Portable patient monitor
Embodiments of the present disclosure includes a portable pulse oximeter, such as a handheld pulse oximeter, that provides a user with intuitive key navigation for device operation, which reduces an amount of visual concentration needed to handle and operate the oximeter. In various embodiments, the portable pulse oximeter includes one or more of user input keys disposed along curve, an alignment edge providing guidance by feel of a user's digits to the input keys, raised convex keys also providing navigation by feel, a protective boot disposed around various portions of the oximeter housing to protect against impacts, a table-top stand, combinations of the same, or the like.
1. Field of the Invention
The present disclosure relates to the field of patient monitoring devices. More specifically, the disclosure relates to portable and handheld patient monitors, including pulse oximeter monitors, while other embodiments relate to various parameters displayed by these type of patient monitors.
2. Description of the Related Art
Caregivers often employ patient monitoring systems or devices, such as pulse oximeters, capnographs, blood pressure cuffs, and the like, for convenient spot checking and even continuous monitoring of physiological characteristics of a patient. Patent monitoring systems generally include one or more sensors applied to a patient, a monitoring device, and one or more cables connecting the one or more sensors and the monitoring device.
Portability of these monitoring systems is advantageous for a number of reasons. For example, portable devices provide the patient with mobility and provide the caregiver the option of including the monitoring device when transporting patients from one setting to another. For example, caregivers often transport patients from an ambulance to a hospital emergency room, and between surgical, intensive care, and recovery settings.
Some portable devices can also alleviate issues relating to incompatibility problems exacerbated by the prevalence of expensive and non-portable multiparameter patient monitoring systems. For example, some portable patient monitoring devices are capable of outputting information expected by one or more non-portable legacy multiparameter patient monitoring systems, where that output is used as an input for the non-portable systems.
One example of a patient monitoring device is a pulse oximeter, which is a widely accepted noninvasive procedure for measuring the oxygen saturation level of arterial blood, an indicator of oxygen supply. Early detection of low blood oxygen level is critical in the medical field, for example in critical care and surgical applications, because an insufficient supply of oxygen can result in brain damage and death in a matter of minutes. However, many other industries have adopted the detection of a person's oxygen supply into their monitoring and analysis regimens, including the fitness industry, home or corporate care industries, elderly care facilities and the like.
A pulse oximeter typically provides a numerical readout of the patient's oxygen saturation, a numerical readout of pulse rate, and an audible indicator or “beep” that occurs in response to each pulse. In addition, the pulse oximeter may display the patient's photo plethysmograph, which provides a visual display of the patient's pulse contour and pulse rate.
A portable pulse oximeter may be a standalone device, or as described in the foregoing, may be incorporated as a module or built-in portion of a multiparameter patient monitoring system, which also provides measurements such as blood pressure, respiratory rate, EKG, or the like. Exemplary pulse oximeters, including standalone pulse oximeters and portable pulse oximeters usable within a multiparameter system, are commercially available from Masimo Corporation of Irvine Calif., the Assignee of the present application. Aspects of such exemplary pulse oximeters are disclosed in U.S. Pat. Nos. 6,770,028, 6,584,336, 6,263,222, 6,157,850, 5,769,785, and their related patent and copending application families, each of which is incorporated herein by reference.
In many conventional patient monitoring devices, such as pulse oximeters, the interaction between a caregiver and the device is accomplished through user input keys and displayed data. The user input keys are arranged in a topology or layout similar to a table where the input keys are aligned in one or more rows and/or one or more columns. In portable devices, such layouts do not provide an intuitive feel, often requiring a user to use both hands to operate the device. For example, caregivers often use one hand to hold the device and the other to punch the input keys. Such layouts also often engage the full attention and concentration of the caregiver for operation. Moreover, such row and/or column key layouts can even lead to losing one's grip on the device when attempting single-handed operation or when inattentively operated. Loss of grip can lead to the device being dropped, knocked out of hand, off a counter, or the like, which can damage the device and/or lead to inaccurate patient monitoring.
SUMMARY OF THE DISCLOSUREEmbodiments of the present disclosure seek to overcome some or all of the foregoing and other problems. For example, embodiments of the present disclosure include a portable patient monitor, such as a handheld pulse oximeter, that provides a user with intuitive key navigation and device operation, which reduces an amount of visual concentration needed to handle and operate the patient monitor. In various embodiments, the portable patient monitor includes one or more of user input keys disposed along curve, an alignment edge, raised convex keys providing navigation-by-feel, a bezel or protective boot disposed around various portions of the housing to resist impacts, a rubber cable connector housing, a table-top stand, combinations of the same, or the like. Such intuitive navigation-by-feel provides for optional single handed operation and reduced visual concentration on the input keys, which advantageously allows caregivers to give at least some of their attention to, for example, the display of current and/or past monitored data, the patients themselves, other caregivers, or the like.
In addition to the forgoing, embodiments of the present disclosure also provide intuitive output of data relating to monitored physiological parameters. For example, an embodiment of the monitoring device includes display indicia corresponding to an indication of the perfusion through a measurement site. In an embodiment, the indicia includes an LED bar display, or Pulse Amplitude Index (PAI) or (PI), which may be used as a diagnostic tool during low perfusion for the accurate prediction of illness severity, especially in neonates.
In an embodiment, the PAI bar can grow in height, can change color, can combine with one or more audible or visual alarms including audio or visual alarms that change pitch, on-off frequency, color, intensity, combinations of the same, or the like. In a preferred embodiment, the PAI LED bar is highest and green when the perfusion at the site is best, and lowest and red when the perfusion is worst.
An artisan will also recognize from the disclosure herein that other indicators can be used to indicate the same or other data. For example, digital and/or pictorial displays can display values for the foregoing or other monitored data and the displays may combine with audio or other visual indicators, such as pitch or beat. Moreover, an artisan will recognize from the disclosure herein that the LED bars can be used to show additional data, such as, for example, a signal quality. In an embodiment of such signal quality indicators, the signal quality (SQ) LED bar can grow in height as the quality of the signal increases, can change color as the quality increases, combinations of the same, or the like. In a preferred embodiment, the SQ LED bar is highest and green when the quality of the site is best, and lowest and red when the quality is worst. In an embodiment, a signal quality indicator may comprise a single LED, preferably lighting red when the quality is worse and optionally lighting green when the quality is better. This type of signal quality LED may combine flashing, changing the frequency of the flashing, audible alarms, and the like to ensure caregiver notices the measurement of signal quality.
Moreover, in an embodiment, the patient monitor may include an indicator designed to inform a caregiver on whether a particular medical sensor is properly attached to the body tissue at the measurement site on the patient. For example, an advanced probe off detection (APOD) indicator may comprise a single LED, preferably lighting red when one or more connected medical sensors is not properly attached, optionally lighting green when the attachment is better. This type of probe off detection may combine flashing, changing the frequency of the flashing, audible alarms, and the like to ensure caregiver notices whether the monitor is receiving data indicating improper attachment of a medical probe. Examples of the signal processing involved with the determination of probe off detection are disclosed in U.S. Pat. Nos. 6,526,300, 6,771,994, 6,360,114, 6,654,624, and their related patent and copending application families, each of which is incorporated herein by reference.
Accordingly, an embodiment of the present disclosure includes a patient monitoring device comprising electronic circuitry capable of receiving a signal output from a light sensitive detector capable of detecting light attenuated by body tissue carrying pulsing blood. The electronic circuitry is also capable of outputting audio or visual indicia indicative of one or more physiological parameters of the body tissue. The device further includes a housing including a top side, and a plurality of user input keys arranged on the top side of the housing along the periphery of one or more curves.
Another embodiment includes a patient monitoring device comprising electronics capable of receiving a sensor output and outputting audio or visual data indicative of one or more physiological parameters. The device also includes an outer body housing the electronics and including a top surface having periphery edges defining an approximate shape of the outer body. The device further includes a plurality of keys disposed on the top surface of the outer body, and at least one alignment edge shaped to allow a user to determine by feel a location of the plurality of keys by sliding one or more digits along the at least one alignment edge.
For purposes of summarizing the disclosure, certain aspects, advantages and novel features of the disclosure have been described herein. Of course, it is to be understood that not necessarily all such aspects, advantages or features will be embodied in any particular embodiment.
BRIEF DESCRIPTION OF THE DRAWINGSA general architecture that implements the various features of the disclosure will now be described with reference to the drawings. The drawings and the associated descriptions are provided to illustrate embodiments of the disclosure and not to limit the scope of the disclosure. Throughout the drawings, reference numbers are re-used to indicate correspondence between referenced elements. In addition, the first digit of each reference number indicates the figure in which the element first appears.
Embodiments of the present disclosure include a patient monitor, such as a handheld portable patient monitors, that provides a user with intuitive key navigation. For example, the portable patient monitor includes a unique layout of user input keys and one or more elements providing a user the ability to navigate the layout by feeling those elements. Such intuitive operation advantageously reduces an amount of visual concentration needed to handle and operate the patient monitor.
In various embodiments, a portable patient monitor includes one or more of user input keys disposed along one or more curves. The one or more curves may roughly correspond to a sweeping motion of a user's thumb across the top side of the housing on a hand in which the user holds the portable patient monitoring device. Although preferably irregular shaped, the one or more curves may also or alternatively roughly correspond to a segment of a circle's circumference, where a radius of the circle roughly corresponds to an operator's thumb. Additionally or alternatively, the one or more curves may advantageously be substantially parallel to one or more alignment edges. For example, the monitoring device can include one or more protruding or groove-like edges which intuitively lead the operator's fingers to the various keys in the keypad layout. In an embodiment, the alignment edge is raised and at least partially surrounds the layout. In one embodiment, the alignment edge forms an approximate irregular “V” shape, where a first side of the “V” is substantially parallel to a side of the patient monitor housing. The first side also includes an edge tapered down from a high point at the vertex of the “V.” The other side of the irregular “V” is curved roughly mirroring the sweep of an operator's thumb. While preferred, an artisan will recognize from the disclosure herein that tapering from the vertex of the “V” is optional and a wide variety of other edge formations that guide the operator through the keypad layout are possible, including, for example, multiple substantially parallel edges, indentations, perforated edges, irregular shapes such as the dimples of a golf ball, combinations of the same or the like.
The foregoing alignment edge advantageously provides navigation-by-feel of the input keys by a user's digits, such as the user's thumb. Additionally, the actual keys can provide increased navigation-by feel. In an embodiment, the keys include raised convex keys that feel like bumps on the surface of the housing. Such bumps may also comprise unique shapes or surface textures to further identify the respective input key and/or its function to the operator.
In addition to the foregoing input key layout and alignment edges, an embodiment of the present disclosure includes a portable patient monitor that includes a pliable raised bezel or edge, such as rubber, to absorb some or all of an impact due to a loss of grip, an inadvertent fall from a table or bed, or the like. Additionally, the foregoing alignment edge may also be formed from a material that protects the display surface from accidental impacts. In an embodiment, a protective impact resistant boot may be disposed around various portions of the monitor. Moreover, in an embodiment, the electronic displays or display panel can advantageously be recessed slightly with respect to the monitor housing such that the likelihood of contact between the electronic displays and any potential damaging impacts is greatly reduced. In an embodiment, the foregoing alignment edge assists in raising the housing above the plane of the electronic displays.
Other useful ergonomic features disclosed herein include a cable connector housing made of pliable materials, such as rubber, to protect against damaging impacts, create a secure connection to a sensor cable, protect a wearer of the sensor from sharp edges, and the like. Moreover, a table-top stand may provide a staging element to conveniently position the monitor on a table, affix the monitor to a bed rail, or the like. In an embodiment, the table top stand includes a protectable boot and a retractable stand. When the stand is retracted, the boot can be left connected to the housing of the monitor to protect the monitor from damaging impacts. In an embodiment, the boot is comprises of a pliable material such as rubber.
To facilitate a complete understanding of the disclosure, the remainder of the detailed description describes the disclosure with reference to the drawings, wherein like reference numbers are referenced with like numerals throughout.
In an embodiment, the processor 116 comprises a one or more integrated or other electronic circuits capable of executing software or hardware instructions in order to determine representative values for one or more monitored patient parameters. The sensor interface 118 provides an LED drive current which, for example, may alternately activate the emitters 106. The sensor interface 118 also may comprise input circuitry for amplification and filtering of a sensor output signal generated by the detector 110, which includes information relating to light energy attenuated from transmission through the patient tissue 108. In an embodiment, the sensor interface 118 may advantageously comprise a multifunction communications port capable of communicating the foregoing signals to and from an attached sensor 102, or when determined appropriate, the sensor interface 118 may advantageously be capable of communication with one or more connected computing devices. The communication may be serial or parallel depending upon for example, an amount of available conductors. Such multifunction ports advantageously reduce the number of input/output circuitry by providing multiple functions through the same electrical connection depending upon, for example, a connected sensor or a connected instrument.
The instrument manager 120 provides hardware and software interfaces for managing the user interface 122, including the audible indicator 124, the display 126, and the keypad 128.
In an embodiment, the audible indicator 124 can comprises one or more transducers to generate human perceptible sound indicating, for example, pulse beeps as well as various alarms. The display 126 comprises one or more visual indicators of the one or more monitored parameters. For example, the display 126 may comprise LEDs, 7-segment displays, LCDs, bar graph displays, icons, traces such as plethysmograph or other traces, or the like. According to one embodiment, the display 126 includes at least visual indications of SpO2 and PAI, as will be discussed in greater detail herein.
Although the patient monitoring system 100 is disclosed with reference to the foregoing embodiment, the disclosure is not intended to be limited thereby. Rather, a skilled artisan will recognize from the disclosure herein a wide number of alternatives for the patient monitoring system 100.
As shown in
In an embodiment, the housing 202 comprises plastic or plastic-like materials, optionally manufactured as a two piece injection mold. However, a skilled artisan will recognize a wide variety of suitable materials and manufacturing techniques for the housing 202.
In an embodiment, the input keys of the keypad 208 also provide navigation-by-feel functionality. For example, the keys may comprise convex buttons raised above the display panel, where the convex buttons rise sufficiently that a user's thumb can easily distinguish between the display panel and the convex buttons. Moreover, in an embodiment, each raised convex button may include indicia, such as indentations, perforated edges, irregular shapes such as the dimples of a golf ball, combinations of the same or the like, that assist in identifying each key or convex button to a caregiver without the caregiver needing to look at the particular key.
Additionally, the display portion 206 includes the plurality of LED bar graph or gas meter style displays, 306 and 308, and single LED alarms, 310, 312, and 314. In one embodiment, the bar graph 308 provides a perfusion amplitude index, PAI, as will be discussed in greater detail with reference to
In an embodiment, the bar of the bar graph 308 grows in height as, for example, the value of the parameter displayed becomes more physiologically normal or desirable, while the bar graph 306 grows in height as, for example, the value of the parameter displayed becomes more physiologically dangerous. Additionally or alternatively, the color of the parameter can change from red to yellow to green as, for example, the value of the parameter displayed becomes more physiologically normal or desirable. Moreover, the displays may pulse or flash with greater or lesser frequency as the value becomes more or less desirable, may pulse with the heartbeat, or may be combined with an audible indicator capable of varying the audible signal in pitch, volume, and/or beep frequency in similar manners to those described with respect to the displays.
An artisan will recognize from the disclosure herein that one or both bar graph displays could be changed to represent other data, such as, for example, a measurement of signal quality, an indication of proper application of the sensor to a test site (probe off detection), various alarms, a fast indication of SpO2 designed to track rapid changes therein, or the like.
In an embodiment, the single LED alarms 310, 312, and 314 comprise a red and optionally flashing LED when the calculated levels of PAI, signal quality, or the like are below, or where appropriate, above predetermined thresholds, and are solid green, clear, or off when those values are physiologically normal or desirable. In yet another embodiment, the monitor 204 use the audible indicator 124 in conjunction with the foregoing visual alarms to alert caregivers to parameter values below, or where appropriate, above certain predetermined threshold values or patterns.
While disclosed with reference to
In an embodiment, a PAI of below about 1.25% may indicate medical situations in need of caregiver attention, specifically in monitored neonates. Because of the relevance of about 1.25%, the monitors 104, 204, and 1204 may advantageously include level indicia 1908 where the indicia 1908 swap sides of the graph 1904, thus highlighting any readings below about that threshold. Moreover, behavior of the graph 1904, as discussed above, may advantageously draw attention to monitored values below such a threshold.
As discussed above, the monitors 104, 204, and 1204 may include output functionality that outputs, for example, trend perfusion data, such that a caregiver can monitor the PAI over time. Alternatively or additionally, one or more of the monitors 104, 204, and 1204 may display historical trace data on an appropriate display indicating the monitored PAI values over time.
In one embodiment, the graph 1904 shows a static value of perfusion for a given time period, such as, for example, one or more pulses. In other embodiment or functional setting, the graph 1904 may advantageously pulse with a pulse rate, may hold the last reading and optionally fade until the next reading, may indicate historical readings through colors or fades, or the like. In a preferred embodiment, the LED bar 1908 is highest and green when the perfusion at the measurement site is best, and lowest and red when the perfusion is worst. Moreover, LED 1906 may advantageously light, or optionally flash, when the perfusion falls below a predetermined threshold, or may show the current status, such as, for example, good perfusion—green, cautionary perfusion—yellow, and/or poor perfusion—red. Moreover, an artisan will recognize from the disclosure herein a wide variety of straightforward to complex alarm rules attempting to reduce the number of false alarms caused by the calculated perfusion values dropping below a threshold. Additionally, the audible indicator 124 of the monitors 104, 204, and 1204 may sound in conjunction with and/or addition to the LED 1906.
Although defined with respect to a specific male and female latching portions, an artisan will recognize from the disclosure herein a wide variety of latching mechanism for attaching one or more of the monitors 104, 204, and 1204 to other instruments, surfaces, walls, beds, or the like.
Additionally, other combinations, omissions, substitutions and modifications will be apparent to the skilled artisan in view of the disclosure herein. Accordingly, the present disclosure is not intended to be limited by the reaction of the preferred embodiments, but is to be defined by reference to the appended claims. Moreover, all publications, patents, and patent applications mentioned in this specification are herein incorporated by reference to the same extent as if each individual publication, patent, or patent application was specifically and individually indicated to be incorporated by reference.
Claims
1. A portable patient monitoring device comprising:
- electronic circuitry capable of receiving a signal output from a light sensitive detector capable of detecting light attenuated by body tissue carrying pulsing blood, wherein the electronic circuitry is also capable of outputting audio or visual indicia indicative of one or more physiological parameters of the body tissue;
- a housing including a top side;
- a plurality of user input keys arranged on the top side of the housing along the periphery of one or more curves; and
- a protective cover comprising a pliable material.
2. The portable patient monitoring device of claim 1, wherein the housing comprises a handheld housing.
3. The portable patient monitoring device of claim 1, wherein at least one of the one or more curves is substantially diagonal to the housing and wherein each diagonal includes more than one user key.
4. The portable patient monitoring device of claim 1, wherein at least one of the one or more curves is irregular.
5. The portable patient monitoring device of claim 1, wherein at least one of the one or more curves roughly corresponds to a sweeping motion of a user's thumb across the top side of the housing on a hand in which the user holds the portable patient monitoring device.
6. The portable patient monitoring device of claim 5, wherein each of the one or more curves roughly corresponds to the sweeping motion.
7. The portable patient monitoring device of claim 1, wherein at least one of the one or more curves includes a radius roughly corresponding to a user's thumb on a hand in which the user holds the portable patient monitoring device.
8. The portable patient monitoring device of claim 7, wherein each of the one or more curves roughly corresponds to the radius.
9. The portable patient monitoring device of claim 1, wherein one or more of the user input keys are shaped to allow a user to differentiate by feel between the top side of the housing and the one or more of the user input keys.
10. The portable patient monitoring device of claim 9, wherein the user input keys comprise a raised convex shape.
11. The portable patient monitoring device of claim 1, further comprising at least one alignment edge substantially parallel to at least one of the one or more curves, thereby providing a user guidance to the location of the user input keys on the top side of the housing by feel of the alignment edge.
12. The portable patient monitoring device of claim 11, wherein the at least one alignment edge is raised from a surface of the top side of the housing.
13. The portable patient monitoring device of claim 12, wherein the at least one alignment edge partially surrounds the user input keys.
14. The portable patient monitoring device of claim 13, wherein the at least one alignment edge forms a rough “V” shape.
15. The portable patient monitoring device of claim 1, wherein the housing includes one or more surfaces shaped to position a user's index fingers around the housing to form a secure grip.
16. The portable patient monitoring device of claim 1, wherein the protective cover comprises a pliable impact resistive housing surrounding at least a portion of the housing of the portable patient monitoring device.
17. The portable patient monitoring device of claim 1, further comprising a table-top stand.
18. The portable patient monitoring device of claim 1, wherein the visual indicia comprises at least blood oxygen saturation data.
19. The portable patient monitoring device of claim 1, wherein the visual indicia comprises at pulse amplitude indication data.
20. The portable patient monitoring device of claim 1, wherein the visual indicia comprises at a pulse rate.
21. The portable patient monitoring device of claim 1, wherein the visual indicia comprises a measurement of perfusion through the body tissue.
22. The portable patient monitoring device of claim 1, further comprising an impact resistant bezel.
Type: Application
Filed: Feb 18, 2005
Publication Date: Aug 24, 2006
Inventors: Ammar Al-Ali (Tustin, CA), Chris Schulz (Rocklin, CA), Massi Kiani (Laguna Niguel, CA), Roger Wu (Irvine, CA), Garrick Maurer (Newport Beach, CA)
Application Number: 11/061,090
International Classification: A61B 6/00 (20060101);