral surface, wherein the fifth lateral surface has a third width which is smaller than the second width, wherein the third lateral surface and the fourth lateral surface form an included angle which is an acute angle.
3. The wafer transfer device according to claim 2, wherein the second lateral surface and the fourth lateral surface are parallel to each other and form a continuous surface.
4. The wafer transfer device according to claim 2, wherein the third lateral surface and the fourth lateral surface respectively tilt against the first lateral surface and the second lateral surface.
5. The wafer transfer device according to claim 1, further comprising:
- a connecting portion connected to the second supporting portion via the first supporting portion to be buckled with a move device, wherein the move device is for moving the wafer transfer device between a first wafer storage unit and a second wafer storage unit, so that the wafer transfer device can carry the wafer from the first wafer storage unit to the second wafer storage unit.
6. The wafer transfer device according to claim 5, wherein the center of gravity of the wafer transfer device is positioned at the first supporting portion.
7. The wafer transfer device according to claim 5, wherein the move device includes a robot arm.
8. The wafer transfer device according to claim 5, wherein the first wafer storage unit includes a cassette or a boat.
9. The wafer transfer device according to claim 5, wherein the second wafer storage unit includes a cassette or a boat.
10. A wafer transfer method comprising:
- providing a wafer transfer device, wherein the wafer transfer device comprises: a first supporting portion having a first top surface, a first lateral surface and a second lateral surface, wherein a first width exists between the first lateral surface and the second lateral surface, while the first lateral surface has a norm line; and a second supporting portion, which is connected to the first supporting portion and has a second top surface, a third lateral surface and a fourth lateral surface, wherein the third lateral surface and the fourth lateral surface are respectively connected to the first lateral surface and the second lateral surface, the first top surface and the second top surface have a wafer receiving region, wherein the third lateral surface and the fourth lateral surface respectively intersect with a direct line parallel to the norm line at a first point and a second point, the first point and the second point have a second width existing between them, and the second width is smaller than the first width;
- moving the wafer transfer device to carry a wafer from a first wafer storage unit, wherein the wafer is placed at the wafer receiving region; and
- moving the wafer transfer device to place the carried wafer at a second wafer storage unit.
11. The wafer transfer method according to claim 10, wherein the second supporting portion further comprises:
- a fifth lateral surface, which is connected to the third lateral surface and the fourth lateral surface and is perpendicular to the first lateral surface, wherein the fifth lateral surface has a third width which is smaller than the second width, of which, the third lateral surface and the fourth lateral surface form an included angle which is an acute angle.
12. The wafer transfer method according to claim 11, wherein the second lateral surface and the fourth lateral surface are parallel to each other and form a continuous surface.
13. The wafer transfer method according to claim 11, wherein the third lateral surface and the fourth lateral surface respectively tilt against the first lateral surface and the second lateral surface.
14. The wafer transfer method according to claim 11, wherein the wafer transfer device further comprises:
- a connecting portion connected to the second supporting portion via the first supporting portion to be buckled with a move device, wherein the move device is for moving the wafer transfer device between the first wafer storage unit and the second wafer storage unit.
15. The wafer transfer method according to claim 14, wherein the center of gravity of the wafer transfer device is positioned at the first supporting portion.
16. The wafer transfer method according to claim 14, wherein the move device includes a robot arm.
17. The wafer transfer method according to claim 10, wherein the first wafer storage unit includes a cassette or a boat.
18. The wafer transfer method according to claim 10, wherein the second wafer storage unit includes a cassette or a boat.
19. A wafer transfer method comprising:
- placing a wafer on a wafer transfer device, wherein the wafer transfer device includes a first supporting portion having a first top surface and a first end, and a second supporting portion having a second top surface, a wide end and a narrow end opposite to the wide end, wherein the wide end is connected to the second end while the first top surface and the second top surface have a wafer receiving region for receiving a wafer, wherein the width of the first end is substantially equal to the width the wide end;
- moving the wafer transfer device to a wafer storage unit; and
- placing the wafer on the wafer storage unit.
20. The wafer transfer method according to claim 19, wherein the first supporting portion further includes a second end opposite to the first end, the width of the second end is substantially equal to the width of the first end.
Type: Application
Filed: Feb 2, 2005
Publication Date: Aug 17, 2006
Applicant:
Inventor: Kuo-Hao Pen (Jhudong Township)
Application Number: 11/049,184
International Classification: B65B 69/00 (20060101);