Multifunctional telemark boot
Multifunctional Telemark boot (1) suitable for permitting a bending action in correspondence with an articulation of the metatarsus phalange of the foot, the boot (1) being provided with a containing hull (2) for the foot, and with a flexible articulation (7) which is arranged substantially in correspondence with a point (4) of the hull (2) in order to permit the bending action; a control device (10) of the bending action being associated with the hull (2) and being arranged in correspondence with the said flexible articulation (7) in order to control a bending action of the hull (2) itself.
The present invention refers to a multifunctional Telemark boot.
In general, Telemark boots of a well-known type are suitable for permitting a bending action in correspondence with an articulation of the metatarsus phalange of the foot, and comprise a containing hull for the foot, a sole which is integral with the hull, and a flexible articulation, which is part of the hull, and which is arranged substantially in correspondence with a point of the hull in order to permit the bending action of the hull itself.
Telemark boots of the type which have been described above are substantially limited in terms of their use due to the fact that the flexible articulation, which is generally defined by an upper portion of the sole which is foldable like an accordion, permits a single bending action only, without taking into account any specific environmental conditions or the specific physical conformation of the person who is using the Telemark boot.
The aim of the present invention is to produce a Telemark boot, which will be adaptable to different conditions of use and will also permit greater adaptability to the needs of the relevant users.
According to the present invention, a Telemark boot will be produced which is suitable for permitting a bending action in correspondence with an articulation of the metatarsus phalange of the foot, the boot comprising a containing hull for the foot, and a flexible articulation which is arranged substantially in correspondence with a point of the hull in order to permit the said bending action of the hull; the boot being characterised by the fact that it comprises control means of the bending action which are associated with the hull and which are arranged in correspondence with the said flexible articulation.
The present invention will now be described, with reference to the attached drawings, which illustrate an example of a non-limiting embodiment:
FIGS. 10 to 13 show a perspective view, with some parts removed for reasons of clarity, of respective preferred forms of embodiment of a further detail of the Telemark boot which is illustrated in
FIGS. 17 to 25 illustrate a perspective view, with some parts removed for reasons of clarity, respective preferred forms of embodiment of the detail which is illustrated in
With reference to
The boot 1 is suitable for permitting a bending action in correspondence with an articulation of the metatarsus phalange of the foot, and comprises a containing hull 2, which is suitable for containing a foot inside its own interior, and is delimited by two lateral walls 3 which are arranged opposite a longitudinal axis A, a connecting point 4 between the two lateral walls 3 transverse to the axis A, and an upper arched wall 5 which is connected to the walls 3 and the point 4.
The boot 1 also comprises a sole 6 which is integral with the walls 3 and the point 4, and a flexible articulation 7, which is arranged substantially in correspondence with the point 4 in order to permit the bending action of the hull 2, and which presents a window 8 which extends through the wall 5.
Finally, the boot 1 comprises a control device 10 for controlling the bending action, which is arranged in such a way as to substantially close the window 8, and is associated with the hull 2 in order to permit the control of the bending action of the hull 2 itself in correspondence with the articulation 7, which in the following drawings will be illustrated in schematic form with the aim of simplifying the drawings themselves.
According to the illustrations which are shown in
The walls 12 are also slotted into the wall 5 at their opposite ends in correspondence with the articulation 7 and are suitable for bending during the bending action of the articulation 7 itself.
In the form of embodiment which is shown in
With the aim of modifying the control capacity of the device 10 in different ways which are suitable for different conditions of use of the boot 1, the chambers 11, as well as the chambers 11a, can be empty or they can be filled with compressed air, or with material which presents different values of density, such as, for example, gelatinous or viscous material.
According to the illustrations which are shown in
Also in this case, the chambers 11′ can be empty or filled as has been previously described.
In the alternative form of embodiment which is shown in
The device 10 also comprises a stiffening device 20, which is arranged along the axis A in order to confer greater longitudinal stiffness upon the device 10 itself, and is illustrated according to alternative forms of embodiment in FIGS. 7 to 13.
In particular,
In order to match or not with the above-described elements of the device 20 comprises, as is better illustrated in
The arch 30 presents two brackets 31 of a substantially triangular shape which are anchored in correspondence with their own bases 32 to the sole 6, and are connected to each other in correspondence with their own apexes 33 by a bar 34 which extends astride from the median zone of the window 8.
With the aim of varying the elastic and rigid characteristics of the arch 30, the brackets 31 can present one or more shaped passing holes, and the bar 34 can present thickness and shapes of different dimensions.
Furthermore, the device 10 comprises a determined number of tongues 40, which are integral with the hull 2, and which extend from the walls 7 or from the point 4 towards the inside of the window 8 conforming the window 8 itself and defining a determined number of preferential bending lines 41 of the flexible articulation 7.
The number of lines 41 varies from case to case according to the conformation presented by the tongues 40 determining also, as a consequence, both a variation in the conformation of the window 8, as well as a variation in the capacity to control bending action of the device 10.
FIGS. 16 to 24 illustrate, in the interest of providing examples, but not exhaustively, different conformations of the tongues 40 and the window 8 which will be briefly described below purely as an indication.
The device 10 which is illustrated in
The bending lines 41 can also extend on the walls 12 which have previously been described consequently conforming the chambers 11 and determining consequent variations in the elastic and rigid capacity of the device 10.
The device 10 which is shown in
The loops 42 elongate inside the walls 3, and present a variable depth which decreases towards the point 4. Furthermore, the loops 42 which are arranged in correspondence with the point 4 join each other in order to define a common loop 43, which tapers along the axis A going towards the point 4 itself.
The device 10 which is shown in
The device 10 which is illustrated in
The device 10 which is shown in
The device 10 which is shown in
The device 10 also comprises a flexible intermediate bridge 46, which is arranged between the two tongues 40, and which extends along the axis A stride the window 8 and connects the point 4 to the hull 2.
The device 10 which is shown in
The device 10 which is shown in
Instead, the device 10 which is shown in
According to the illustrations which are shown in
In particular, the valve 50 comprises an angular cushion 52 which is anchored along the border to the window 8, and a central cushion 52, which is arranged inside the cushion 51, and which presents a central hole 53 which communicates with the inside of the hull 2. The two cushions 51 and 52, other than contributing to a further control of the bending action of the articulation 7, may also be combined with the walls 12 in the interests of providing an example.
According to the illustrations which are shown in
With the aim of varying its own flexible and rigid characteristics, the rod 60 is provided with a number of shaped passing holes 62, which are arranged one after the other along the rod 60 itself.
According to the illustration which is shown in
As a further alternative, the frame 70 is defined, as shown in
According to the schematic illustration which is shown in
According to the illustrations which are shown in
In particular, the vibrating elements 80 are in the shape of a tuning fork, and are embedded inside a covering layer 82 of the window 8, and present the relative forks 81 arranged transverse to the axis A in order to exert an elastic force along the axis A itself, and the relative legs 83 which are arranged along the walls 3 and which are substantially embedded in the sole 6.
According to the illustration which is shown in
The wall 90 is substantially C-shaped in a section along the axis A, and it presents a thickness the value of which may be varied when the boot 1 is undergoing the construction phase in order to vary the elastic and rigid characteristics of the articulation 7.
The device 10 also comprises, as is better illustrated in
According to the illustrations which are shown in
The two appendixes 100 are suitable for gradually entering into contact with each other and with the hull 2 in order to increase the bending action of the hull 2 itself in correspondence with the articulation 7.
According to the illustrations which are shown in
In particular, the elastic element 110, as shown in
Instead, as shown in
The springs 113 tend to exert a distending elastic action of the sole 6 or rather an elastic action which is concordant with the elastic action of the plates 111.
According to the illustration which is shown in
According to the illustrations which are shown in
In the form of embodiment which is illustrated, the insert 130 presents three projecting outlines 131a of a substantially cylindrical shape which are laterally arranged one beside the other, and a projecting box-shaped outline 131b which is arranged between the projecting outlines 131a and the point 4.
The insert 130 also comprises two end outlines 132 and 133, of which the outline 132 is inserted inside a respective housing 132a which is obtained in the sole 6 in correspondence with a plantar arch 134a of the boot 1, while the outline 133 is inserted in correspondence with a respective shaped housing 135 which is obtained in correspondence with a point 136 of the sole 6. The two outlines 132 and 133 are maintained blocked inside the respective housings 134 and 135 by a screw 137, and by a poppet 138 which is operated by means of a passing hole 139 of the point 136.
According to the illustrations which are shown in
According to the illustration which is shown in
In particular, each plate 151 comprises a respective tongue 154 which extends towards the median line of the hull and along a respective border 155 of the bellows 150, and which forms with the tongue 154 of the other plate 151 a loop 156 which is arranged with its own concavity turned towards the bellows 150. Furthermore, each plate 151 presents, substantially in correspondence with the sole 6, an outlet 157, which forms with the outlet 157 of the other plate 151 an eyelet 158 which communicates with the loop 157 by means of a channel 159 which is defined by the two plates 151, and which is filled together with the eyelet 158, with plastic material.
Each plate 151, being applied in such a way as to abut the bellows 150 which is in turn made of plastic material or fabric, contributes to modifying the control characteristics of the device 10 in terms of the bending action of the boot 1.
According to the illustration which is shown in
According to the illustrations which are shown in
The two bulges 171a and 171b, which are arranged on the ideal continuation of the outer sides of the bulge 170, are separated from each other by an intermediate flattening 172, which contributes to modifying the rigid characteristics of the point 4.
Finally, according to the illustrations which are shown in
In
In
In
Finally, in
It is clear from the above description that the boot 1 provided with the device 10 in its different forms of embodiment which are usable separately from each other or in combination with each other lends itself to being used for different kinds of footwear and, furthermore, also and not only for the practice of Telemark.
It is intended that the present invention should not be limited to the forms of embodiment which are herein described and illustrated, which are to be considered of examples of forms of embodiment of a multifunctional Telemark boot, which may instead be subject to further modifications relating to the shape and disposition of its parts, as well as to details pertaining to construction and assembly.
Claims
1. Telemark boot suitable for permitting a bending action in correspondence with an articulation of the metatarsus phalange of the foot, the boot comprising a containing hull for the foot, and a flexible articulation which is arranged substantially in correspondence with a point of the hull in order to permit the said bending action of the hull; the boot being characterised by the fact that it comprises control means of the bending action which are associated with the hull and which are arranged in correspondence with the said flexible articulation.
2. Telemark boot according to claim 1, wherein said control means of the bending action comprise at least two collapsible chambers which are defined by respective walls made of flexible material which are elastically correlated in relation to each other.
3. Telemark boot according to claim 2, wherein the collapsible chambers are arranged one after the other along and transverse to a longitudinal axis of the boot itself; the said walls being connected along respective flexible hinges which are arranged transverse to the longitudinal axis.
4. Telemark boot according to claim 3, wherein the collapsible chambers are arranged partially overlapping along the said longitudinal axis.
5. Telemark boot according to claim 3, wherein the collapsible chambers are arranged totally overlapping along the said longitudinal axis.
6. Telemark boot according to claim 4, wherein the so means of the bending action comprise stiffening means which are associated with the said walls made of flexible material and are arranged parallel to the said longitudinal axis.
7. Telemark boot according to claim 6, wherein said stiffening means comprise a number of flaps which are arranged parallel to the so axis and which are distributed externally to the hull.
8. Telemark boot according to claim 6, wherein the stiffening means comprise a number of shaped ribs which are arranged along the sad axis and which are distributed externally to the hull.
9. Telemark boot according to claim 6, wherein the stiffening means comprise a number of flaps, which are arranged parallel in relation to each other and transverse to the sad axis, and which are distributed between two successive collapsible chambers.
10. Telemark boot according to claim 7, wherein the stiffening means comprise an external moulding which is suitable for increasing a resistance to bending action of the hull.
11. Telemark boot according to claim 10, wherein the moulding is arranged parallel to the longitudinal axis.
12. Telemark boot according to claim 11, wherein the moulding is S-shaped and is arranged along the longitudinal axis.
13. Telemark boot according to claim 10, wherein the moulding is arranged at an incline in relation to the longitudinal axis.
14. Telemark boot according to claim 13, of comprising a further moulding which is arranged at an incline in relation to the longitudinal axis and which is crossed with the sad moulding.
15. Telemark boot according to any of the claim 6, wherein the stiffening means comprise a support arch which is arranged transverse to the longitudinal axis, and which extends from one side to the other of the said hull.
16. Telemark boot according to claim 1, wherein the control means comprise a determined number of tongues which are integral with the sad hull and which define a determined number of preferential bending lines of the flexible articulation.
17. Telemark book according to claim 16, wherein the control means comprise two pairs of tongues which extend opposite the hull one pair towards the other transverse to a longitudinal axis of the hull and which define two preferential bending lines; the tongues of each pair of tongues defining in relation to each other and with the hull three respective loops of variable extensions towards the point.
18. Telemark boot according to claim 16, wherein the control means comprise a frontal loop which is defined by two tongues which are arranged on opposite sides of the hull.
19. Telemark boot according to claim 1, wherein the control means comprise two tongues, which extend from said point on respective sides of said hull, and an intermediate flexible bridge which is arranged between said tongues.
20. Telemark boot according claim 1, wherein the control means comprise a valve which can be activated by the control means themselves in order to regulate the flow of air into or out of the sa hull.
21. Telemark boot according claim 1, wherein the means of control comprise a flexion bracket which is coupled to said flexible articulation and which extends longitudinally towards a collar of the hull.
22. Telemark boot according to claim 21, wherein the flexion bracket is engaged in correspondence with the flexible articulation, and is further engaged on the collar.
23. Telemark boot according to claim 1, wherein the control means comprise a flexible frame which is arranged in order to cover said flexible articulation.
24. Telemark boot according to claim 23, wherein the flexible frame is defined by a plate which is provided with a number of shaped holes.
25. Telemark boot according to claim 23, wherein the flexible frame is defined by one or two sinuous ribs which extend along a longitudinal axis of said hull.
26. Telemark boot according to claim 23, wherein the flexible frame is defined by a number of semi-cylindrical bodies which are arranged transverse to an along a longitudinal axis of said hull and are laterally connected to each other.
27. Telemark boot according to claim 23, wherein the flexible frame is defined by a box-shaped body which is provided with an external shaped wall.
28. Telemark boot claim 26, wherein the said flexible frame extends as far as a collar of the said hull.
29. Telemark boot according to claim 1, wherein the control means comprise a pair of vibrating elements which are arranged on the opposite sides of the hull and are provided with respective forks which face one another with their tips.
30. Telemark boot according to claim 1, wherein the control means comprise a pair of vibrating elements which are arranged on the opposite sides of said hull and are provided with respective forks which face one another with their tips.
31. Telemark boot according to claim 1, wherein the control means comprise a concave wall which is open towards the outside and which defines a shaped housing which is arranged transverse to a longitudinal axis of said hull.
32. Telemark boot according to claim 31, wherein the control means comprise a cushion made of gelatinous material which is arranged inside the housing.
33. Telemark boot according to claim 1, wherein the control means comprise two flat appendixes, which extend opposite the point, and which are suitable for progressively entering in contact with each other in order to increase the bending action of the hull.
34. Telemark according claim 1, wherein the sod control means comprise an elastic element which is arranged inside the sad hull and which is suitable for exerting a supplementary elastic action.
35. Telemark boot according to claim 34, wherein the elastic element is embedded in a sole of said hull and comprises two comb plates which are hinged in relation to each other to form, in correspondence with a respective hinge, a torsion spring which is arranged transverse to a longitudinal axis of the hull; the two comb plates exerting a distending elastic action of the sole.
36. Telemark boot according to claim 34, wherein the elastic element comprises two torsion springs which present a common torsion axis which is transverse to a longitudinal axis of said hull and two connecting bridges which are arranged between the two opposite sides of the hull in order to connect between them the two torsion springs; the two torsion springs exerting a distending elastic action of the sole.
37. Telemark boot according to claim 1, wherein the control means comprise a shaped elastic plantar which is provided with a flexible portion which is arranged substantially in correspondence with said articulation, and with a compensating portion which is arranged in an intermediate position between the flexible portion itself and the point.
38. Telemark boot according to claim 37, wherein the flexible portion defines a cavity which is open towards the sole and which defines an apex of maximum depth which is substantially in correspondence with the articulation.
39. Telemark boot according to claim 1, wherein the control means comprise an insert which is applied to the sole in such a way that it may be uncoupled, and which presents a number of overhanging outlines for coupling and stiffening.
40. Telemark boot according to claim 39, wherein the overhanging outlines are arranged transverse to the axis in order to render the insert integral with the sole, and they present determined shapes in order to modulate the bending action control characteristics of the means of control.
41. Telemark boot according to claim 1, wherein the means of control comprise a stiffening fork which is laterally associated with the sole.
42. Telemark boot according to claim 41, wherein the fork comprises two arms which are provided with respective shaped overhanging outlines which are able to be coupled to the sole, and a connecting head between the two arms which presents includes variable dimensions.
43. Telemark boot according to claim 1, wherein the control means comprise a bellows which is arranged in correspondence with the flexible articulation, and plate means which are arranged on the side of the bellows and which are made of plastic material or tissue to contribute to modifying the control characteristics of the control means in relation to the bending action of the Telemark boot.
44. Telemark boot according to claim 43, wherein the plate means comprise, for each side of the Telemark boot two plates which define a channel in relation to each other and which is able to be filled with material of a determined density.
45. Telemark boot according to claim 44, wherein each plate defines a respective notch, which is wedged inside the channel in such a way as to replace the filling material of the channel itself.
46. Telemark boot according to claim 1 wherein the control means comprise a bellows, and a number of bulged elements which are made of a material of a determined density and which are associated with the bellows.
47. Telemark boot according to claim 46, wherein the first bulged element of the bulged elements presents, in plan view, a substantially triangular shape, and extends along a median line of the hull as far the bellows.
48. Telemark boot according to claim 46, wherein a second and third bulged element of the bulged elements are arranged in correspondence with an end point of the hull which is opposite the bellows in relation to the first bulged element.
49. Telemark boot according to claim 46, wherein the bulged elements have a variable rigidity in relation to their own thickness and their own width, and they are made of plastic material.
50. Telemark boot according claim 1, wherein the so control means comprise a furrow which is obtained though the end point of the so hull, and a piezo-electric pad, which may be arranged in such a way as to fill the furrow, and which is suitable for being heated in such a way as to obtain the deformation which is due to stress and bending action.
Type: Application
Filed: Jul 15, 2004
Publication Date: Oct 12, 2006
Inventor: Marco Rigat (Sauze di Cesana)
Application Number: 10/561,374
International Classification: A43B 5/04 (20060101);