Materials and methods for drug delivery and uptake
The subject invention pertains to novel materials and methods for use in delivering and sequestering substances, such as pharmacological agents, within a patient. One aspect of the invention is directed towards core-shell particles having a core encapsulated within a calcium carbonate shell, with an intermediate layer composed of an amphiphilic compound surrounding the core. When the particles of the subject invention are administered to a patient, they are capable of removing lipophilic drugs by absorption of the drug through their mineral shell and into their core. The particles of the subject invention can also be administered to a patient as controlled release, drug delivery vehicles. Thus, in another aspect, the subject invention concerns a method of delivering pharmacological agents by administering the core-shell particles of the subject invention to a patient in need of such administration.
The present application is a continuation of U.S. application Ser. No. 10/243,340, filed Sep. 13, 2002, which is hereby incorporated by reference herein in its entirety, including any figures, tables, nucleic acid sequences, amino acid sequences, and drawings.
GOVERNMENT SUPPORTThe subject invention was made with government support under a research project supported by National Science Foundation Grant No. EEC-9402989. The government has certain rights in this invention.
BACKGROUND OF THE INVENTIONTreatment of drug overdose in humans, whether due to therapeutic miscalculation, illicit drug use, or suicide attempt, presents a major problem to the health care industry worldwide. In the United States alone, over 300,000 patients are admitted to the emergency rooms because of drug overdose. Treatment of these patients costs the healthcare industry over ten billion dollars because of hospital expenses and lost employee productivity. This does not include the $80 billion associated with alcohol abuse (Moudgil, B. M., Seventh Year Annual Report. 2001: Engineering Research Center for Particle Science and Technology, University of Florida).
Current treatment protocols for overdosed patients vary with the drug of concern, but are focused on three objectives: prevention of drug absorption, enhancement of drug excretion, and administration of pharmacological antidotes. The first two are accomplished with techniques nonspecific to the ingested drug, such as emesis, gastric lavage, or use of activated charcoal for the former objective, and dialysis or hemoperfusion for the latter. However, since absorption of toxic drugs is very time sensitive, and since these techniques are applied only once a patient reaches the emergency room, they are not as effective as would be desired, with some techniques reported to recover only 30% of the ingested drug (Rumack, B. H., Poisoning: Prevention of absorption, in Poisoning and Overdose, M. J. Bayer and B. H. Rumack, Eds., 1983, p. 13-18). There also currently exist very few specific pharmacological antidotes to the drugs frequently associated with life threatening overdose cases (Moudgil, B. M., Seventh Year Annual Report. 2001: Engineering Research Center for Particle Science and Technology, University of Florida).
An important factor influencing drug distribution in the body is the ability of toxins to bind to blood proteins and tissues. Certain tissues have strong binding affinities for specific toxins, causing localized concentration in that tissue. This is true especially of the kidney and liver, because of their metabolic and excretory functions. Some toxins bind noncovalently to albumin, a blood plasma protein, or other proteins. While bound to protein, the complex becomes pharmacologically inert and is trapped in the bloodstream due to its large size. Only unbound drugs are able to cross lipoprotein membranes and exert an effect. A drug's free molecule concentration is likely to increase during an overdose, since protein-binding sites are more readily saturated. Therefore, it is expected that a patient with low levels of albumin will experience higher toxicity effects than a patient with normal levels (Lu, F., Basic Toxicology: Fundamentals, Target Organs, and Risk Assessment. 3rd ed. 1996, Taylor and Francis: Washington; Fenton, J. J., Toxicology: A Case-Oriented Approach. 2002, CRC Press: Boca Raton; Stine, K. E. and T. M. Brown, Principles of Toxicology. 1996, CRC Press: Boca Raton).
Micron-scale and nano-scale core-shell particulate systems, either hollow or fluid-filled, have become of recent interest. Core-shell particles find important applications in encapsulation of a variety of materials for catalysis and controlled release applications (e.g. drugs, enzymes, pesticides, dyes, etc.); for use as filler in lightweight composites, pigment, or coating materials; and in biomedical implant materials (Putlitz, B. Z. et al., Adv. Mater., 2001, 13:500-+; Walsh, D. and Mann, S., Nature, 1995, 377:320-323; Walsh, D. et al., Adv. Mater., 1999, 11:324-328; Zhong, Z. et al., Adv. Mater., 2002, 12:206-209; Caruso, F., Chem.—Eur. J., 2000, 6:413-419).
Recently, the use of particulate systems as a treatment for patients overdosed on lipophilic drugs has been proposed (Moudgil, B. M., Seventh Year Annual Report. 2001: Engineering Research Center for Particle Science and Technology, University of Florida). Several particulate systems, including microemulsions, polymer microgels, silica nanotubes and nanosponges, and silica core-shell particles, are currently being investigated for this detoxification purpose. It has been proposed that, when intravenously administered to an overdosed patient, such particles will effectively detoxify the patient's circulatory system of the particular lipophilic toxin by either: (a) absorption, from the selective partitioning of the drug molecules from the blood to the hydrophobic core of the particle; or (b) adsorption of the drug molecules onto surfaces of surface-functionalized particles. Furthermore, in order to catalyze the toxin metabolism, and hence its removal from the blood, the immobilization of toxin-specific catabolic enzymes on or within particles is being pursued (Moudgil, B. M., Seventh Year Annual Report. 2001: Engineering Research Center for Particle Science and Technology, University of Florida).
Fabrication of hollow sphere particles has been accomplished using various methods and materials. In general, three fabrication classes are currently employed: sacrificial cores, nozzle reactor systems, and emulsion or phase separation techniques (Caruso, F., Chem.—Eur. J., 2000, 6:413-419; Wilcox, D. L. and Berg, M., in Materials Research Society, 1994, Boston: Materials Research Society). The first involves the coating of a core substrate with a material of interest, followed by the removal of the core by thermal or chemical means. In this manner, hollow particles of yttrium compounds (Kawahashi, N. and Matijevic, E., J. Colloid Interface Sci., 1991, 143:103-110), TiO2 and SnO2 (Zhong, Z. et al., Adv. Mater., 2002, 12:206-209), and silica (Caruso, F., Chem.—Eur. J., 2000, 6:413-419) have been synthesized. Nozzle reactor systems make use of spray drying and pyrolysis, and their use has successfully led to the fabrication of hollow glass (Nogami, M. et al., J. Mater. Sci., 1982, 17:2845-2849), silica (Bruinsma, P. J. et al., Chem. Mater., 1997, 9:2507-2512), and TiO2 (Iida, M. et al., Chem. Mater., 1998, 10:3780) particles. Emulsion-mediated procedures, or hollow particle synthesis, is a third common method. This has been used to form latex (Putlitz, B. Z. et al., Adv. Mater., 2001, 13:500-+), polymeric (Pekarek, K. J. et al., Nature, 1994, 367:258-260), and silica core-shell particles (Underhill, R. S. et al., Abstracts ofpapers of the American Chemical Society, 2001, 221:545).
Calcium carbonate coated core-shell particles have also been synthesized. By coating polystyrene beads with calcium carbonate, followed by removal of the polymer core, hollow particles in the 1 μm to 5 μm size range have been generated (Walsh, D. and Mann, S., Nature, 1995, 377:320-323; U.S. Pat. No. 5,756,210). Core-shell particles have also been synthesized using water-in-oil (Walsh, D. et al., Adv. Mater., 1999, 11:324-328; Enomae, T., Proceedings of the 5th Asian Textile Conference, 1999, 1:464-467), and water-in-oil-in-water (Hirai, T. et al., Langmuir, 1997, 13:6650-6653; Hirai, T. and Komasawa, I., Kagaku Kogaku Ronbunshu, 2001, 27:303-313) emulsions as templates for calcium carbonate nucleation. In other processes, Lee et al. (Lee, I. et al., Adv. Mater., 2001, 13:1617-1620) and Qi et al. (Qi, L. M. et al., Adv. Mater., 2002, 14:300) respectively use monolayer-protected gold particles and double-hydrophilic block copolymer (DHBC)-surfactant complex micelles as templates for calcium carbonate deposition, resulting in core-shell particles up to 5 μm in diameter.
Some of the calcium carbonate core-shell systems discussed in the scientific literature are generated by using a biomimetic process (Walsh, D. and Mann, S., Nature, 1995, 377:320-323; Walsh, D. et al., Adv. Mater., 1999, 11:324-328; Hirai, T. et al., Langmuir, 1997, 13:6650-6653; Hirai, T. and Komasawa, I., Kagaku Kogaku Ronbunshu, 2001, 27:303-313; Qi, L. M. et al., Adv. Mater., 2002, 14:300). Mineralization in biological systems has been the focus of intense research because their successful mimicry has important implications for the synthetic design of superior materials. Exquisite control of mineral deposition in biosystems is thought to occur partly due to the presence of an insoluble organic matrix, along with modulation of the crystal growth process via soluble macromolecular species, such as acidic proteins and polysaccharides (Lowenstam, H. A. and Weiner, S., On Biomineralization, Oxford University Press: New York, 1989).
As can be understood from the above, there remains a need for a particulate system that is capable of neutralizing or eliminating toxic levels of drugs within a patient in a short period of time, and which can be produced with the high degree of control associated with biomimetic processes.
BRIEF SUMMARY OF THE INVENTIONThe subject invention pertains to novel materials and methods for use in delivering and segregating substances, such as pharmacological agents, within a patient. One aspect of the invention is directed towards particles having a core encapsulated by a solid calcium carbonate shell, with an intermediate layer of amphiphilic molecules surrounding the core. When the particles of the subject invention are administered to a patient, they are capable of removing lipophilic drugs by absorption of the drug through their porous mineral shell and into their core. In one embodiment, the core of the particles is hollow. In another embodiment, the core contains a fluid, which is preferably an oil. The particles of the subject invention can also be administered to a patient as drug delivery vehicles. Thus, in another aspect, the subject invention concerns a method of delivering or sequestering pharmacological agents by administering the calcium carbonate-encapsulated particles of the subject invention to a patient in need of such administration.
The particles of the subject invention can be designed with various porosities, in order to effectively absorb or release a selected substance over a period of time.
In another aspect, the subject invention concerns a method for making the calcium carbonate core-shell particles of the subject invention by using a polymer-induced liquid-precursor (PILP) process.
BRIEF DESCRIPTION OF THE DRAWINGS
The subject invention concerns particles having a core contained within a solid calcium carbonate shell, with an intermediate layer of amphiphilic molecules surrounding the core. The subject invention also concerns a method of producing the calcium carbonate-encapsulated particles by templating a porous calcium carbonate shell onto the surface of oil-in-water emulsion droplets using a polymer-induced liquid precursor (PILP) process. In another aspect, the subject invention pertains to methods for sequestering lipophilic agents within a patient by administering an effective amount of the core-shell particles to the patient.
Briefly, the particles of the present invention can be produced by blending an oil, such as n-dodecane, with water and an amphiphile, the latter acting as a surfactant to stabilize the droplets within water, forming emulsion droplets. The resultant emulsion droplets can then be introduced into solutions of CaCl2, MgCl2, and a short-chained acidic polymer additive (such as polyaspartic acid). A CO32− counter ion is then introduced into the mixture, such as by slow peristaltic pumps, thereby producing calcium carbonate coated particles that can then be centrifuged and dried.
The particles can be constructed in sizes suitable for particular applications, such as micro-scale or nano-scale particles. For example, the process of the subject invention can produce particles, such as microspheres, having a calcium carbonate shell within the range of about 1 μm to about 200 μm in diameter. In another embodiment, the shell has a diameter within the range of about 1 μm to about 50 μm in diameter. In yet another embodiment, the shell has a diameter within the range of about 1 μm to about 5 μm in diameter. In order to pass through the circulatory system of the body, smaller particles can be constructed having a diameter within the range of about 100 nm to about 300 nm, for example, using microemulsion templates.
Advantageously, the method of the subject invention can produce particles having a shell of uniform thickness. Preferably, the calcium carbonate shell has a thickness within the range of about 100 nm to about 1000 nm in thickness. The core-shell particle of claim 1, wherein said shell has a thickness within the range of about 200 nm to about 500 nm in thickness.
The particles of the subject invention are biodegradable and can be administered to patients for sequestration of a pharmacological agent (drug uptake) following an overdose, as a detoxification agent. Detoxification can occur through several mechanisms. Once administered into a patient (e.g., via the circulatory system), the particles can absorb a lipophilic drug into their oily core, or adsorb the drug through dipole/charge interactions with the mineral shell. Optionally, drug-degrading enzymes, such as P450 enzymes, can operate within the particles, or be coated onto or otherwise associated with the surface of the particles. In another embodiment, the particles can release enzymes that degrade the drug into harmless catabolites. The calcium carbonate shell provides stabilization to the emulsion, and operates as a molecular screen or filter, to avoid saturation of the particles with proteins and other lipophilic species in the blood, for example. The particles of the subject invention can also be administered to a patient as drug delivery vehicles, such as controlled release drug delivery vehicles, which could occur through either pores templated into the shell, or via degradation of the shell.
Preferably, the particles are of nano-scale dimensions and non-aggregating, to avoid blockage of blood capillaries (if administered into the circulatory system), and are biocompatible (e.g., non-thrombogenic). If the particles are not sufficiently small to pass through the blood-renal barrier, a biodegradable material can be included for gradual removal of the particulates from the blood stream (at a rate slow enough for the body to tolerate the gradual release of the absorbed toxin). Optionally, environment-sensitive catabolic enzymes for catalysis of the target drug are immobilized within the particles; in which case, the synthesis can be accomplished under benign processing conditions.
The subject invention also concerns a method of producing the calcium carbonate-encapsulated particles of the subject invention using a polymer-induced liquid-precursor (PILP) process. Using the novel and facile method of the subject invention, calcium carbonate “hard” shell—“soft” core particles can be synthesized under benign conditions. The method of the subject invention utilizes an oil-in-water emulsion droplet as a template. The procedure relies on the surface-induced deposition of a calcium carbonate mineral precursor on to emulsion droplets by a polymer-induced liquid-precursor (PILP) process, elicited by including short-chained highly acidic polymers, such as polyaspartic acid, into crystallizing solutions of calcium carbonate which are slowly raised in supersaturation. The deposition of thin films of calcium carbonate onto glass coverslips using the PILP process has been demonstrated, as described previously (Gower, L. B. and Odom, D. J., J. Cryst. Growth, 2000, 210:719-734). In those studies, in situ observations revealed that the acidic polymer transforms the solution crystallization process into a precursor process by inducing liquid-liquid phase separation in the crystallizing solution. Droplets of a liquid-phase mineral precursor can be deposited onto various substrates in the form of a film or coating, which upon solidification and crystallization, produces a continuous mineral film that maintains the morphology of the precursor phase (hence, the name precursor). Using the method of the subject invention, the PILP process is utilized to coat an oil droplet in solution, generating a fluid-filled core-shell particle with a thin uniform shell of calcium carbonate. In some cases, the precursor phase may not appear to be a liquid, but instead have solid-like characteristics (e.g. glassy). In either case, the important aspect is that both are an amorphous precursor phase, which due to coalescence during the formation of the phase, lead to a smooth continuous coating of mineral rather than the traditional solution crystallization of three-dimensional crystallites. It has also been found that the inhibitory action of Mg-ion can lead to a similar precursor process, and in the presence of surfactant, polymer may not be necessary, although optimal conditions include a combination of Mg-ion and polymer.
The process of the subject invention can be carried out under a variety of conditions. For example, in the case of an aqueous system, the process can be carried out at a temperature of about 4° C. to about 28° C. For ease of processing, the process can be carried out at room temperature (about 23° C.). The process is preferably carried out at a pH within the range of about 7 to about 11 and at 1 atm. More preferably, the process is carried out at a pH of about 11. However, the process can be carried out at a pH lower than 7 or higher than 11 provided a surfactant is utilized that remains charged at the particular pH. Preferably, the oil:water ratio is within the range of about 1:8 and about 1:10, by volume. More preferably, the oil:water ratio is about 1:9, by volume.
Using the process of the subject invention, the diameter of the particles can be controlled. For example, the diameter of the particles can be increased by increasing the size of the emulsion droplet from which the particles are formed. Vesicular types of particles (such as unilamellar or multilamellar liposomes) are feasible as well, which could be used to fabricate core-shell particles with an aqueous interior surrounded by the mineral shell. For example, in preparing the particles, a liposome could be substituted for the emulsion droplet as a template, which would then be exposed to the amorphous mineral precursor. This could increase the potential number of applications to include encapsulated agents that require an aqueous environment, such as water soluble molecules and macromolecules, biopolymers (e.g. proteins, DNA) and cells.
Using the process of the subject invention, the calcium carbonate shell porosity can be controlled. Because the highly PILP phase will preferentially deposit on charged or polar regions of patterned substrates, it is possible to pattern porosity into the mineral shell by using an organic template with hydrophobic domains. For example, increased porosity can be obtained by increasing the quotient of surfactant with uncharged head groups (such as cholesterol or diolein) in the mixture of surfactants used to stabilize the emulsion droplet.
One or more of a variety of short-chained acidic polymers can be utilized to initiate the amorphous liquid-phase mineral precursor, including different polymers and biological materials. As used herein, the term “short-chained acidic polymer” is intended to mean oligomeric-length scale polymers bearing at least one acidic functionality on one or more monomers of the polymer chain. Polyacrylic acid (PAA), polymethacrylates (PMA), sulfonated polymers, phosphorylated peptides and polymers, sulfated glycoproteins, polyaspartic acid, polyglutamic acid, and copolymers of these materials can be utilized to induce the liquid-phase separation, for example. A range of polymer molecular weights can be suitable if the other variable of the crystallizing conditions are appropriately modified to generate the PILP phase.
Unlike those particles reported previously, using the method of the subject invention allows one to generate a smooth and uniform shell of calcium carbonate around the oil droplet, and not an aggregation of individual crystals, as is common among the previously published work. Furthermore, in this manner, oil can be encapsulated within the particle, leading to a “soft” fluidic core—a feature that is advantageous (although not necessary) for the effective extraction of lipophilic molecules from aqueous media by an absorption mechanism.
Preferably, the shell of the particle of the subject invention is composed of magnesium-bearing calcium carbonate and is at least 80% calcium carbonate. More preferably, the shell is composed of at least 90% calcium carbonate. The Mg-ion is added as an additional inhibitory agent (to eliminate traditional solution crystallization), and potentially other ions or molecules could serve this function, in combination with the polymer.
The core of the core-shell particle is a void containing a compound in the oil phase that is incompatible with water. Preferably, the compound in the oil phase is a hydrophobic compound, such as an oil. More preferably, the hydrophobic compound is an organic compound having a solubility to water of not more than 1 gram per 10 grams of water at 20° C. For example, one or more of a variety of oils, such as dodecane or hexadecane, can be incorporated within each particle, occupying its hollow core. Other organic compounds that can be utilized include, but are not limited to, cyclohexane, n-hexane, benzene, cottonseed oil, rapeseed oil, squalane, squalene, waxes, styrene, divinylbenzene, butyl acrylate, 2-ethylhexyl acrylate, cyclohexyl acryalate, decyl acrylate, lauryl acrylate, dodecenyl acrylate, myristyl acrylate, palmityl acrylate, hexadecenyl acrylate, stearyl acrylate, octadecenyl acrylate, behenyl acrylate, butyl methacrylate, 2-ethylhexyl methacrylate, cyclohexyl methacrylate, decyl methacrylate, lauryl methacrylate, dodecenyl methacrylate, myristyl methacrylate, palmityl methacrylate, hexadecenyl methacrylate, stearyl methacrylate, octadecenyl methacrylate, behenyl methacrylate, silicone macromonomers, and the like.
Particles can be loaded with a selected substance or substances, such as a biologically active agent, by contact with a solution containing the agent. In one embodiment, the biologically active agent, such as a detoxifying enzyme, is incorporated within the emulsion droplet during formation of the core-shell particle. Loading can be carried out by adding the biologically active agent to the oil phase prior to emulsification and coating of the droplet, for example. Because detoxifying enzymes are typically oil soluble, they can be readily captured into the oil-in-water emulsion prior to encapsulation with the mineral shell.
In another aspect, the subject invention pertains to a method of sequestering a lipophilic agent within a patient by administering an effective amount of core-shell particles to the patient, wherein the core-shell particles absorb the lipophilic agent through their calcium carbonate shell and into their oil core. The particles can be administered through any of a variety of routes known in the art, including enteral and parenteral, such as intravenous. Preferably, the particles are administered into the circulatory system of the patient, via a blood vessel, such as a vein or artery. The patient may be suffering from overdose, wherein a toxic concentration of the lipophilic agent is present within the patient, such as in the bloodstream. The patient may also be suffering from harmful drug interaction between the lipophilic agent and another lipophilic agent or non-lipophilic agent.
In another aspect, the subject invention pertains to a method of delivering a biologically active agent to a patient by administering an effective amount of core-shell particles containing a selected biologically active agent to the patient, wherein the core-shell particles can release the biologically active agent within the patient. The particles can be administered through any of a variety of routes known in the art, including enteral, pulmonary, and parenteral, such as intravenous. Preferably, the particles are administered into the circulatory system of the patient, such as through a blood vessel.
The particles of the subject invention can be administered using any of a variety of means known in the art. For example, administration of an effective amount of particles can include the injection of the particles in a blood vessel, such as an artery.
Following administration of the particles and drug release or drug sequestration, the spent particles can, optionally, be retrieved from the patient using a variety of methods. For example, if the particles are not sufficiently biodegradable, they can be filtered from the blood, such as in a dialysis process.
The term “biodegradable”, as used herein, means capable of being biologically decomposed. A biodegradable material differs from a non-biodegradable material in that a biodegradable material can be biologically decomposed into units which may be either removed from the biological system and/or chemically incorporated into the biological system.
The term “biocompatible”, as used herein, means that the material does not elicit a substantial detrimental response in the patient. It should be appreciated that when a foreign object is introduced into a living body, that the object may induce an immune reaction, such as an inflammatory response that can have negative effects on the patient. As used herein, the term “biocompatible” is intended to include those materials that cause some inflammation, provided that these effects do not rise to the level of pathogenesis.
The particles of the subject invention can be used as a vehicle for the delivery of biologically active agents, such as medical substances in the field of therapeutics. The active agents may be incorporated in the oil-containing core or chemically bonded to the calcium carbonate shell, for example.
As used herein, the terms “incorporated within” or “otherwise associated with” mean that the particular agent is contained within the particle of the subject invention or is directly or indirectly bound to the particle in some fashion. For example, the biologically active agent can be contained within the oil core of the particle, or operate as a component of the calcium carbonate shell or amphiphilic layer. The biologically active agent can be “free” or bonded to any of the other components of the particle. The particular agent can be incorporated within, or otherwise associated with, the particles of the subject invention, during or subsequent to production of the particles. For example, a biologically active agent, such as an enzyme, can be attached to the outer shell through direct adsorption or through a linker molecule. Alternatively, the agent can be physically entrapped in the mineral phase, as it is deposited, and subsequently released upon degradation of the mineral.
The biologically active agents that can be delivered using the particles of the subject invention can include, without limitation, medicaments, vitamins, mineral supplements, substances used for the treatment, prevention, diagnosis, cure or mitigation of disease or illness, substances which affect the structure or function of the body, or drugs. The active agents include, but are not limited to, antifungal agents, antibacterial agents, anti-viral agents, anti-parasitic agents, growth factors, angiogenic factors, anaesthetics, mucopolysaccharides, metals, cells, antibodies, antibody fragments, and other agents. Because the processing conditions can be relatively benign, live cells can be incorporated into the particles during their formation, or subsequently allowed to infiltrate the particles through tissue engineering techniques.
The terms “pharmaceutically active agent”, “biologically active compound”, “biologically active agent”, “active agent”, “active compound” and “drug” are used herein interchangeably and include pharmacologically active substances that produce a local or systemic effect in a human or non-human animal. The terms thus mean any substance intended for use in the diagnosis, cure, mitigation, treatment or prevention of disease or in the enhancement of desirable physical or mental development and conditions in a human or non-human animal.
Examples of antimicrobial agents that can be delivered using the particles of the present invention include, but are not limited to, isoniazid, ethambutol, pyrazinamide, streptomycin, clofazimine, rifabutin, fluoroquinolones, ofloxacin, sparfloxacin, rifampin, azithromycin, clarithromycin, dapsone, tetracycline, erythromycin, cikprofloxacin, doxycycline, ampicillin, amphotericine B, ketoconazole, fluconazole, pyrimethamine, sulfadiazine, clindamycin, lincomycin, pentamidine, atovaquone, paromomycin, diclarazaril, acyclovir, trifluorouridine, foscarnet, penicillin, gentamicin, ganciclovir, iatroconazole, miconazole, Zn-pyrithione, and silver salts, such as chloride, bromide, iodide, and periodate.
Growth factors that can be incorporated into or otherwise associated with the particles of the present invention include, but are not limited to, basic fibroblast growth factor (bFGF), acidic fibroblast growth factor (aFGF), nerve growth factor (NGF), epidermal growth factor (EGF), insulin-like growth factors 1 and 2 (IGF-1 and IGF-2), platelet-derived growth factor (PDGF), tumor angiogenesis factor (TAF), vascular endothelial growth factor (VEGF), corticotropin releasing factor (CRF), transforming growth factors alpha and beta (TGF-α and TGF-β), interleukin-8 (IL-8), granulocyte-macrophage colony stimulating factor (GM-CSF), bone morphogenic protein (BMP), the interleukins, and the interferons.
Other agents that can be incorporated into or otherwise associated with the particles of the subject invention include acid mucopolysaccharides including, but not limited to, heparin, heparin sulfate, heparinoids, dermatan sulfate, pentosan polysulfate, chondroitin sulfate, hyaluronic acid, cellulose, agarose, chitin, dextran, carrageenin, linoleic acid, and allantoin.
Proteins that can be incorporated into or otherwise associated with the particles of the subject invention include, but are not limited to, collagen (including cross-linked collagen), fibronectin, laminin, elastin (including cross-linked elastin), osteonectin, bone sialoproteins (Bsp), alpha-2HS-glycoproteins, bone Gla-protein (Bgp), matrix Gla-protein, bone phosphoglycoprotein, bone phosphoprotein, bone proteoglycan, protolipids, bone morphogenetic protein, cartilage induction factor, platelet derived growth factor and skeletal growth factor, or combinations and fragments thereof.
Other biologically active agents that can be incorporated into or otherwise associated with the particles of the subject invention include genetically-modified or non-genetically modified cells. Thus, the particles of the subject invention can contain such cells within their core and be administered to a patient. The cells can be non-stem cells (mature and/or specialized cells, or their precursors or progenitors) or stem cells. Thus, the cells can range in plasticity from totipotent or pluripotent stem cells (e.g., adult or embryonic), precursor or progenitor cells, to highly specialized or mature cells, such as those of the pancreas. In one embodiment, the cells are genetically modified to produce a biologically active agent, such as a detoxifying enzyme.
Stem cells can be obtained from a variety of sources, including fetal tissue, adult tissue, cord cell blood, peripheral blood, bone marrow, and brain, for example. Stem cells and non-stem cells (e.g., specialized or mature cells, and precursor or progenitor cells) can be differentiated and/or genetically modified. Methods and markers commonly used to identify stem cells and to characterize differentiated cell types are described in the scientific literature (e.g., Stem Cells: Scientific Progress and Future Research Directions, Appendix E1-E5, report prepared by the National Institutes of Health, June, 2001). The list of adult tissues reported to contain stem cells is growing and includes bone marrow, peripheral blood, brain, spinal cord, dental pulp, blood vessels, skeletal muscle, epithelia of the skin and digestive system, cornea, retina, liver, and pancreas.
The active agents incorporated within, or otherwise associated with, the particles of the subject invention can exhibit modified release characteristics. Release of the active agent can be controlled using a variety of methods. For example, biologically decomposable conjugates can be utilized. Alternatively, release of the active agent can be controlled by inserting the active agent in various components of the particle that have a different biodegradability. For example, if used in medical or agricultural applications, it may be desired to be able to control the release dosage and release rate of active agents. In one embodiment, the particles exhibit a decreasing (decaying) rate of release (first-order release kinetics). In another embodiment, the particles exhibit a constant rate of release (zero-order release kinetics). In another embodiment, the particles exhibit one or more sudden releases, or bursts, after a certain delay time.
The particles of the subject invention can be utilized to administer hormones, for example. An important field of application is the development of therapeutic systems for the controlled release of an anti-diabetic agent, such as insulin, in the treatment of pancreatic diabetes. The particles of the subject invention can also be utilized to administer anti-tumor compounds, such as cytotoxic agents, for the treatment of cancer.
Larger micro-scale particles of the invention can contain cells. According to the methods of the invention, such particles can be utilized to deliver the cells, and/or active agents produced by the cells, in vivo. Examples of cells that can be incorporated within, or otherwise associated with, the particles of the subject invention include, but are not limited to, stem cells, precursor or progenitor cells, chondrocytes, pancreatic cells, hepatocytes, and neural cells. Such cells can be released from the particles upon degradation of the shell in vivo.
The surface of the particles can be modified using surface modification methods known to those of ordinary skill in the art. For example, the amphiphilic layer composition can be varied to vary the uncharged head group domain size.
As used herein, the term “lipophilic” is intended to mean oil soluble. Examples of lipophilic drugs include amitriptyline, bupivicaine, and amiodarone.
As used herein, the term “oil” is intended to mean any nonpolar, water-insoluble compound.
As used herein, the terms “amphiphile” “amphiphilic compound”, and “surfactant” are used herein interchangeably and intended to mean a compound having at least one hydrophilic (polar) portion and at least one hydrophobic (nonpolar) portion, such as stearic acid and arachidic acid. Typically, amphiphiles exhibit amphiphilic behavior in which their molecules become concentrated at the interface between a polar solvent and a nonpolar solvent. Preferably, the amphiphilic compounds used in the subject invention have molecules with at least one hydrophilic head group and at least one hydrophobic tail. More preferably, the amphiphilic compound has a partially deprotonated carboxylic acid headgroup functionality.
The particles of the subject invention can be formulated in any of a variety of forms or shapes in the micro- or nano-scale size range (e.g., microparticles or nanoparticles). The particles of the present invention can be, for example, capsules (e.g., microcapsules or nanocapsules), or spheres (e.g., microspheres or nanospheres).
The core-shell particles of the subject invention can be formulated and administered as a pharmaceutical composition, containing a pharmaceutically acceptable carrier or diluent. The pharmaceutical compositions of the subject invention can be formulated according to known methods for preparing pharmaceutically useful compositions. Formulations are described in a number of sources which are well known and readily available to those skilled in the art. For example, Remington's Pharmaceutical Science (Martin E W [1995] Easton Pa., Mack Publishing Company, 19th ed.) describes formulations which can be used in connection with the subject invention. Formulations suitable for parenteral administration include, for example, aqueous sterile injection solutions, which may contain antioxidants, buffers, bacteriostats, and solutes which render the formulation isotonic with the blood of the intended recipient; and aqueous and nonaqueous sterile suspensions which may include suspending agents and thickening agents. The formulations may be presented in unit-dose or multi-dose containers, for example sealed ampoules, vials, and disposable syringes made of glass or plastic, and may be stored in a freeze dried (lyophilized) condition requiring only the condition of the sterile liquid carrier, for example, water for injections, prior to use. Extemporaneous injection solutions and suspensions may be prepared from sterile powder, granules, tablets, etc. It should be understood that, in addition to the ingredients particularly mentioned above, the formulations of the subject invention can include other agents conventional in the art having regard to the type of formulation in question. The pharmaceutical compositions can be included in a container, pack, or dispenser, together with instructions for administration.
The particles of the subject invention can be applied as a film or coating on a substrate. The substrate can be composed of any material, such as metal, polymer, and/or ceramic materials.
The term “patient”, as used herein, refers to any vertebrate species. Preferably, the patient is of a mammalian species. Mammalian species which benefit from the disclosed methods of drug delivery and/or detoxification include, and are not limited to, apes, chimpanzees, orangutans, humans, monkeys; domesticated animals (e.g., pets) such as dogs, cats, guinea pigs, hamsters, Vietnamese pot-bellied pigs, rabbits, and ferrets; domesticated farm animals such as cows, buffalo, bison, horses, donkey, swine, sheep, and goats; exotic animals typically found in zoos, such as bear, lions, tigers, panthers, elephants, hippopotamus, rhinoceros, giraffes, antelopes, sloth, gazelles, zebras, wildebeests, prairie dogs, koala bears, kangaroo, opossums, raccoons, pandas, hyena, seals, sea lions, elephant seals, otters, porpoises, dolphins, and whales.
The particles of the subject invention can be used in novel therapeutic systems in which ferrous components are associated with the particles so as to impart magnetic properties to the particles. The magnetic properties of the particles can induce and control the release of the active agent via a “magnetic switch” that may be operated from outside the body. In some therapeutic approaches, systems of particles and active agents can be selectively accumulated in their target area using external magnetic fields. For treating very special problems, small magnets can be implanted within the patient for local control in the target area, e.g., a tumor area.
The particles of the subject invention are useful in diagnostic applications, as well. For example, the particles of the subject invention can incorporate, or otherwise be associated with, visualization markers, and are applicable for many special indications such as magnetic resonance (MR) lymphography after intravenous or local interstitial administration, tumor visualization, visualization of functions or malfunctions, of plaque (atherosclerosis imaging), thrombi and vascular occlusions, MR angiography, perfusion imaging, infarct visualization, visualization of endothelial damages, receptor imaging, visualization of blood-brain barrier integrity, etc., as well as for differential diagnosis, in particular, for distinguishing tumors/metastases from hyperplastic tissue.
The particles are also useful for industrial applications, such as use as light-weight pigment/filler particles or as platelets for high contrast print gloss.
The terms “comprising”, “consisting of”, and “consisting essentially of” are defined according to their standard meaning and may be substituted for one another throughout the instant application in order to attach the specific meaning associated with each term.
MATERIAL AND METHODSEmulsion Substrate Svnthesis. Oil-in-water emulsion droplets were synthesized by blending in a household kitchen blender, n-dodecane oil (SIGMA-ALDRICH) and distilled water in 1:9 volume ratio, stabilized with 1% w/v stearic acid (SIGMA-ALDRICH) (per oil phase volume). The distilled water was adjusted to the desired pH using 0.1M NaOH (FISHER SCIENTIFIC) prior to emulsification.
Particle Synthesis. Immediately after preparing the emulsion, as indicated above, 1 mL of the emulsion was pippetted into 35 mm FALCON polystyrene petri dishes, followed by 1 mL of an 80 mM/400 mM CaCl2/MgCl2 solution (SIGMA-ALDRICH) (freshly prepared using distilled water, and filtered by 0.2 μm ACRODISC syringe filters). Next, 36 μL of a freshly prepared and filtered 1 mg/mL solution of poly-(α,β)-D,L-aspartic acid (MW 8600) (ICN/SIGMA-ALDRICH) was transferred to each petri dish by micropipet. The petri dishes were then covered by parafilm, which was punched with a small hole, into which the outflow end of the tubing from an ultra-low flow peristaltic pump (FISHER SCIENTIFIC) was inserted. At a rate of approximately 0.025 mL/min, 2 mL of a freshly prepared and filtered solution of 300 mM (NH4)2CO3 (SIGMA-ALDRICH) was pumped into each petri dish (taking about 80 minutes to complete). The resulting product was collected and centrifuged at 8000 rpm for 10 minutes, rinsed with saturated CaCO3 (SIGMA-ALDRICH), then re-centrifuged under the same conditions. After a rinsing with ultrapure ethanol (FISHER SCIENTIFIC), the product was re-centrifuged a final time under the same conditions, and then left to dry in air overnight.
Determination of Particle Morphology and Composition. The dried particles were examined by an OLYMPUS BX60 polarized light microscope, using a gypsum wave-plate in order to observe both amorphous and crystalline phases. For scanning electron microscopy (SEM) observations, particle samples were spread onto aluminum studs, and then gold-coated and examined with a JEOL 6400 SEM. Energy Dispersive Spectroscopy (EDS) was used for elemental composition analysis of the particle shell. For diffraction studies, dried particles were adhered to double-sided tape, and analyzed in a PHILIPS APD 3720 X-ray instrument.
EXAMPLE 1 Formation of Free-Standing Films of Calcium Carbonate Under Langmuir Monolayers As a preliminary step to core-shell particle fabrication, and to better understand the deposition of calcium carbonate films on surfactant templates, the formation of freestanding films of the mineral under Langmuir monolayers spread at the air-liquid interface was investigated.
Repeating this experiment using cholesterol or diolein surfactants, in contrast, did not yield the uniform mineral film under the monolayer. Both stearic acid and arachidic acid surfactants have partially deprotonated carboxylic acid headgroup functionalities, while cholesterol and diolein surfactants, which bear alcohol moieties, remain polar but uncharged. Therefore, the surface charge on the monolayer is thought to play an important role in attracting mineral species and the ion-binding polymer to the surface, serving to increase ion saturation, and induce the deposition of the mineral precursor.
EXAMPLE 2 Surface-Induced Deposition of a Mineral Shell onto a Charged Emulsion DropletUsing stearic acid as a surfactant, n-dodecane oil was dispersed in water to form an oil-in-water emulsion. To coat these emulsion droplets, they were first combined with Ca2+ dissolved in aqueous solution, along with polyaspartic acid to induce the PILP process. Mg2+ ions were also added to enhance the inhibitory action of the polymer, which helps to inhibit traditional crystal growth from solution (as opposed to from the precursor phase). The CO32− counterion was subsequently pumped into the above mixture using ultra-low-flow peristaltic pumps. To monitor its effect on mineral deposition, the surface charge on the surfactant layer was varied by adjusting the pH of the aqueous solutions between 7 and 11 (pKa of stearic acid is 10.15).
Under scanning electron microscopy (SEM), the morphology and uniformity of the particles were better judged. From these observations, particles synthesized at pH 11 yielded the best results—fairly monodisperse, uniformly spherical particles of diameter ranging between 1-5 μm (see
In summary, the synthesis of core-shell particles was carried out using an oil-in-water emulsion as a substrate. The reaction chemistry was conducted at a consistent final Ca2+ and CO32− concentration of 20 mM and 150 mM respectively, with a polymer level varied between 0 and 300 μg/ml, and a Mg level varied between 0 and 100 mM. Peristaltic pumping was employed to introduce the CO32− counterion into the reaction container. This pumping technique was utilized to synthesize core-shell particles under the following conditions: Ca/Mg=20/100 mM; CO32−=150 mM; polymer=10 μg/ml; and a pH 11 environment. Since these conditions seemed to yield the best particles, further testing was conducted on particles fabricated under these conditions.
EXAMPLE 3 Deposition of Mineral Shell in Absence of PILP-Enhancing PolymerWhen a PILP-enhancing polymer was not included in the reacting solution, core-shell particles could, under certain conditions, still be synthesized successfully. In some tests, the particles made without polymer were indistinguishable from those made with polymer under optical microscopy. Under SEM, however, the particles formed without polymer did not always match the quality of those made with polymer—a portion of the product was not uniformly spherical but of some modified amorphous shape. The reason these particles formed even in the absence of polymer is most likely due to the relatively high amount of Mg used (at a Ca to Mg ratio of 1 to 5). Mg is a potent crystal growth inhibitor and may have elicited a PILP-like mechanism in the formation of the shell.
A series of tests were therefore conducted, varying both the polymer and Mg levels in the synthesis procedure, to determine their effects. In the absence of Mg, no particles formed at all. Instead, polymer-modified crystals were abundant at all levels of polymer (tested between 10 and 300 μg/ml). In a second set of experiments, polymer concentration was maintained at either 10 μg/ml or 100 μg/ml, and the final concentration of Mg in the reacting solution was varied between 20 and 100 mM. In this case, core-shell particles were successfully synthesized at Mg levels as low as 20 mM, and at polymer concentrations of 10 μg/ml.
Apparently, a small amount of Mg (at 1:1 ratio of Ca/Mg) is necessary to promote the formation of a core-shell particle. However, increased polymer level significantly perturbed the process. Particles formed at Mg=80 mM and at a polymer concentration of 10 and 100 μg/ml, respectively, were compared. At 100 μg/ml, the particles formed poorly—without uniformity in shape or sizes, while the lower polymer samples formed normally. This trend held true at every Mg level tested (20, 40, 60, and 80 mM)—the particles with higher polymer doses did not form as well as with lower polymer doses. Since more polymer is likely to better inhibit mineral nucleation, the higher doses may not have allowed a shell to deposit or solidify very well on the emulsion droplet. In addition, because of the charge associated with the acidic polymer (especially at the pH 11 condition of the experiment), the high polymer level may have compromised the stability or function of the emulsion droplet.
EXAMPLE 4 Degradability of Particles Svnthesized using PILP and PILP-Enhancing PolymerBecause the shells of the core-shell particles are generated via PILP, they are in a metastable amorphous state. This suggests that the particle shells are susceptible to biodegradation once reintroduced into the blood. This is considered an important advantage of a CaCO3 core-shell particle for use in drug detoxification, as it facilitates the removal of particle components from the blood stream. To determine whether these particles are indeed degradable, samples of dried particles were dispersed in buffered saline solutions, and monitored for several weeks. The particles were continually stirred while in solution to simulate the constant agitation expected if they were flowing within the circulatory system.
Particles dispersed in phosphate buffered saline solutions (PBS) (pH ˜7.4) at a concentration of approximately 4 mg/mL of and 16 mg/mL lost their spherical shape due to dissolution as early as a week after dispersion, and the remaining material eventually recrystallized into several crystal morphologies. “Concentration” in this case is defined as mg of particles per mL of solution (saline, blood, etc.), and the tested concentrations are within the range that is proposed for detoxification of an overdosed patient. While the particle shell is degradable, the component materials remained as insoluble precipitates if not sufficiently diluted. In the blood stream, the reprecipitation is less likely since the larger volume will dilute the ionic species created during particle degradation.
EXAMPLE 5 Drug-Uptake Efficiency of Particles Synthesized using PILP and PILP-Enhancing PolymerTo determine whether these particles were capable of uptaking lipophilic drugs, High Performance Liquid Chromatography (HPLC) was employed. The test drug used for these studies was amitriptyline (AMT). AMT is the most widely prescribed tricyclic anti-depressant (TCA) in the United States. The drug is a significant cause for hospitalizations due to toxicity and has been reported as the most common cause of drug related deaths and suicide. Other drugs in this class include clomipramine, desipramine, imipramine, norclomipramine, nortriptyline, and trimipramine, but AMT is more typically prescribed. AMT is a highly lipophilic drug and is thought to effectively treat depression by blocking the physiological inactivation of biogenic amines.
Particles were introduced into saline solutions isotonic to blood at concentrations of 0.01%, 0.025%, and 0.05% (1%=1 mg particles/10 mL solution). AMT was then added and concentrated to 1 mM in the mixture. That mixture was sonicated for 5 minutes and then filtered by centrifugation for 30 minutes, during which time the particles were presumably absorbing the AMT. The amount of AMT remaining in the resulting filtrate was then assessed by HPLC.
Three different samples were tested for comparison purposes. The first sample was dried core-shell particles containing the oily core. The second sample was core-shell particles that were calcined at 240° C. for 1.5 hours while simultaneously vacuum dried to evaporate any n-dodecane oil in or on the particle (b.p. of n-dodecane=216° C.). From optical microscopy observations, the structure of these treated core-shell particles remained unaffected. The third sample was commercial CaCO3 obtained from SIGMA-ALDRICH (mostly calcite crystals). The hypothesis was that particles with oil would absorb significantly larger amounts of AMT from solution than both particles without oil and the commercial calcite samples, since the advantage of partitioning the lipophilic molecules into the oily core was not available to the latter two.
Results of this uptake study are shown in
The core-shell particles of the subject invention are particularly useful for the detoxification of lipophilic drugs within a patient in need of such detoxification. In one embodiment, an effective amount of core-shell particles are administered to the patient, such as through intravenous injection, wherein the unbound lipophilic drug (e.g., unbound to blood protein) is simply absorbed through the calcium carbonate shell of the particles, and into their core, effectively partitioning the lipophilic drug from the patient's bloodstream, for example. The particles can then be allowed to degrade, releasing the lipophilic drug over a period of time that is not harmful to the patient. Alternatively, the particles can be retrieved from the patient using known methods of particulate retrieval. In another embodiment, one or more drug-detoxifying enzymes (also referred to herein as a drug-detoxifying system) are incorporated within, or otherwise associated with, the particles of the subject invention. In another embodiment, compounds which act as inducers of endogenous drug detoxifying enzymes can be incorporated within, or otherwise associated with, the particles of the subject invention.
Drug biotransformation usually involves two phases, phase I and phase II. Phase I reactions are classified typically as oxidations, reductions, or hydrolysis of the parent drug. Following phase I reactions, the metabolites are typically more polar (hydrophilic), which increases the likelihood of their excretion by the kidney. Phase I metabolic products may be further metabolized. Phase II reactions often use phase I metabolites that can catalyze the addition of other groups, e.g., acetate, glucuronate, sulfate, or glycine to the polar groups present on the intermediate. Following phase II reactions, the resultant metabolite is typically more readily excreted. The drug detoxifying enzymes utilized in the subject invention can catalyze phase I reactions, phase II reactions, or both phase I and phase II reactions, for example.
Most phase I reactions are catalyzed by the cytochrome P450 (CYP) enzyme system, which is a superfamily consisting of heme-containing isozymes (van der Weide and, J. and Steijns, L., “Cytochrome P450 Enzyme System: Genetic Polymorphisms and Impact on Clinical Pharmacology”, Ann. Clin. Biochem., 36:722-729, 1999). At least 74 CYP gene families, of which 14 are ubiquitous in all mammals, have been described thus far (Nelson, D. R. et al., “P450 Superfamily: Update on New Sequences, Gene Mapping, Accession Numbers, and Nomenclature”, Pharmacogenetics, 6:1-42, 1996). The enzymes belonging to the families CYP1, CYP2, and CYP3 catalyze the oxidative biotransformation of exogenous compounds, including many drugs, (pro)carcinogens, (pro)-mutagens, and alcohols. Other CYP families are involved in the metabolism of endogenous substances, such as fatty acids, prostaglandins, and steroid and thyroid hormones. Specific catalytic activities that have been observed with regard to some P450 isoforms in in vitro assays include testosterone 6-hydroxylase activity of CYP3A4, dextromethorphan O-deethyolase activity of CYP2D6, tolbutamide 4-hydroxylase activity of CYP2C9, phenacitin O-deethylase activity of CYP1A2, (S)-Mephenytoin 4′-hydroxylase activity of CYP2C19, chorozoxazone 6-hydroxylase activity of CYP2E1, coumarin 7-hydroxylase activity of CYP2A6, lauric acid 12-hydroxylase activity of CYP4A11, and paclitaxel 6-hydroxylase activity of CYP2C8. As indicated above, one or more P450 enzymes can be incorporated within, or otherwise associated with the particles of the subject invention. Alternatively, inducers of endogenous P450 enzyme activity can be incorporated within, or otherwise associated with, the particles of the present invention. For example, there are over twenty different CYP enzymes within the human body, with at least six of the enzymes (CYP1A2, CYP2C9, CYP2C19, CYP2D6, CYP2E1, and CYP3A) accounting for the metabolism of nearly all clinically useful medications. Examples of P450 enzymes and their corresponding substrate specificities are listed in Table 1.
Note:
SSRIs = selective serotonin reuptake inhibitors; TCAs = tricyclic antidepressants
The drug-detoxifying enzyme can be contained within the core of the core-shell particles or otherwise associated with the particles. For example, the drug-detoxifying enzyme can be adsorbed onto the calcium carbonate shell of the particles.
All patents, patent applications, provisional applications, and publications referred to or cited herein are incorporated by reference in their entirety, including all figures and tables, to the extent they are not inconsistent with the explicit teachings of this specification.
It should be understood that the examples and embodiments described herein are for illustrative purposes only and that various modifications or changes in light thereof will be suggested to persons skilled in the art and are to be included within the spirit and purview of this application.
Claims
1. A core-shell particle comprising:
- (a) a shell, wherein said shell comprises calcium carbonate;
- (b) a core; and
- (c) an intermediate layer between said shell and said core, wherein said intermediate layer comprises an amphiphilic compound, and wherein said core and said intermediate layer are surrounded by said shell.
2. A method for making a core-shell particle, wherein the method comprises the steps of:
- (a) preparing a core; and
- (b) encapsulating the core with a calcium carbonate shell.
3. The method according to claim 2, wherein said step (a) comprises forming an emulsion droplet, and wherein said step (b) comprises contacting the emulsion droplet with a calcium-containing solution.
4. The method according to claim 3, wherein the emulsion droplet comprises an oil phase and an amphiphilic compound, and wherein the core-shell particle comprises:
- (a) the calcium carbonate shell;
- (b) the core; and
- (c) an intermediate layer between the calcium carbonate shell and the core, wherein the intermediate layer comprises the amphiphilic compound, and wherein the core and the intermediate layer are surrounded by the shell.
5. The method according to claim 4, wherein the amphiphilic compound has a partially deprotonated carboxylic acid headgroup functionality.
6. The method according to claim 4, wherein the amphiphilic compound is selected from the group consisting of stearic acid and arachidic acid.
7. The method according to claim 3, wherein said method further comprises adding a source of Mg ion to the calcium-containing solution.
8. The method according to claim 3, wherein said method further comprises adding a short-chained acidic polymer to the calcium-containing solution.
9. The method according to claim 8, wherein the short-chained acidic polymer is selected from the group consisting of polyacrylic acid, polymethacrylate, sulfonated polymer, phosphorylated peptide, phosphorylated polymer, sulfated glycoprotein, polyaspartic acid, polyglutamic acid, and copolymers thereof.
10. The method according to claim 9, wherein the short-chained acid polymer comprises poly-(α,β)-D,L-aspartic acid.
11. The method according to claim 8, wherein the short-chained acid polymer is added at a concentration within the range of about 1 μg/ml and about 100 μg/ml.
12. The method according. to claim 3, wherein said forming an emulsion droplet comprises contacting a hydrophobic compound with an aqueous solution.
13. The method according to claim 12, wherein said forming an emulsion droplet further comprises adding an amphiphilic compound to the aqueous solution.
14. The method according to claim 13, wherein the amphiphilic compound is selected from the group consisting of stearic acid and arachidic acid.
15. The method according to claim 3, wherein the calcium-containing solution comprises CaCl2.
16. The method according to claim 3, wherein the calcium-containing solution further comprises Mg.
17. The method according to claim 3, wherein the calcium-containing solution further comprises MgCl2.
18. The method according to claim 17, wherein the calcium-containing solution further comprises CO32− counterion.
19. The method according to claim 17, wherein said method further comprises adding CO32− counterion to the calcium-containing solution.
20. The method according to claim 19, wherein the CO32− counterion is added to the calcium-containing solution by peristaltic pumping.
21. A method for sequestering a lipophilic agent within a patient comprising administering an effective amount of core-shell particles to the patient, wherein the core-shell particles comprise:
- (a) a shell, wherein the shell comprises calcium carbonate;
- (b) a core; and
- (c) an intermediate layer between the shell and the core, wherein the intermediate layer comprises an amphiphilic compound, and wherein the core and the intermediate layer are surrounded by the shell.
22. The method according to claim 21, wherein the core is hollow.
23. The method according to claim 21, wherein the core comprises an oil.
24. The method according to claim 23, wherein the core further comprises an enzyme that degrades the lipophilic agent.
25. The method according to claim 21, wherein the enzyme comprises a cytochrome P450 enzyme.
26. The method according to claim 24, wherein the lipophilic agent is absorbed into the core-shell particles, and wherein the enzyme subsequently degrades the lipophilic agent.
27. The method according to claim 21, wherein the core-shell particles are administered to the patient intravenously.
28. The method according to claim 21, wherein a toxic amount of the lipophilic agent is present within the patient prior to said administration of the core-shell particles.
29. The method according to claim 24, wherein the enzyme is adsorbed onto the shell of the particles.
30. A method for sequestering a lipophilic agent from the surrounding environment comprising contacting an effective amount of core-shell particles with the lipophilic agent, wherein the core-shell particles comprise:
- (a) a shell, wherein the shell comprises calcium carbonate;
- (b) a core; and
- (c) an intermediate layer between the shell and the core, wherein the intermediate layer comprises an amphiphilic compound, and wherein the core and the intermediate layer are surrounded by the shell.
31. The method according to claim 30, wherein said contacting is carried out in vivo.
32. The method according to claim 30, wherein the surrounding environment is a patient's bloodstream.
33. A method for delivering a biologically active agent to a patient comprising administering an effective amount of core-shell particles to the patient, wherein the core-shell particles comprise:
- (a) a shell, wherein the shell comprises calcium carbonate;
- (b) a core, wherein said core comprises a biologically active agent; and
- (c) an intermediate layer between the shell and said core, wherein said intermediate layer comprises an amphiphilic compound, and wherein said core and said intermediate layer are surrounded by said shell.
Type: Application
Filed: Apr 21, 2006
Publication Date: Aug 24, 2006
Inventors: Laurie Gower (Gainesville, FL), Vishal Patel (Gainesville, FL), Piyush Sheth (Baltimore, MD), Allison Gallup (Jacksonville, FL), Michael Ossenbeck (Gainesville, FL)
Application Number: 11/409,406
International Classification: A61K 9/127 (20060101);