Prefabricated folding structure having interlocking metal beams
The invention provides prefabricated folding residential dwellings comprised of prefabricated floor, wall and roof members that fold inwardly upon itself to produce a compact partially collapsed folded structure, which is easily transportable, and then unfold outwardly for quick and easy on-site installation.
1. Field of the Invention
The present invention relates to prefabricated folding structures, or more particularly to prefabricated residential dwellings comprised of a prefabricated floor, wall and roof members that fold inwardly upon itself to produce a compact partially collapsed folded structure, which is easily transportable, and then unfold outwardly for quick and easy on-site installation.
2. Description of the Related Art
The vast majority of structures, particularly residential houses, are completely constructed on-site. In the various sequential construction stages required materials and labor are brought to the site. A foundation is laid and the shell of the house is framed. Thereafter, exterior walls, roofing, and floors are installed using plywood sheets, followed by the installation of exterior siding and roof shingles. Windows, heating, electrical and plumbing systems are installed by heating contractors, electricians and plumbers. Insulation is added followed by installation of all the interior walls and floors. Thereafter, appliances are positioned and connected to the electrical and plumbing systems. Interior finishing work such as painting, wall-papering, and interior trim follow. While on-site construction, is the predominant form of house construction, such entail considerable labor costs. It would be desirable to reduce construction costs by taking advantage of the economies of scale available with factory prefabricated housing.
Prefabricated building structures are well known and the majority of these comprise pre-cast or pre-assembled panel structures which are transported to an erection site and assembled. Although many of the component parts of the buildings are pre-fabricated, the erection time can be fairly lengthy and inclement weather conditions can further slow down the erection time as well as expose building materials to the elements. Often, the pre-assembled parts are difficult to transport, heavy to manipulate and often require the use of large cranes for assembly. Prior alternatives involve prefabricating various portions of a house at a central facility or plant, transporting these portions to a building site and then performing the remaining assembly work on-site. It was believed that by prefabricating a significant portion of a house, sufficient cost savings would occur so that the purchase price of the installed prefabricated house would be less than that of a similarly sized conventionally constructed house. However, the installation cost of prefabricated prior art structures was found to be substantial and, when added to the cost of manufacture and delivery, caused the total cost of any of these prefabricated structures to exceed that of conventional construction. Many of the prefabricated or other type home or building structures are constructed for permanent installation and cannot be easily dismantled and reassembled on another site. A still further disadvantage of prefabricated structures is that often these are not very structurally sound and can become damaged if exposed to tornadoes or hurricane force winds. Some of these are also not well insulated or resistant to insect infestation such as by termites. Still further prefabricated building structures require expensive foundations made of concrete thereby increasing the cost of the prefabricated structure. U.S. Pat. No. 6,253,521 shows a steel-framed building construction. A number of prefabricated sections are assembled on a construction site, however, such is not foldable. U.S. Pat. No. 5,950,373 shows a transportable structure kit. All of the parts for a disassembled housing structure are placed in a transportable container for subsequent assembly. U.S. Pat. No. 6,295,766 shows a multistory, modular building structure which may be mounted on a trailer, however such is not indicated to be foldable. U.S. Pat. No. 5,960,593 shows a transportable and collapsible building, however, such is for temporary use as a bar, or the like, for example at sporting functions. Such is not habitable. This invention improvers on U.S. Pat. Nos. 4,545,171; 4,660,332 and 3,348,344, all of which are incorporated herein by reference, which show prefabricated folding structures suitable for residential housing, however, the frameworks thereof are made of hardwood materials which are subject to termite infestation and can become damaged if exposed to hurricane force winds. U.S. Pat. No. 5,890,341 shows a modular, structure, but does not mention steel framing. U.S. Pat. No. 6,434,895 shows a foldable, trailerable building which is useful as a field office, however, no plumbing or electrical capability is mentioned and such would not be suitable as a residential dwelling.
It has now been found that a permanent, pre-fabricated, modular, building may be formed from interlocking rooms using interlocking, pivoting metal channel beams which are resistant to insect infestation and hurricane force winds. The structure has a number of rooms having pivotably floor, roof and wall sections which fold upon one another and thereby form a compact folded structure, and which when unfolded, deploy to form a habitable structure.
SUMMARY OF THE INVENTIONThe invention provides a prefabricated folding structure comprising:
-
- a generally rectangular central core comprising a plurality of core walls, a core floor section connected to and extending between the core walls at a base of the core walls, and a core roof section connected to and over the core walls and over the core floor section; each of said core walls, core floor section and core roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding rooms attached to the central core; each folding room comprising a plurality of room wall members, a folding room floor section removably attached to and extending between the room walls at a base of the room walls and a folding a room roof section removably attached to and extending over the room wall members and extending over the room floor section; each of the room wall members, the room floor section and the room roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said room floor section being pivotedly connected at one end thereof to said core floor section; at least said one room roof section being pivotedly connected at one end thereof to said core roof section; said room wall members being removably attached to said room floor section and said room roof section; each room roof section being pivotedly connected to the core roof section on the same side of the central core as each room floor section is connected to the core floor section;
wherein each folding room floor section and each folding room roof section may be alternately detached from its room wall members and pivoted inwardly toward said central core and positioned in close proximity to and substantially parallel to a corresponding core wall and thereby form a compact folded structure, or pivoted outwardly away from said central core to define a room adjacent to said central core when attached to its room wall members.
The invention also provides a multistory prefabricated folding structure comprising:
-
- a generally rectangular central core comprising a plurality of core walls, a core floor section connected to and extending between the core walls at a base of the core walls, and a core roof section connected to and over the core walls and over the core floor section; each of said core walls, core floor section and core roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding rooms attached to the central core; each folding room comprising a plurality of room wall members, a folding room floor section removably attached to and extending between the room walls at a base of the room walls and a folding a room roof section removably attached to and extending over the room wall members and extending over the room floor section; each of the room wall members, the room floor section and the room roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said room floor section being pivotedly connected at one end thereof to said core floor section; at least said one room roof section being pivotedly connected at one end thereof to said core roof section; said room wall members being removably attached to said room floor section and said room roof section; each room roof section being pivotedly connected to the core roof section on the same side of the central core as each room floor section is connected to the core floor section;
- a sub-core attached under the central core, said sub-core comprising a generally rectangular central sub-core comprising a plurality of sub-core walls, a sub-core floor section connected to and extending between the sub-core walls at a base of the sub-core walls, each of said sub-core walls and the sub-core floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding sub-rooms, one folding sub-room attached under one of the folding rooms and also attached to the central sub-core; each folding sub-room comprising a plurality of sub-room wall members, and a folding sub-room floor section removably attached to and extending between the sub-room walls at a base of the sub-room walls; each of the sub-room wall members and the sub-room floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said sub-room floor section being pivotedly connected at one end thereof to said sub-core floor section; said sub-room wall members being removably attached to said sub-room floor section;
- wherein each folding room floor section and each folding room roof section may be alternately detached from its room wall members and pivoted inwardly toward said central core or central sub-core and positioned in close proximity to and substantially parallel to a corresponding core wall or sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central core to define a room adjacent to said central core when attached to its room wall members;
- wherein each folding sub-room floor section may be alternately detached from its sub-room wall members and pivoted inwardly toward said central sub-core and positioned in close proximity to and substantially parallel to a corresponding sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central sub-core to define a room adjacent to said central sub-core when attached to its sub-room wall members.
The invention further provides a three-story prefabricated folding structure comprising:
-
- a generally rectangular central core comprising a plurality of core walls, a core floor section connected to and extending between the core walls at a base of the core walls, and a core roof section connected to and over the core walls and over the core floor section; each of said core walls, core floor section and core roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding rooms attached to the central core; each folding room comprising a plurality of room wall members, a folding room floor section removably attached to and extending between the room walls at a base of the room walls and a folding a room roof section removably attached to and extending over the room wall members and extending over the room floor section; each of the room wall members, the room floor section and the room roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said room floor section being pivotedly connected at one end thereof to said core floor section; at least said one room roof section being pivotedly connected at one end thereof to said core roof section; said room wall members being removably attached to said room floor section and said room roof section; each room roof section being pivotedly connected to the core roof section on the same side of the central core as each room floor section is connected to the core floor section;
- a sub-core attached under the central core, said sub-core comprising a generally rectangular central sub-core comprising a plurality of sub-core walls, a sub-core floor section connected to and extending between the sub-core walls at a base of the sub-core walls, each of said sub-core walls and the sub-core floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding sub-rooms, one folding sub-room attached under one of the folding rooms and also attached to the central sub-core; each folding sub-room comprising a plurality of sub-room wall members, and a folding sub-room floor section removably attached to and extending between the sub-room walls at a base of the sub-room walls; each of the sub-room wall members and the sub-room floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said sub-room floor section being pivotedly connected at one end thereof to said sub-core floor section; said sub-room wall members being removably attached to said sub-room floor section;
- wherein each folding room floor section and each folding room roof section may be alternately detached from its room wall members and pivoted inwardly toward said central core or central sub-core and positioned in close proximity to and substantially parallel to a corresponding core wall or sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central core to define a room adjacent to said central core when attached to its room wall members;
- wherein each folding sub-room floor section may be alternately detached from its sub-room wall members and pivoted inwardly toward said central sub-core and positioned in close proximity to and substantially parallel to a corresponding sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central sub-core to define a room adjacent to said central sub-core when attached to its sub-room wall members;
- a second sub-core attached under the sub-core, said second sub-core comprising a generally rectangular central second sub-core comprising a plurality of second sub-core walls, a second sub-core floor section connected to and extending between the second sub-core walls at a base of the second sub-core walls, each of said second sub-core walls and the second sub-core floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding second sub-rooms, one folding second sub-room attached under one of the folding sub-rooms and also attached to the central second sub-core; each folding second sub-room comprising a plurality of second sub-room wall members, and a folding second sub-room floor section removably attached to and extending between the second sub-room walls at a base of the second sub-room walls; each of the second sub-room wall members and the second sub-room floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said second sub-room floor section being pivotedly connected at one end thereof to said second sub-core floor section; said second sub-room wall members being removably attached to said second sub-room floor section;
- wherein each folding room floor section and each folding room roof section may be alternately detached from its room wall members and pivoted inwardly toward said central core or central sub-core and positioned in close proximity to and substantially parallel to a corresponding core wall or sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central core to define a room adjacent to said central core when attached to its room wall members;
- wherein each folding sub-room floor section may be alternately detached from its sub-room wall members and pivoted inwardly toward said central sub-core and positioned in close proximity to and substantially parallel to a corresponding sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central sub-core to define a room adjacent to said central sub-core when attached to its sub-room wall members;
- wherein each folding second sub-room floor section may be alternately detached from its second sub-room wall members and pivoted inwardly toward said central second sub-core and positioned in close proximity to and substantially parallel to a corresponding second sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central second sub-core to define a room adjacent to said central second sub-core when attached to its second sub-room wall members.
The invention also provides a process for forming a prefabricated folding structure comprising:
I. providing a trailer which comprises a rectangular framework, which framework is disposed on at least four wheels, an upper edge of the rectangular framework comprising a channel around a periphery of the framework;
II. forming a habitable structure on the trailer by erecting a generally rectangular central core comprising a plurality of core walls, a lowermost portion of each of the core walls being positioned within the channel of the trailer framework, a core floor section connected to and extending between the core walls at a base of the core walls, and a core roof section connected to and over the core walls and over the core floor section; each of said core walls, core floor section and core roof section comprising a plurality of spaced metal channel beams having at least one flat side;
-
- attaching a plurality of folding rooms to the central core; each folding room comprising a plurality of room wall members, a folding room floor section removably attached to and extending between the room walls at a base of the room walls and a folding a room roof section removably attached to and extending over the room wall members and extending over the room floor section; each of the room wall members, the room floor section and the room roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- pivotedly connecting at least one said room floor section at one end thereof to said core floor section; at least said one room roof section being pivotedly connected at one end thereof to said core roof section; said room wall members being removably attached to said room floor section and said room roof section; each room roof section being pivotedly connected to the core roof section on the same side of the central core as each room floor section is connected to the core floor section;
wherein each folding room floor section and each folding room roof section may be alternately detached from its room wall members and pivoted inwardly toward said central core and positioned in close proximity to and substantially parallel to a corresponding core wall and thereby form a compact folded structure, or pivoted outwardly away from said central core to define a room adjacent to said central core when attached to its room wall members.
Thus the invention provides sturdy, habitable low-cost prefabricated structures which are not only economical to manufacture but are also easy and inexpensive to install on-site, to thereby provide significant cost savings over a similarly sized conventionally constructed structure. All the necessary systems, such as wiring, plumbing and heating, and appliances in the structure during prefabrication.
Thus the need for heavy machinery during installation of the structure as well as the labor and effort required for installation are minimized.
BRIEF DESCRIPTION OF THE DRAWINGS
The present invention is applicable to a wide variety of structures of different weight, size, shape and materials for a variety of diverse uses. The invention pertains to single story as well as multiple story prefabricated residential dwellings constructed from interlocking rooms.
On the sides of the core, exterior side walls 71, 72 having corners 3, are adjacent to pivoting floor section 61 at floor joist 611. Each of these joists in the pivoting floor sections are pivotedly connected at an end, via pivots 2, to a respective one of the floor joists, e.g. joist 411, which joists together comprise the floor of the central core 5. The floor of the central core is comprised of a plurality of beams, positioned substantially perpendicular to the walls of the central core, at least one beam oriented parallel to the walls of the central core connected to each of the plurality of beams, and acceptable decking material attached to and substantially covering the beams.
Preferably, these beams are made of steel, and the decking material can be plywood or fiberboard. The preferred material comprises steel studs enclosing polystyrene foam panels or sections, such as are available commercially from ThermaSteel Corporation of Radford, Va. Panels, such as 4 foot by 8 foot panels may be formed by setting steel studs in a forming jig and then filling the cavity with expanded polystyrene. The polystyrene protects the steel and greatly adds to the thermal insulation value of the structure. In a particularly advantageous embodiment, the decking comprises a subflooring of plywood or the like, followed by a final floor covering of hardwood planking, carpeting, tile or linoleum, depending upon the use for that particular section of the house.
The beams of the central core floor 41 (
Once a suitable site has been appropriately excavated, a concrete foundation is laid. This foundation is provided with four points for supporting the folding structure. Two supports are located just below and outside of the core walls, and each of the two other supports is located under one of the pivoting floor sections. Thus, the two supports for the core hold the weight of the structure while the pivoting floor supports maintain the floor in the correct orientation and position i.e., parallel to and level with the core floor. A plate (not shown), which may be comprised of a pair of studs laid one atop another, is affixed all around the top surface of this foundation. These studs and the foundation are configured and arranged so as to facilitate the unfolding of the structure. Preferably, the core walls each comprise a plurality of steel studs and at least two plate members connected respectively to the top and bottom of the plurality of studs. Since these core walls are located within the folded structure, they are provided with gypsum board after the necessary piping, plumbing, and electrical components have been installed. An advantageous stud is a steel, although aluminum, or other metals could be used, if desired. Thereafter, the folded house shown in
As shown in
Each wall is specifically fabricated from steel studs which are approximately spaced 16″ apart on a center-to-center basis. During prefabrication, windows are installed at predetermined locations into these walls, and the exterior surface of each folding wall, i.e., that surface which faces the outside environment, is covered with standard ½″ plywood sheathing material over which a moisture barrier along with the desired siding material, e.g. aluminum siding, PVC siding, asbestos shingle or other siding material, is applied. In addition, electrical outlet boxes are affixed to various studs in these walls and wired at the factory. To conform with standard building codes, all electrical wiring is placed inside each wall. Thereafter, thermal insulation is installed within each wall and illustratively ½″ gypsum board, (also known as “dry wall” or “sheet rock”) is then installed over the interior surface of each folding exterior wall, with an appropriately located prewired electrical outlet. If polystyrene embedded steel panels are used, such extra insulation may be eliminated. Roof and ceiling supporting structures are provided above the central core. These are located on and are supported by the common walls of the core, and preferably comprise a plurality of prefabricated steel truss assemblies. Each of the prefabricated trusses provide the necessary structural support for the upper and lower folding roof sections whenever they are pivoted into an open, i.e. unfolded, position. While only one truss 31 is shown in the cross-sectional view of
In accordance with this feature of the invention, substantial closet space is incorporated into the folding structure through the use of the folding interior walls and free-standing partitions. When the structure is fully folded, these interior walls and partitions are initially positioned to lie alongside various interior side walls comprising the central core. Once the walls and floor members are pivoted into their properly installed positions, an enclosed area is defined around the core. Each pivoting interior wall and each free-standing partition are then pivoted or moved to a pre-determined position within this area in order to define all the rooms arranged about the core and all the closets existing therein.
Folding the Structure
The shipping configuration, shown in
First, free-standing partition 105 is positioned, alongside interior side core wall 28. This partition is preferably oriented such that its vertical edges are parallel to those of the interior core wall. In a similar fashion, interior walls 101-104 are positioned, as shown in
Thereafter, folding ceiling members 81 and 82 are each pivotedly positioned upwardly, as shown in
Next, as shown in
Thereafter, pivoting floor section 61 is pivoted upward about pivot 2 located in the left end of core floor 41, such that exterior front wall 71, particularly its exterior surface, lies alongside exterior side wall 91 (and 94 not shown). Now, with all the exterior walls positioned inwardly about the core, upper folding roof section 50 and 53 are folded, as shown in
Unfolding the Structure
Having summarily described the sequence in which the walls are positioned, and the folding floor and roof members fold inwardly about the central core to form the folded structure shown in
The first structural members to be unfolded are the roof sections. As shown in
Once the folding ceiling members have been fully unfolded and secured in position, an enclosed area is defined about this central core. Then, interior walls 101-104 and 108-112, and free-standing partitions 105, 106, and 107, are moved into respective positions in this area to define both the rooms arranged about the central core and all the closets contained therein. Specifically, interior walls 103 and 112 are positioned in the same manner as does exterior side wall 92. Once the interior walls are positioned, then each free-standing partition is appropriately positioned in place. The interior walls and partitions are completely framed and covered with gypsum board during prefabrication. Once in position, each of these interior walls and partitions are secured by bolts, nuts and washers to the floor joists in pivoting floor sections 61 or 2, and to the rafters in ceiling members 81 and 82. Specifically these bolts are driven through adjacent rafters in the ceiling and between joists in the folding floor members, and into the top (and bottom) horizontal studs comprising each of these interior walls and partitions. Advantageously, the use of free-standing partitions, which are positioned during on-site installation, to define room sizes and closets, readily permits changing the dimensions of these rooms and closets at any time up to installation without incurring much, if any, expense. While the doors to each of the closets formed by the free-standing partitions, as well as a number of interior room doors, have all been omitted for the sake of clarity from the plan views shown in the drawing, these doors are attached, i.e. pre-hung, to corresponding pivotal walls or free-standing partitions and interior core walls during prefabrication. Advantageously, this further reduces on-site installation time and expense.
As should be readily apparent, applicant's folding prefabricated house is now completely unfolded. At this stage of installation, the only portion of the dwelling that remains to be enclosed is the attic. To accomplish this, a prefabricated gable end is fixed to the outermost roof rafters and ceiling beams existing at each side of the dwelling. Specifically, each of the two gable ends, of which only gable end 97 is shown in
The last remaining stage of installation, namely interior finishing, can now proceed. Specifically, the edges of any interior surfaces of abutting structural members are appropriately taped, spackled and sanded, in preparation for applying final wall covering, e.g. paint, or wallpaper. Thereafter, subflooring and final hardwood planking or other final flooring materials are installed in the previously unfloored areas of the house, i.e. above pivots 4. Alternatively, the entire sub-floors and final floor covering can be installed on-site. While this latter approach slightly increases installation cost, it may be necessary, depending upon the final floor covering chosen by the owner, in order to eliminate any visible gaps or joint lines from appearing in the floor. Thereafter, molding and any remaining interior trim is now installed. At this point, the dwelling has been completely constructed and only requires connection to the local utilities, e.g. electricity and sewerage, for it to be completely habitable. An exterior perspective view of the dwelling as it stands completely installed and ready for occupancy is shown in
In the illustrative embodiment described herein, heat is provided through electric baseboard. While electric heat is usually relatively expensive to operate, it is the least expensive to install. Consequently, separate electric baseboard units are installed along the interior bottom edge of various interior core walls and various folding walls. However, to minimize heating costs, a separate thermostat is installed in each room during prefabrication. Other types of heating, ventilating, and air conditioning systems, where desired, can be substituted for electric baseboard or added in addition thereto. Any desired system can be substantially shop installed during prefabrication. In addition, the necessary cable or wiring requirements (i.e., electrical, telephone, television, etc.) can be shop installed during prefabrication. Since the weight of a residential dwelling constructed in accordance with the teachings of the present invention is primarily supported by the walls comprising the central core, this advantageously permits all the pivoting structural members to be made relatively light. Consequently, this permits each member to be pivoted into position by a few workers without using any heavy machinery. Furthermore, the minimal weight inherent in the structure eliminates the need to incorporate any columns into the structure or to construct the foundation from reinforced concrete. Consequently, these factors advantageously reduce installation cost.
The exterior front walls are not limited to being co-planar when fully unfolded. The two walls making up the exterior front wall can be staggered to create a relatively large living room, and also lend a pleasing appearance to the front of the dwelling. In a similar fashion, any of the other walls and/or core walls are also not constrained to entirely lie in a single plane but can instead by comprised of a number of staggered or otherwise non-co-planar sections. Moreover, the pivoting floor and/or ceiling member can also take on many varied non-co-planar geometries to create many diverse and architecturally pleasing layouts. Consequently, a variety of differently shaped structures, including but by no means limited to a simple rectangular layout, can be easily fabricated using the principles of the invention.
These members 81a, 82a shown in phantom in
Specifically, to construct a two-story residential dwelling as shown in
Appropriate openings are provided both in the ceiling of the central core of the lower structure and in the core floor member of the upper structure during their prefabrication in order to accommodate a stair case, which can be installed in the lower structure during its prefabrication. Any necessary banisters and the like are installed during the final interior finishing stage of on-site installation. Unless the two-story dwelling is to be a two family-house, there is little if any need to include any appliances and/or a hot water heater in the upper structure. Thus, the area reserved for the kitchen and closet in the central core can be converted into other usable space, e.g. a den or study. The technique of this invention may be used to form a single family home, a town home, a two story colonial style dwelling, among others.
As can be readily appreciated by those skilled in the art, multi-story structures in excess of two stories, such as three stories can be easily constructed in a similar manner to that described above. The number of separate folding structures that can be stacked to form the multi-story structure is essentially determined by the weight of each folding structure, and the amount of weight that can be supported by both the foundation and the walls in each folding structure, particularly the lowest in the stack.
The beams and studs used herein are metal channel beams, preferably steel channel beams having at least one flat side. The beams have a generally U-shaped cross-section with a wide flat side 150 extending to opposite perpendicular edges 152 as shown in
While the pivoting structural members, i.e. the walls, floors, ceiling and roof members, have been described above as folding and unfolding in a particular sequence, it is readily apparent to those skilled in the art that any or all of these structural members can be readily folded and unfolded in a variety of different sequences. The particular sequence is determined by the desired volume of the folded structure and the particular materials used for the folding members and manner in which these members are constructed.
While the present invention has been particularly shown and described with reference to preferred embodiments, it will be readily appreciated by those of ordinary skill in the art that various changes and modifications may be made without departing from the spirit and scope of the invention. It is intended that the claims be interpreted to cover the disclosed embodiment, those alternatives which have been discussed above and all equivalents thereto.
Claims
1. A prefabricated folding structure comprising:
- a generally rectangular central core comprising a plurality of core walls, a core floor section connected to and extending between the core walls at a base of the core walls, and a core roof section connected to and over the core walls and over the core floor section; each of said core walls, core floor section and core roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding rooms attached to the central core; each folding room comprising a plurality of room wall members, a folding room floor section removably attached to and extending between the room walls at a base of the room walls and a folding a room roof section removably attached to and extending over the room wall members and extending over the room floor section; each of the room wall members, the room floor section and the room roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said room floor section being pivotedly connected at one end thereof to said core floor section; at least said one room roof section being pivotedly connected at one end thereof to said core roof section; said room wall members being removably attached to said room floor section and said room roof section; each room roof section being pivotedly connected to the core roof section on the same side of the central core as each room floor section is connected to the core floor section;
- wherein each folding room floor section and each folding room roof section may be alternately detached from its room wall members and pivoted inwardly toward said central core and positioned in close proximity to and substantially parallel to a corresponding core wall and thereby form a compact folded structure, or pivoted outwardly away from said central core to define a room adjacent to said central core when attached to its room wall members.
2. The structure of claim 1 wherein the beams comprise steel.
3. The structure of claim 1 wherein the beams pivot around bolts.
4. The structure of claim 1 wherein the beams have a generally U-shaped cross-section with a wide flat side extending to opposite perpendicular edges.
5. The structure of claim 1 wherein the beams have a generally C-shaped cross-section with a wide flat side extending to opposite perpendicular edges having perpendicularly inwardly positioned edge flanges.
6. The structure of claim 1 wherein adjacent beams are positioned with their respective wide flat sides in juxtaposition and said beams being attached together with a plurality of bolts and nuts.
7. The structure of claim 1 wherein said core walls and said room wall members further comprise a plurality of spaced metal channel studs having at least one flat side.
8. The structure of claim 1 wherein said core roof section comprises a plurality of rafters, said rafters comprising a pair of metal channel beams having at least one flat side, and which pair of beams are attached together at one end of each of said beams via at least one bolt and nut, one of said rafter beams being notched and the other of said rafter beams being positioned within the notch such that said rafter beams are interlocking with one another.
9. The structure of claim 1 wherein said core roof section comprises a plurality of rafters, said rafters comprising a pair of metal channel beams having at least one flat side, and which pair of beams are attached together at one end of each of said beams via at least one bolt and nut, one of said rafter beams being notched and the other of said rafter beams being positioned within the notch such that said rafter beams are interlocking with one another; and each room roof section being pivotedly connected to the core roof section via an end of a rafter beam on the same side of the central core as each room floor section is connected to the core floor section.
10. The structure of claim 9 wherein the core roof section comprises a plurality of further comprises a plurality of metal channel core roof section supports, each one of said core roof section supports being positioned within a notch in one of the rafters and attached to said rafter via at least one bolt and nut such that said supports and said rafter beams are interlocking with one another.
11. The structure of claim 9 wherein each room roof section comprises a plurality of metal channel room roof section supports, each room roof section being pivotedly connected to the core roof section by pivotally connecting each of the room roof section supports by a bolt and nut to one of said rafter beams.
12. A multistory prefabricated folding structure comprising:
- a generally rectangular central core comprising a plurality of core walls, a core floor section connected to and extending between the core walls at a base of the core walls, and a core roof section connected to and over the core walls and over the core floor section; each of said core walls, core floor section and core roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding rooms attached to the central core; each folding room comprising a plurality of room wall members, a folding room floor section removably attached to and extending between the room walls at a base of the room walls and a folding a room roof section removably attached to and extending over the room wall members and extending over the room floor section; each of the room wall members, the room floor section and the room roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said room floor section being pivotedly connected at one end thereof to said core floor section; at least said one room roof section being pivotedly connected at one end thereof to said core roof section; said room wall members being removably attached to said room floor section and said room roof section; each room roof section being pivotedly connected to the core roof section on the same side of the central core as each room floor section is connected to the core floor section;
- a sub-core attached under the central core, said sub-core comprising a generally rectangular central sub-core comprising a plurality of sub-core walls, a sub-core floor section connected to and extending between the sub-core walls at a base of the sub-core walls, each of said sub-core walls and the sub-core floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding sub-rooms, one folding sub-room attached under one of the folding rooms and also attached to the central sub-core; each folding sub-room comprising a plurality of sub-room wall members, and a folding sub-room floor section removably attached to and extending between the sub-room walls at a base of the sub-room walls; each of the sub-room wall members and the sub-room floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said sub-room floor section being pivotedly connected at one end thereof to said sub-core floor section; said sub-room wall members being removably attached to said sub-room floor section;
- wherein each folding room floor section and each folding room roof section may be alternately detached from its room wall members and pivoted inwardly toward said central core or central sub-core and positioned in close proximity to and substantially parallel to a corresponding core wall or sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central core to define a room adjacent to said central core when attached to its room wall members;
- wherein each folding sub-room floor section may be alternately detached from its sub-room wall members and pivoted inwardly toward said central sub-core and positioned in close proximity to and substantially parallel to a corresponding sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central sub-core to define a room adjacent to said central sub-core when attached to its sub-room wall members.
13. The structure of claim 12 wherein the beams comprise steel.
14. The structure of claim 12 wherein the beams pivot around bolts.
15. The structure of claim 12 wherein the beams have a generally U-shaped cross-section with a wide flat side extending to opposite perpendicular edges.
16. The structure of claim 12 wherein the beams have a generally C-shaped cross-section with a wide flat side extending to opposite perpendicular edges having perpendicularly inwardly positioned edge flanges.
17. The structure of claim 12 wherein adjacent beams are positioned with their respective wide flat sides in juxtaposition and said beams being attached together with a plurality of bolts and nuts.
18. The structure of claim 12 wherein said core walls, room wall members, sub-core walls and sub-room wall members further comprise a plurality of spaced metal channel studs having at least one flat side.
19. The structure of claim 12 wherein said core roof section comprises a plurality of rafters, said rafters comprising a pair of metal channel beams having at least one flat side, and which pair of beams are attached together at one end of each of said beams via at least one bolt and nut, one of said rafter beams being notched and the other of said rafter beams being positioned within the notch such that said rafter beams are interlocking with one another.
20. The structure of claim 12 wherein said core roof section comprises a plurality of rafters, said rafters comprising a pair of metal channel beams having at least one flat side, and which pair of beams are attached together at one end of each of said beams via at least one bolt and nut, one of said rafter beams being notched and the other of said rafter beams being positioned within the notch such that said rafter beams are interlocking with one another; and each room roof section being pivotedly connected to the core roof section via an end of a rafter beam on the same side of the central core as each room floor section is connected to the core floor section.
21. The structure of claim 20 wherein the core roof section further comprises a plurality of metal channel core roof section supports, each one of said core roof section supports being positioned within a notch in one of the rafters and attached to said rafter via at least one bolt and nut such that said supports and said rafter beams are interlocking with one another.
22. The structure of claim 20 wherein each room roof section comprises a plurality of metal channel room roof section supports, each room roof section being pivotedly connected to the core roof section by pivotally connecting each of the room roof section supports by a bolt and nut to one of said rafter beams.
23. A three-story prefabricated folding structure comprising:
- a generally rectangular central core comprising a plurality of core walls, a core floor section connected to and extending between the core walls at a base of the core walls, and a core roof section connected to and over the core walls and over the core floor section; each of said core walls, core floor section and core roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding rooms attached to the central core; each folding room comprising a plurality of room wall members, a folding room floor section removably attached to and extending between the room walls at a base of the room walls and a folding a room roof section removably attached to and extending over the room wall members and extending over the room floor section; each of the room wall members, the room floor section and the room roof section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said room floor section being pivotedly connected at one end thereof to said core floor section; at least said one room roof section being pivotedly connected at one end thereof to said core roof section; said room wall members being removably attached to said room floor section and said room roof section; each room roof section being pivotedly connected to the core roof section on the same side of the central core as each room floor section is connected to the core floor section;
- a sub-core attached under the central core, said sub-core comprising a generally rectangular central sub-core comprising a plurality of sub-core walls, a sub-core floor section connected to and extending between the sub-core walls at a base of the sub-core walls, each of said sub-core walls and the sub-core floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding sub-rooms, one folding sub-room attached under one of the folding rooms and also attached to the central sub-core; each folding sub-room comprising a plurality of sub-room wall members, and a folding sub-room floor section removably attached to and extending between the sub-room walls at a base of the sub-room walls; each of the sub-room wall members and the sub-room floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said sub-room floor section being pivotedly connected at one end thereof to said sub-core floor section; said sub-room wall members being removably attached to said sub-room floor section;
- wherein each folding room floor section and each folding room roof section may be alternately detached from its room wall members and pivoted inwardly toward said central core or central sub-core and positioned in close proximity to and substantially parallel to a corresponding core wall or sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central core to define a room adjacent to said central core when attached to its room wall members;
- wherein each folding sub-room floor section may be alternately detached from its sub-room wall members and pivoted inwardly toward said central sub-core and positioned in close proximity to and substantially parallel to a corresponding sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central sub-core to define a room adjacent to said central sub-core when attached to its sub-room wall members;
- a second sub-core attached under the sub-core, said second sub-core comprising a generally rectangular central second sub-core comprising a plurality of second sub-core walls, a second sub-core floor section connected to and extending between the second sub-core walls at a base of the second sub-core walls, each of said second sub-core walls and the second sub-core floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- a plurality of folding second sub-rooms, one folding second sub-room attached under one of the folding sub-rooms and also attached to the central second sub-core; each folding second sub-room comprising a plurality of second sub-room wall members, and a folding second sub-room floor section removably attached to and extending between the second sub-room walls at a base of the second sub-room walls; each of the second sub-room wall members and the second sub-room floor section comprising a plurality of spaced metal channel beams having at least one flat side;
- at least one said second sub-room floor section being pivotedly connected at one end thereof to said second sub-core floor section; said second sub-room wall members being removably attached to said second sub-room floor section;
- wherein each folding room floor section and each folding room roof section may be alternately detached from its room wall members and pivoted inwardly toward said central core or central sub-core and positioned in close proximity to and substantially parallel to a corresponding core wall or sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central core to define a room adjacent to said central core when attached to its room wall members;
- wherein each folding sub-room floor section may be alternately detached from its sub-room wall members and pivoted inwardly toward said central sub-core and positioned in close proximity to and substantially parallel to a corresponding sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central sub-core to define a room adjacent to said central sub-core when attached to its sub-room wall members;
- wherein each folding second sub-room floor section may be alternately detached from its second sub-room wall members and pivoted inwardly toward said central second sub-core and positioned in close proximity to and substantially parallel to a corresponding second sub-core wall and thereby form a compact folded structure, or pivoted outwardly away from said central second sub-core to define a room adjacent to said central second sub-core when attached to its second sub-room wall members.
24. The structure of claim 23 wherein the beams comprise steel.
25. The structure of claim 23 wherein the beams pivot around bolts.
26. The structure of claim 23 wherein the beams have a generally U-shaped cross-section with a wide flat side extending to opposite perpendicular edges.
27. The structure of claim 23 wherein the beams have a generally C-shaped cross-section with a wide flat side extending to opposite perpendicular edges having perpendicularly inwardly positioned edge flanges.
28. The structure of claim 23 wherein adjacent beams are positioned with their respective wide flat sides in juxtaposition and said beams being attached together with a plurality of bolts and nuts.
29. The structure of claim 23 wherein said core walls, room wall members, sub-core walls, sub-room wall members, second sub-core walls, and second sub-room wall members further comprise a plurality of spaced metal channel studs having at least one flat side.
30. The structure of claim 23 wherein said core roof section comprises a plurality of rafters, said rafters comprising a pair of metal channel beams having at least one flat side, and which pair of beams are attached together at one end of each of said beams via at least one bolt and nut, one of said rafter beams being notched and the other of said rafter beams being positioned within the notch such that said rafter beams are interlocking with one another.
31. The structure of claim 23 wherein said core roof section comprises a plurality of rafters, said rafters comprising a pair of metal channel beams having at least one flat side, and which pair of beams are attached together at one end of each of said beams via at least one bolt and nut, one of said rafter beams being notched and the other of said rafter beams being positioned within the notch such that said rafter beams are interlocking with one another; and each room roof section being pivotedly connected to the core roof section via an end of a rafter beam on the same side of the central core as each room floor section is connected to the core floor section.
32. The structure of claim 31 wherein the core roof section further comprises a plurality of metal channel core roof section supports, each one of said core roof section supports being positioned within a notch in one of the rafters and attached to said rafter via at least one bolt and nut such that said supports and said rafter beams are interlocking with one another.
33. The structure of claim 31 wherein each room roof section comprises a plurality of metal channel room roof section supports, each room roof section being pivotedly connected to the core roof section by pivotally connecting each of the room roof section supports by a bolt and nut to one of said rafter beams.
34. The structure of claim 31 wherein said core roof section comprises a plurality of rafters, said rafters comprising a pair of metal channel beams having at least one flat side, and which pair of beams are attached together at one end of each of said beams via at least one bolt and nut, one of said rafter beams being notched and the other of said rafter beams being positioned within the notch such that said rafter beams are interlocking with one another; and each room roof section being pivotedly connected to the core roof section via an end of a rafter beam on the same side of the central core as each room floor section is connected to the core floor section.
35. The structure of claim 34 wherein the core roof section further comprises a plurality of metal channel core roof section supports, each one of said core roof section supports being positioned within a notch in one of the rafters and attached to said rafter via at least one bolt and nut such that said supports and said rafter beams are interlocking with one another.
36. The structure of claim 34 wherein each room roof section comprises a plurality of metal channel room roof section supports, each room roof section being pivotedly connected to the core roof section by pivotally connecting each of the room roof section supports by a bolt and nut to one of said rafter beams.
37. A process for forming a prefabricated folding structure comprising:
- I. providing a trailer which comprises a rectangular framework, which framework is disposed on at least four wheels, an upper edge of the rectangular framework comprising a channel around a periphery of the framework;
- II. forming a habitable structure on the trailer by erecting a generally rectangular central core comprising a plurality of core walls, a lowermost portion of each of the core walls being positioned within the channel of the trailer framework, a core floor section connected to and extending between the core walls at a base of the core walls, and a core roof section connected to and over the core walls and over the core floor section; each of said core walls, core floor section and core roof section comprising a plurality of spaced metal channel beams having at least one flat side; attaching a plurality of folding rooms to the central core; each folding room comprising a plurality of room wall members, a folding room floor section removably attached to and extending between the room walls at a base of the room walls and a folding a room roof section removably attached to and extending over the room wall members and extending over the room floor section; each of the room wall members, the room floor section and the room roof section comprising a plurality of spaced metal channel beams having at least one flat side; pivotedly connecting at least one said room floor section at one end thereof to said core floor section; at least said one room roof section being pivotedly connected at one end thereof to said core roof section; said room wall members being removably attached to said room floor section and said room roof section; each room roof section being pivotedly connected to the core roof section on the same side of the central core as each room floor section is connected to the core floor section;
- wherein each folding room floor section and each folding room roof section may be alternately detached from its room wall members and pivoted inwardly toward said central core and positioned in close proximity to and substantially parallel to a corresponding core wall and thereby form a compact folded structure, or pivoted outwardly away from said central core to define a room adjacent to said central core when attached to its room wall members.
Type: Application
Filed: Mar 30, 2004
Publication Date: Oct 12, 2006
Inventor: Vincent Shanni (Scotch Plains, NJ)
Application Number: 10/552,100
International Classification: E04H 6/00 (20060101);