Multiple plane scanning system for data reading applications
An optical system and method for data reading. The preferred system is directed to a scanner which includes a laser diode and a beam splitter for generating first optical beam and a second optical beam, the first optical beam being directed toward one side of a scanning optical element such as a rotating polygon mirror and to a first mirror array, the second optical beam is being simultaneously directed toward a second optical element such as another side of the rotating polygon mirror and then to a second and a third mirror array. The first mirror array is configured to generate a scan pattern through a vertical window and the second and third mirror arrays are configured to generate scan patterns passing through a horizontal window. In combination, the three mirror arrays generate three sets of scan lines so as to scan the bottom and all lateral sides of an object being passed through the scan volume.
Latest PSC Scanning, Inc. Patents:
- Extended depth of field imaging system using chromatic aberration
- Optical code reader using an anamorphic Scheimpflug optical system
- DATA READER AND METHODS FOR IMAGING TARGETS EXPOSED TO HIGH INTENSITY ILLUMINATION
- Systems and methods for data reading and EAS tag sensing and deactivating at retail checkout
- RFID antenna system having reduced orientation sensitivity
This application is a continuation of application Ser. No. 11/341,071 filed Jan. 27, 2006, which is a continuation of application Ser. No. 10/858,909 filed Jun. 1, 2004, now U.S. Pat. No. 6,991,169, which is a continuation of application Ser. No. 10/431,070, filed May 6, 2003, now U.S. Pat. No. 6,974,084, which is a continuation of application Ser. No. 09/078,196, filed May 13, 1998, now U.S. Pat. No. 6,568,598, which is a divisional of application Ser. No. 08/806,194, filed Feb. 26, 1997, now U.S. Pat. No. 5,837,988, which is a divisional of application Ser. No. 08/554,819, filed Nov. 7, 1995, now U.S. Pat. No. 5,705,802, which is a divisional of application Ser. No. 08/155,112, filed Nov. 19, 1993, now U.S. Pat. No. 5,475,207, which is a continuation-in-part of application Ser. No. 07/913,580, filed Jul. 14, 1992, now abandoned.
BACKGROUNDThe field of the present invention relates to optical scanning systems and particularly to a scanning system capable of successfully reading objects aligned in a variety of orientations. The invention is especially suitable for use as a fixed scanner such as that employed at a supermarket checkout counter reading bar codes such as those found on consumer products.
For effective and accurate performance, a bar code scanner depends upon focused optics and scanning geometry. Fixed scanners frequently employ a rotating polygon mirror which directs a scanning beam toward a mirror array for generating a desired scan pattern. One type of fixed bar code scanner positions a scan engine in a base with a scan window oriented in a horizontal plane. One such scanning system is disclosed in U.S. Pat. No. 5,073,702, in which a scanning beam is reflected off a mirror array which has a plurality of mirrors arranged in a generally semicircular pattern. The scanning beam reflecting off each of the mirrors has vertically upward component thereby passing through the window/aperture. Objects to be scanned are passed over the window with the bar codes oriented in a generally downward direction.
In another scanner orientation, the scan engine is housed in a vertical tower with the scan window oriented in a vertical plane. In such a vertical scanner, generally all the outgoing scan beams come out sidewards also have an upward vertical component. Objects to be scanned are passed in front of the window with the bar codes oriented in a generally sideward direction.
In order to produce a successful scan, an object must be oriented with its bar code passed in front of the scan window at an angle which is not so oblique as to prevent a scan line from striking or “seeing” the bar code. Therefore, to achieve a successful scan, the user must position the object with the bar code placed sufficiently close to the desired orientation. The range of suitable plane orientation of the object bearing the bar code is limited by the size of the window and the angle over which the mirror array can direct a scan pattern. Present vertical scanners can scan bar codes oriented on certain lateral sides (i.e., side facing) which face the vertical window, but experience difficulties in scanning faces oriented in a horizontal plane (i.e., facing up or down) or lateral sides opposite the window. Horizontal scanners (i.e., upward facing) are fairly adept at scanning the bottom side but are frequently limited as to which lateral sides may be scanned. The present inventors have recognized that it would be desirable to increase the range of plane orientation readable by a scanning system which would minimize required bar code label orientation, support belt to belt (automatic) scanning, and otherwise provide for improved scanning ergonomics.
SUMMARYThe present invention relates to an optical system and method for data reading. A first preferred system is directed to a scanner which includes means for generating a first optical beam and a second optical beam, the first optical beam being directed toward one side of a first scanning optical element such as a rotating polygon mirror and to a first mirror array, the second optical beam being directed toward a second scanning optical element such as another side of the rotating polygon mirror and then to a second mirror array. The first mirror array is configured to generate a scan pattern having an apparent source from one orthogonal direction and the second mirror array is configured to generate a scan pattern having an apparent source from another orthogonal direction. A second preferred system is directed to a scanner having a housing with a generally vertical window in an upper housing section and a generally horizontal window in a lower housing section The scanner includes a light source generating a light beam and a beam splitter dividing the light beam into a first optical beam and a second optical beam. The first optical beam is directed toward one side of a scanning optical element, then to a first mirror array located in the upper housing section adjacent the vertical window, and then out the vertical window. The second optical beam is directed toward another side of the scanning optical element with a first portion of the second optical beam being directed to a second mirror array located in a first side of the lower housing section adjacent the upper housing portion and then through the horizontal window and with a second portion of the second optical beam being directed to a third mirror array located in a second side of the lower housing opposite the first side thereof. In a preferred embodiment, return signals detected from both the first and second optical beams are processed by a single microprocessor to allow for unified signal processing.
Additional aspects and advantages of this invention will be apparent from the following detailed description of preferred embodiments, which proceeds with reference to the accompanying drawings.
BRIEF DESCRIPTION OF THE DRAWINGS
The preferred embodiments will now be described with reference to the drawings.
The scanner 10 generates a scan volume generally designated 5 by scanning beams projected outwardly through lower and upper windows 20 and 25. In order to facilitate referral to relative directions, orthogonal coordinates (X, Y, Z) are designated in
The scan engine of scanner 10 has a central rotating polygon mirror 30 driven by a motor 40. In the lower housing portion 14, a light source 76 generates a beam of light and directs it toward mirror 74. The light source 76 may be a laser, laser diode, or any other suitable source. The mirror 74 focuses and reflects light toward the polygon mirror 30 which has four mirror facets 31, 32, 33, 34. As the polygon mirror 30 rotates, the outgoing beam is directed across the lower mirror array 80 and then reflected out through the lower window 20 to achieve a desired scan pattern. Light reflecting off the target returns via the same path and is collected by a collection mirror 72 and focused onto a detector 79. The polygon mirror 30 is preferably molded in a single piece out of emanating, but could be constructed out of acrylic or other optical materials including other plastics, metals or glass by one skilled in the art. The outer surface of each mirror facet may be advantageously coated with a suitable high reflective coating, the coating chosen would depend upon the optical material of the polygon mirror 30. For example, a emanating or acrylic facet may have a metallic coating such as aluminum or gold, while a metal or glass facet may be preferably coated with a single or multi-layered dielectric such as silicon dioxide (SiO2) or titanium dioxide.
The outgoing beam mirror 74 and the incoming collection mirror 72 are also preferably an integral unit of one-piece construction forming a mirror unit 70. Both mirror elements are optically powered, the smaller outgoing mirror 74 being parabolic and the larger collection mirror 72 being ellipsoidal.
Simultaneously (or intermittently if desired) to the operation of the lower scan generation, an upper light source 56 generates a beam of light and directs it toward mirror 54. The light source 56 may be a laser, laser diode, or any other suitable source. The mirror 54 focuses and reflects light toward the polygon mirror 30. As the polygon mirror 30 rotates, the outgoing beam is directed across the upper mirror array 60 and then reflected out through the upper window 25 to achieve a desired scan pattern. Light scattered off the target returns the same path and is collected by a collection mirror 52, reflecting off fold mirror 58 and focused onto a detector 59. The outgoing beam mirror 54 and the incoming collection mirror 52 are preferably an integral unit of one-piece construction forming a mirror unit 50. Both mirror elements are optically powered, the smaller outgoing mirror 54 being parabolic and the larger collection mirror 52 being ellipsoidal.
Outgoing light beam from the upper source 56 reflects off one side of the polygon mirror 30 while simultaneously the light beam from the lower source 76 reflects off an opposite side of the polygon mirror 30. The upper mirror array 60 cooperates with the rotating polygon mirror 30 to generate the scan pattern 90 shown in
The lower mirror array 80 cooperates with the rotating polygon mirror 30 to generate the scan pattern 95 shown in
As shown in
The upper window 25 is arranged at an oblique angle θ to the vertical lower window 20 of about 150°. The lower window 20 and upper window 25 are preferably constructed from glass, plastic or other suitable material. In an application where it is anticipated objects may strike the window, it may be coated with a suitable scratch resistant coating or even constructed of sapphire. The lower and upper windows may constitute first and second window elements or may simply be apertures through which the scanning beams pass. The first window element is defined to be oriented in a first aperture plane and the second window element is defined to be oriented in a second aperture plane, the first aperture plane being oriented at an angle θ to the second aperture plane. Preferably the angle θ is greater than 90° and somewhat less than 180°, with a preferred angle of 150°.
Though in actuality the scan patterns generated by each mirror array 60, 80 are truly three dimensional, the scanning sweep generated by each of the mirror arrays may be generally described as a scan plane, the plane being defined by a median of scan lines emanating from the respective mirror array, positioning the plane in a coplanar orientation with the semicircle of the mirror array. By positioning the mirror arrays 60, 80 on opposite sides of the polygon mirror 30, the scan planes emanating from the mirror arrays intersect in the scan volume, the volume through which the objects to be scanned are passed. In an application of a vertically oriented scanner in a market checkout stand, the angle of the intersecting scan planes is preferably between about 30° and 90° with a preferred angle of about 60°.
Though the preferred scanning system is described as a fixed scanner with objects bearing a symbol such as a bar code being passed through the scan volume, alternately the scanner and the scan volume may be moved past a stationary object. Such a configuration may be desirable for inventory management or large object scanning applications for example. In either the fixed or moving scanner case, the object is being passed through the scan volume.
Alternately, the scanner window (if a single window is employed) or the scanner windows 20, 25 may comprise holographic elements to provide additional scan pattern directional control. As described above,
The configuration may also include additional components depending upon the application. For example, an optical element 58, 78 such as an aperture, filter or grating may be positioned in the outgoing light path to block out undesirable incoming light rays or provide some other desired function.
Alternately, such a design may be configured with a rotating or pivoting fold mirror (for example in place of the beam splitter 224) which would alternately direct the light beam toward the fold mirror 227 or directly to the polygon mirror 230.
When the mirror portion 252 is aligned in the beam path, the light beam is reflected toward the polygon mirror 240 and returning signal is reflected back to the collection lens which focuses the collected beam onto detector 239. When the void portion 256 is aligned in the beam path, the light beam passes therethrough and is then reflected off fold mirror 242 toward the polygon mirror 240 and returning signal is reflected back off the fold mirror 242, passing through the void portion 256 and on to the collection lens which focuses the collected beam onto detector 239. The relative size of the mirror portion 252 and the void portion 256 may be selected to adjust the relative amount that the upper and lower scanning is operated. In the preferred embodiment, a majority of the scanning beam would be directed to the upper scanning portion (e.g., 60%-70%) so the mirror portion 252 would be a larger arc (216°-252°) than the void portion (144°-108°).
Though the previous embodiments illustrate a single polygon mirror for the optical scanning element or mechanism, other configurations may be employed such as for example a rotating optical polygon of any suitable number of facet mirrors, a rotating holographic disk, a pair of rotating single facet mirrors, and a pair of pivoting single facet mirrors, or any other suitable scanning mechanism. Some of these alternate designs will now be discussed.
Similarly,
The above described scanning and collecting configurations are but a few examples of suitable configurations. Following the disclosure herein, one skilled in the art may combine portions of some of the configurations with other of the configurations.
The scanning system may also be combined with a horizontal scanner.
Alternately, the scanning systems of
An alternate multiplanar scanner is illustrated in
Moreover, each of the lateral sides of an object being passed through the scan volume may be scanned by lines from more than one of the sets of scan lines. Assuming an orientation of the scanner 500 with the product being moved through the scan volume along the “Z” direction (shown in the X, Y, Z directions in
The separate collection optics permit the simultaneous scanning through the horizontal and vertical windows. Separate analog signal processors 710, 712 are provided for simultaneously processing the analog signals from the respective photodiodes. Each signal is then converted and processed in a digital processor 714, 716 and then input into the microprocessor 725 for final processing and transmittal to the point of sale system 730. Alternately, the signals from the analog signal processors 710, 712 may be routed to a single digital processor 720, multiplexed by a switching mechanism 713. Alternately, a combination of the above two embodiments may be used. Buffers (not shown) may be used in the above embodiments.
An integrated weigh scale may be incorporated into the horizontal housing portion 512. Such a system is preferably constructed with a concentric beam system which does not interfere with the placement of the horizontal window 525 at the center of a weighing platter. The signal from the scale electronics 740 may then be transmitted to the microprocessor 725 for processing and output to the POS system 730.
Thus, a scanning system and method for reading data have been shown and described. It is intended that any one of the disclosed outgoing light configurations may be combined with any one of the collecting configurations. Though certain examples and advantages have been disclosed, further advantages and modifications may become obvious to one skilled in the art from the disclosures herein. The invention therefore is not to be limited except in the spirit of the claims that follow.
Claims
1-11. (canceled)
12. A method of generating a complex laser scanning pattern from a bioptical laser scanning system for providing 360° of omnidirectional bar code symbol scanning coverage at a point of sale (POS) station, said method comprising the steps of:
- (a) supporting at a POS station, a bioptical laser scanning system including (i) a horizontal section integrally connected to a vertical section, (ii) a horizontal-scanning window formed in said horizontal section, (iii) a vertical-scanning window formed in said vertical section, and being substantially orthogonal to said bottom-scanning window, (iv) a first laser scanning plane generation mechanism disposed within said vertical section, and (v) a second laser scanning plane generation mechanism disposed within said horizontal section;
- (b) generating a first plurality of laser scanning planes from said first laser scanning plane generation mechanism, and projecting said first plurality of laser scanning planes through said horizontal-scanning window, and also generating a second plurality of laser scanning planes from said second laser scanning plane generation mechanism, and projecting said second plurality of laser scanning planes through said horizontal-scanning window;
- (c) said first and second pluralities of laser scanning planes (i) intersecting within predetermined scan regions
14. The method of claim 12, wherein the height dimension of the said horizontal section is less than about 4.5 inches for installation of said horizontal section within a countertop surface at said POS station.
15. The method of claim 12, wherein during step (c) said plurality of groups of intersecting laser scanning planes comprises over sixty (60) different laser scanning planes cooperating within said 3-D scanning volume to generate said complex omni-directional 3-D laser scanning pattern.
16. The method of claim 12, wherein during step (c) each said group of intersecting laser scanning planes comprises: (i) a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e., ladder type bar code symbols) that are oriented substantially horizontal with respect to said horizontal-scanning window, and (ii) a plurality of substantially-horizontal laser scanning plane for reading bar code symbols having bar code elements (i.e., picket-fence type bar code symbols) that are oriented substantially vertical with respect to said horizontal-scanning window.
17. The method of claim 13, wherein said first laser beam production module comprises a first visible laser diode (VLD), and said second laser beam production module comprises a second visible laser diode (VLD).
18. The method of claim 13, wherein during step (b), said first plurality of laser beam folding mirrors and said first laser production module contained within a 3-D scanning volume defined between said horizontal-scanning and vertical-scanning windows, and (ii) generating a plurality of groups of intersecting laser scanning planes within said 3-D scanning volume, and
- (d) whereby said plurality of groups of intersecting laser scanning planes forming a complex omni-directional 3-D laser scanning pattern within said 3-D scanning volume that is capable of scanning a bar code symbol located on the surface of an object presented within said 3-D scanning volume at any orientation and from any direction at said POS station so as to provide 360° of omnidirectional bar code symbol scanning coverage at said POS station.
13. The method of claim 12, wherein during step (b) said first laser scanning plane generation mechanism produces a first laser beam from a first laser bream production module and a first polygonal scanning element having multiple reflective surfaces rotating about a first axis of rotation scans said first laser beam, so as to produce a first laser scanning beam that reflects off said first plurality of laser beam folding mirrors to generate and project said first plurality of laser scanning planes through said horizontal-scanning window; and wherein during step (b) said second laser scanning plane generation mechanism produces a second laser beam from a second laser beam production module and a second polygonal scanning element having multiple reflective surfaces rotating about a second axis of rotation scans said second laser beam, so as to produce a second laser scanning beam that reflects off said second plurality of laser beam folding mirrors to generate and project said second plurality of laser scanning planes through said vertical-scanning window,
- cooperate with first and second light collecting/focusing optical elements and first and second photodetectors disposed within said horizontal housing section to form first and second scanning stations disposed about said first polygonal scanning element, and wherein the light collecting/focusing optical element within each said laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
19. The method of claim 18, wherein during step (b), said second plurality of laser beam folding mirrors and said second laser production module cooperate with a third light collecting/focusing optical element and a third photodetector disposed within said vertical housing section to form third scanning station disposed about said second polygonal scanning element, and wherein the light collecting/focusing optical element within said third laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
20. The method of claim 13, wherein said first polygonal scanning element comprises a first polygonal scanning mirror having a first plurality of rotating mirror facets, and wherein said second polygonal scanning element comprises a second polygonal scanning mirror having a second plurality of rotating mirror facets.
21. The method of claim 12, wherein said second plurality of rotating mirror facets on said second polygonal scanning mirror are classifiable into a first class of facets having High Elevation (HE) angle characteristics, and a second class of facets having Low Elevation (LE) angle characteristics.
22. The method of claim 12, wherein during step (d) said complex omni-directional 3-D laser scanning pattern is generated from said horizontal-scanning window and said vertical-scanning window during the revolution of said first and second polygonal scanning elements.
23. The method of claim 13, wherein said first polygonal scanning element is disposed within said horizontal section, and said second polygonal scanning element is disposed within said vertical section.
24. A method of generating a complex laser scanning pattern from a bioptical laser scanning system for providing 360° of omnidirectional bar code symbol scanning coverage at a point of sale (POS) station, said method comprising the steps of:
- (a) supporting at a POS station, a bioptical laser scanning system including (i) a bottom section integrally connected to a side section, (ii) a bottom-scanning window formed in said bottom section, (iii) a side-scanning window formed in said side section, and being substantially orthogonal to said bottom-scanning window, (iv) a first laser scanning plane generation mechanism disposed within said side section, and (v) a second laser scanning plane generation mechanism disposed within said bottom section;
- (b) generating a first plurality of laser scanning planes from said first laser scanning plane generation mechanism, and projecting said first plurality of laser scanning planes through said bottom-scanning window, and also generating a second plurality of laser scanning planes from said second laser scanning plane generation mechanism, and projecting said second plurality of laser scanning planes through said bottom-scanning window;
- (c) said first and second pluralities of laser scanning planes (i) intersecting within predetermined scan regions contained within a 3-D scanning volume defined between said bottom-scanning and side-scanning windows, and (ii) generating a plurality of groups of intersecting laser scanning planes within said 3-D scanning volume, and
- (d) said plurality of groups of intersecting laser scanning planes forming a complex omni-directional 3-D laser scanning pattern within said 3-D scanning volume that is capable of scanning a bar code symbol located on the surface of an object presented within said 3-D scanning volume at any orientation and from any direction at said POS station so as to provide 360° of omnidirectional bar code symbol scanning coverage at said POS station.
25. The method of claim 24, wherein during step (b) said first laser scanning plane generation mechanism produces a first laser beam from a first laser bream production module and a first polygonal scanning element having multiple reflective surfaces rotating about a first axis of rotation scans said first laser beam, so as to produce a first laser scanning beam that reflects off said first plurality of laser beam folding mirrors to generate and project said first plurality of laser scanning planes through said bottom-scanning window; and wherein during step (b) said second laser scanning plane generation mechanism produces a second laser beam from a second laser beam production module and a second polygonal scanning element having multiple reflective surfaces rotating about a second axis of rotation scans said second laser beam, so as to produce a second laser beam that reflects off said second plurality of laser beam folding mirrors to generate and project said second plurality of laser scanning planes through said side-scanning window,
26. The method of claim 24, wherein the height dimension of the said bottom section is less than about 4.5 inches for installation of said bottom section within a countertop surface at said POS station.
27. The method of claim 24, wherein during step (c) said plurality of groups of intersecting laser scanning planes comprises over sixty (60) different laser scanning planes cooperating within said 3-D scanning volume to generate said complex omni-directional 3-D laser scanning pattern.
28. The method of claim 24, wherein during step (c) each said group of intersecting laser scanning planes comprises (i) a plurality of substantially-side laser scanning planes for reading bar code symbols having bar code elements (i.e., ladder type bar code symbols) that are oriented substantially bottom with respect to said bottom-scanning window, and (ii) a plurality of substantially-bottom laser scanning plane for reading bar code symbols having bar code elements i.e., picket-fence type bar code symbols) that are oriented substantially side with respect to said bottom-scanning window.
29. The method of claim 25, wherein said first laser beam production module comprises a first visible laser diode (VLD), and said second laser beam production module comprises a second visible laser diode (VLD).
30. The method of claim 25, wherein during step (b), said first plurality of laser beam folding mirrors and said first laser production module cooperate with first and second light collecting/focusing optical elements and first and second photodetectors disposed within said bottom housing section to form first and second scanning stations disposed about said first polygonal scanning element, and wherein the light collecting/focusing optical element within each said laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
31. The method of claim 30, wherein during step (b), said second plurality of laser beam folding mirrors and said second laser production module cooperate with a third light collecting/focusing optical element and a third photodetector disposed within said side housing section to form third scanning station disposed about said second polygonal scanning element, and wherein the light collecting/focusing optical element within said third laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
32. The method of claim 25, wherein said first polygonal scanning element comprises a first polygonal scanning mirror having a first plurality of rotating mirror facets, and wherein said second polygonal scanning element comprises a second polygonal scanning mirror having a second plurality of rotating mirror facets.
33. The method of claim 32, wherein said second plurality of rotating mirror facets on said second polygonal scanning mirror are classifiable into a first class of facets having High Elevation (HE) angle characteristics, and a second class of facets having Low Elevation (LE) angle characteristics.
34. The method of claim 24, wherein during step (d) said complex omni-directional 3-D laser scanning pattern is generated from said bottom-scanning window and said side-scanning window during the revolution of said first and second polygonal scanning elements.
35. The method of claim 25, wherein said first polygonal scanning element is disposed within said bottom section, and said second polygonal scanning element is disposed within said side section.
36. A bioptical laser scanning system providing 360° of omnidirectional bar code symbol scanning coverage at a point of sale (POS) station, said bioptical laser scanning system comprising:
- a horizontal section integrally connected to a vertical section;
- a horizontal-scanning window formed in said horizontal section;
- a vertical-scanning window formed in said vertical section, and being substantially orthogonal to said bottom-scanning window;
- a first laser scanning plane generation mechanism disposed within said vertical section, for generating and projecting a first plurality of laser scanning planes through said horizontal-scanning window; and
- a second laser scanning plane generation mechanism disposed within said horizontal section for generating and projecting generate and project a second plurality of laser scanning planes through said horizontal-scanning window;
- whereby said first and second pluralities of laser scanning planes (i) intersect within predetermined scan regions contained within a 3-D scanning volume defined between said horizontal-scanning and vertical-scanning windows, and (ii) generate a plurality of groups of intersecting laser scanning planes within said 3-D scanning volume, and
- wherein said plurality of groups of intersecting laser scanning planes form a complex omni-directional 3-D laser scanning pattern within said 3-D scanning volume capable of scanning a bar code symbol located on the surface of an object presented within said 3-D scanning volume at any orientation and from any direction at said POS station so as to provide 360° of omnidirectional bar code symbol scanning coverage at said POS station.
37. The bioptical laser scanning system of claim 36, which further comprises a first laser beam production module for producing a first laser beam, and a second laser beam production module for producing a second laser beam.
38. The bioptical laser scanning system of claim 37,
- wherein said first laser scanning plane generation mechanism comprises said first laser beam production module and a first plurality of laser beam folding mirrors disposed within said vertical section; and
- wherein said second laser scanning plane generation mechanism comprises said second laser beam production module and a second plurality of laser beam folding mirrors disposed within said vertical section.
39. The bioptical laser scanning system of claim 38,
- wherein said first laser scanning plane generation mechanism further comprises a first polygonal scanning element having multiple reflective surfaces rotating about a first axis of rotation, for scanning said first laser beam and producing said first laser scanning beam that reflects off said first plurality of laser beam folding mirrors to generate and project said first plurality of laser scanning planes through said horizontal-scanning window; and
- wherein said second laser scanning plane generation mechanism further comprises a second polygonal scanning element having multiple reflective surfaces rotating about a second axis of rotation, for scanning said second laser beam and producing said second laser scanning beam that reflects off said second plurality of laser beam folding mirrors to generate and project a second plurality of laser scanning planes through said vertical-scanning window.
40. The bioptical laser scanning system of claim 36, wherein the height dimension of the said horizontal section is less than about 4.5 inches for installation of said horizontal section within a countertop surface at said POS.
41. The bioptical laser scanning system of claim 36, wherein said plurality of groups of intersecting laser scanning planes comprises over sixty (60) different laser scanning planes cooperating within said 3-D scanning volume to generate said complex omni-directional 3-D laser scanning pattern.
42. The bioptical laser scanning system of claim 36, wherein each said group of intersecting laser scanning planes comprises (i) a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e., ladder type bar code symbols) that are oriented substantially horizontal with respect to said horizontal-scanning window, and (ii) a plurality of substantially-horizontal laser scanning plane for reading bar code symbols having bar code elements (i.e., picket-fence type bar code symbols) that are oriented substantially vertical with respect to said horizontal-scanning window.
43. The bioptical laser scanning system of claim 37, wherein said first laser beam production module comprises a first visible laser diode (VLD), and said second laser beam production module comprises a second visible laser diode (VLD).
44. The bioptical laser scanning system of claim 38,
- wherein said first plurality of laser beam folding mirrors and said first laser production module cooperate with first and second light collecting/focusing optical elements and first and second photodetectors disposed within said horizontal housing section to form first and second scanning stations disposed about said first polygonal scanning element, and
- wherein the light collecting/focusing optical element within each said laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
45. The bioptical laser scanning system of claim 44, wherein said second plurality of laser beam folding mirrors and said second laser production module cooperate with a third light collecting/focusing optical element and a third photodetector disposed within said vertical housing section to form third scanning station disposed about said second polygonal scanning element, and
- wherein the light collecting/focusing optical element within said third laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
46. The bioptical laser scanning system of claim 39, wherein said first polygonal scanning element comprises a first polygonal scanning mirror having a first plurality of rotating mirror facets, and wherein said second polygonal scanning element comprises a second polygonal scanning mirror having a second plurality of rotating mirror facets.
47. The bioptical laser scanning system of claim 46, wherein said second plurality of rotating mirror facets on said second polygonal scanning mirror are classifiable into a first class of facets having High Elevation (HE) angle characteristics, and a second class of facets having Low Elevation (LE) angle characteristics.
48. The bioptical laser scanning system of claim 36, wherein said complex omni-directional 3-D laser scanning pattern is generated from said horizontal-scanning window and said vertical-scanning window during the revolution of said first and second polygonal scanning elements.
49. The bioptical laser scanning system of claim 39, wherein said first polygonal scanning element is disposed within said horizontal section, and said second polygonal scanning element is disposed within said vertical section.
50. A bioptical laser scanning system providing 360° of omnidirectional bar code symbol scanning coverage at a point of sale (POS) station, said bioptical laser scanning system comprising:
- a bottom section integrally connected to a side section;
- a bottom-scanning window formed in said bottom section;
- a side-scanning window formed in said side section, and being substantially orthogonal to said bottom-scanning window;
- a first laser scanning plane generation mechanism disposed within said side section, for generating and projecting a first plurality of laser scanning planes through said bottom-scanning window; and
- a second laser scanning plane generation mechanism disposed within said bottom section for generating and projecting generate and project a second plurality of laser scanning planes through said bottom-scanning window;
- whereby said first and second pluralities of laser scanning planes (i) intersect within predetermined scan regions contained within a 3-D scanning volume defined between said bottom-scanning and side-scanning windows, and (ii) generate a plurality of groups of intersecting laser scanning planes within said 3-D scanning volume, and
- wherein said plurality of groups of intersecting laser scanning planes form a complex omni-directional 3-D laser scanning pattern within said 3-D scanning volume capable of scanning a bar code symbol located on the surface of an object presented within said 3-D scanning volume at any orientation and from any direction at said POS station so as to provide 360° of omnidirectional bar code symbol scanning coverage at said POS station.
51. The bioptical laser scanning system of claim 50, which further comprises a first laser beam production module for producing a first laser beam, and a second laser beam production module for producing a second laser beam.
52. The bioptical laser scanning system of claim 51, wherein
- said first laser scanning plane generation mechanism comprises said first laser beam production module and a first plurality of laser beam folding mirrors disposed within said side section; and
- said second laser scanning plane generation mechanism comprises said second laser beam production module and a second plurality of laser beam folding mirrors disposed within said side section.
53. The bioptical laser scanning system of claim 52, wherein
- said first laser scanning plane generation mechanism further comprises a first polygonal scanning element having multiple reflective surfaces rotating about a first axis of rotation, for scanning said first laser beam and producing said first laser scanning beam that reflects off said first plurality of laser beam folding mirrors to generate and project said first plurality of laser scanning planes through said bottom-scanning window; and
- said second laser scanning plane generation mechanism further comprises a second polygonal scanning element having multiple reflective surfaces rotating about a second axis of rotation, for scanning said second laser beam and producing said second laser scanning beam that reflects off said second plurality of laser beam folding mirrors to generate and project a second plurality of laser scanning planes through said side-scanning window.
54. The bioptical laser scanning system of claim 50, wherein the height dimension of the said bottom section is less than about 4.5 inches for installation of said bottom section within a countertop surface at said POS.
55. The bioptical laser scanning system of claim 50, wherein said plurality of groups of intersecting laser scanning planes comprises over sixty (60) different laser scanning planes cooperating within said 3-D scanning volume to generate said complex omni-directional 3-D laser scanning pattern.
56. The bioptical laser scanning system of claim 50, wherein each said group of intersecting laser scanning planes comprises (i) a plurality of substantially-side laser scanning planes for reading bar code symbols having bar code elements (i.e., ladder type bar code symbols) that are oriented substantially bottom with respect to said bottom-scanning window, and (ii) a plurality of substantially-bottom laser scanning plane for reading bar code symbols having bar code elements (i.e., picket-fence type bar code symbols) that are oriented substantially side with respect to said bottom-scanning window.
57. The bioptical laser scanning system of claim 51, wherein said first laser beam production module comprises a first visible laser diode (VLD), and said second laser beam production module comprises a second visible laser diode (VLD).
58. The bioptical laser scanning system of claim 53, wherein said first plurality of laser beam folding mirrors and said first laser production module cooperate with first and second light collecting/focusing optical elements and first and second photodetectors disposed within said bottom housing section to form first and second scanning stations disposed about said first polygonal scanning element, and
- wherein the light collecting/focusing optical element within each said laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
59. The bioptical laser scanning system of claim 58, wherein said second plurality of laser beam folding mirrors and said second laser production module cooperate with a third light collecting/focusing optical element and a third photodetector disposed within said side housing section to form third scanning station disposed about said second polygonal scanning element, and
- wherein the light collecting/focusing optical element within said third laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
60. The bioptical laser scanning system of claim 53, wherein said first polygonal scanning element comprises a first polygonal scanning mirror having a first plurality of rotating mirror facets, and wherein said second polygonal scanning element comprises a second polygonal scanning mirror having a second plurality of rotating mirror facets.
61. The bioptical laser scanning system of claim 60, wherein said second plurality of rotating mirror facets on said second polygonal scanning mirror are classifiable into a first class of facets having High Elevation (HE) angle characteristics, and a second class of facets having Low Elevation (LE) angle characteristics.
62. The bioptical laser scanning system of claim 50, wherein said complex omni-directional 3-D laser scanning pattern is generated from said bottom-scanning window and said side-scanning window during the revolution of said first and second polygonal scanning elements.
63. The bioptical laser scanning system of claim 53, wherein said first polygonal scanning element is disposed within said bottom section, and said second polygonal scanning element is disposed within said side section.
64. A method of generating a complex laser scanning pattern from a bioptical laser scanning system for providing 360° of omnidirectional bar code symbol scanning coverage at a point of sale (POS) station, said method comprising the steps of:
- (a) supporting at a POS station, a bioptical laser scanning system including (i) a horizontal section integrally connected to a vertical section, (ii) a horizontal-scanning window formed in said horizontal section, (iii) a vertical-scanning window formed in said vertical section, and being substantially orthogonal to said bottom-scanning window, (iv) a first laser scanning plane generation mechanism disposed within said vertical section, and (v) a second laser scanning plane generation mechanism disposed within said horizontal section;
- (b) generating a first plurality of laser scanning planes from said first laser scanning plane generation mechanism, and projecting said first plurality of laser scanning planes through said horizontal-scanning window, and also generating a second plurality of laser scanning planes from said second laser scanning plane generation mechanism, and projecting said second plurality of laser scanning planes through said horizontal-scanning window;
- (c) said first and second pluralities of laser scanning planes (i) intersecting within predetermined scan regions contained within a 3-D scanning volume defined between said horizontal-scanning and vertical-scanning windows, and (ii) generating a plurality of groups of quasi-orthogonal laser scanning planes within said 3-D scanning volume, and
- (d) said plurality of groups of quasi-orthogonal laser scanning planes forming a complex omni-directional 3-D laser scanning pattern within said 3-D scanning volume capable of scanning a bar code symbol located on the surface of an object presented within said 3-D scanning volume at any orientation and from any direction at said POS station so as to provide 360° of omnidirectional bar code symbol scanning coverage at said POS station.
65. The method of claim 64, wherein during step (b) said first laser scanning plane generation mechanism produces a first laser beam from a first laser bream production module and a first polygonal scanning element having multiple reflective surfaces rotating about a first axis of rotation scans said first laser beam, so as to produce a first laser scanning beam that reflects off said first plurality of laser beam folding mirrors to generate and project said first plurality of laser scanning planes through said horizontal-scanning window; and
- wherein during step (b) said second laser scanning plane generation mechanism produces a second laser beam from a second laser beam production module and a second polygonal scanning element having multiple reflective surfaces rotating about a second axis of rotation scans said second laser beam, so as to produce a second laser scanning beam that reflects off said second plurality of laser beam folding mirrors to generate and project said second plurality of laser scanning planes through said vertical-scanning window,
66. The method of claim 64, wherein the height dimension of the said horizontal section is less than about 4.5 inches for installation of said horizontal section within a countertop surface at said POS station.
67. The method of claim 64, wherein during step (c) said plurality of groups of intersecting laser scanning planes comprises over sixty (60) different laser scanning planes cooperating within said 3-D scanning volume to generate said complex omni-directional 3-D laser scanning pattern.
68. The method of claim 64, wherein during step (c) each said group of intersecting laser scanning planes comprises:
- (i) a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e., ladder type bar code symbols) that are oriented substantially horizontal with respect to said horizontal-scanning window, and
- (ii) a plurality of substantially-horizontal laser scanning plane for reading bar code symbols having bar code elements (i.e., picket-fence type bar code symbols) that are oriented substantially vertical with respect to said horizontal-scanning window.
69. The method of claim 65, wherein said first laser beam production module comprises a first visible laser diode (VLD), and said second laser beam production module comprises a second visible laser diode (VLD).
70. The method of claim 65, wherein during step (b), said first plurality of laser beam folding mirrors and said first laser production module cooperate with first and second light collecting/focusing optical elements and first and second photodetectors disposed within said horizontal housing section to form first and second scanning stations disposed about said first polygonal scanning element, and
- wherein the light collecting/focusing optical element within each said laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
71. The method of claim 70, wherein during step (b), said second plurality of laser beam folding mirrors and said second laser production module cooperate with a third light collecting/focusing optical element and a third photodetector disposed within said vertical housing section to form third scanning station disposed about said second polygonal scanning element, and
- wherein the light collecting/focusing optical element within said third laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
72. The method of claim 65, wherein said first polygonal scanning element comprises a first polygonal scanning mirror having a first plurality of rotating mirror facets, and wherein said second polygonal scanning element comprises a second polygonal scanning mirror having a second plurality of rotating mirror facets.
73. The method claim 72, wherein said second plurality of rotating mirror facets on said second polygonal scanning mirror are classifiable into a first class of facets having High Elevation (HE) angle characteristics, and a second class of facets having Low Elevation (LE) angle characteristics.
74. The method of claim 64, wherein during step (d) said complex omni-directional 3-D laser scanning pattern is generated from said horizontal-scanning window and said vertical-scanning window during the revolution of said first and second polygonal scanning elements.
75. The method of claim 65, wherein said first polygonal scanning element is disposed within said horizontal section, and said second polygonal scanning element is disposed within said vertical section.
76. A method of generating a complex laser scanning pattern from a bioptical laser scanning system for providing 360° of omnidirectional bar code symbol scanning coverage at a point of sale (POS) station, said method comprising the steps of:
- (a) supporting at a POS station, a bioptical laser scanning system including (i) a bottom section integrally connected to a side section, (ii) a bottom-scanning window formed in said bottom section, (iii) a side-scanning window formed in said side section, and being substantially orthogonal to said bottom-scanning window, (iv) a first laser scanning plane generation mechanism disposed within said side section, and (v) a second laser scanning plane generation mechanism disposed within said bottom section;
- (b) generating a first plurality of laser scanning planes from said first laser scanning plane generation mechanism, and projecting said first plurality of laser scanning planes through said bottom-scanning window, and also generating a second plurality of laser scanning planes from said second laser scanning plane generation mechanism, and projecting said second plurality of laser scanning planes through said bottom-scanning window;
- (c) said first and second pluralities of laser scanning planes (i) intersecting within predetermined scan regions contained within a 3-D scanning volume defined between said horizontal-scanning and vertical-scanning windows, and (ii) generating a plurality of groups of quasi-orthogonal laser scanning planes within said 3-D scanning volume, and
- (d) said plurality of groups of quasi-orthogonal laser scanning planes forming a complex omni-directional 3-D laser scanning pattern within said 3-D scanning volume capable of scanning a bar code symbol located on the surface of an object presented within said 3-D scanning volume at any orientation and from any direction at said POS station so as to provide 360° of omnidirectional bar code symbol scanning coverage at said POS station.
77. The method of claim 76, wherein during step (b) said first laser scanning plane generation mechanism produces a first laser beam from a first laser bream production module and a first polygonal scanning element having multiple reflective surfaces rotating about a first axis of rotation scans said first laser beam, so as to produce a first laser scanning beam that reflects off said first plurality of laser beam folding mirrors to generate and project said first plurality of laser scanning planes through said bottom-scanning window; and
- wherein during step (b) said second laser scanning plane generation mechanism produces a second laser beam from a second laser beam production module and a second polygonal scanning element having multiple reflective surfaces rotating about a second axis of rotation scans said second laser beam, so as to produce a second laser beam that reflects off said second plurality of laser beam folding mirrors to generate and project said second plurality of laser scanning planes through said side-scanning window,
78. The method of claim 76, wherein the height dimension of the said bottom section is less than about 4.5 inches for installation of said bottom section within a countertop surface at said POS station.
79. The method of claim 76, wherein during step (c) said plurality of groups of intersecting laser scanning planes comprises over sixty (60) different laser scanning planes cooperating within said 3-D scanning volume to generate said complex omni-directional 3-D laser scanning pattern.
80. The method of claim 76, wherein during step (c) each said group of intersecting laser scanning planes comprises (i) a plurality of substantially-side laser scanning planes for reading bar code symbols having bar code elements (i.e., ladder type bar code symbols) that are oriented substantially bottom with respect to said bottom-scanning window, and (ii) a plurality of substantially-bottom laser scanning plane for reading bar code symbols having bar code elements (i.e., picket-fence type bar code symbols) that are oriented substantially side with respect to said bottom-scanning window.
81. The method of claim 77, wherein said first laser beam production module comprises a first visible laser diode (VLD), and said second laser beam production module comprises a second visible laser diode (VLD).
82. The method of claim 77, wherein during step (b), said first plurality of laser beam folding mirrors and said first laser production module cooperate with first and second light collecting/focusing optical elements and first and second photodetectors disposed within said bottom housing section to form first and second scanning stations disposed about said first polygonal scanning element, and
- wherein the light collecting/focusing optical element within each said laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
83. The method of claim 82, wherein during step (b), said second plurality of laser beam folding mirrors and said second laser production module cooperate with a third light collecting/focusing optical element and a third photodetector disposed within said side housing section to form third scanning station disposed about said second polygonal scanning element, and
- wherein the light collecting/focusing optical element within said third laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
84. The method of claim 77, wherein said first polygonal scanning element comprises a first polygonal scanning mirror having a first plurality of rotating mirror facets, and wherein said second polygonal scanning element comprises a second polygonal scanning mirror having a second plurality of rotating mirror facets.
85. The method of claim 84, wherein said second plurality of rotating mirror facets on said second polygonal scanning mirror are classifiable into a first class of facets having High Elevation (HE) angle characteristics, and a second class of facets having Low Elevation (LE) angle characteristics.
86. The method of claim 76, wherein during step (d) said complex omni-directional 3-D laser scanning pattern is generated from said bottom-scanning window and said side-scanning window during the revolution of said first and second polygonal scanning elements.
87. The method of claim 77, wherein said first polygonal scanning element is disposed within said bottom section, and said second polygonal scanning element is disposed within said side section.
88. A bioptical laser scanning system capable of scanning a bar code symbol locate on the surface of an object presented within a 3-D scanning volume at any orientation and from any direction at a point of sale (POS) station, said bioptical laser scanning system; comprising: a horizontal section integrally connected to a vertical section; a horizontal-scanning window formed in said horizontal section; a vertical-scanning window formed in said vertical section, and being substantially orthogonal to said bottom-scanning window; a first plurality of laser beam folding mirrors disposed within said horizontal section; a second plurality of laser beam folding mirrors disposed within said vertical section; a first laser beam production module for producing first laser beam, and a second laser beam production module for producing a second laser beam; a first polygonal scanning element disposed within said horizontal section and having multiple reflective surfaces rotating about a first axis of rotation, for scanning said first laser beam and producing a first laser scanning beam that reflects off said first plurality of laser beam folding mirrors to generate and project a first plurality of laser scanning planes through said horizontal-scanning window; and a second polygonal scanning element disposed within said vertical section and having multiple reflective surfaces rotating about a second axis of rotation, for scanning said second laser beam and producing a second laser scanning beam that reflects off said second plurality of laser beam folding mirrors to generate and project a second plurality of laser scanning planes through said vertical-scanning window, whereby said first and second pluralities of laser scanning planes (i) intersect within predetermined scan regions contained within a 3-D scanning volume defined between said horizontal-scanning and vertical-scanning windows, and (ii) generate a plurality of groups of quasi-orthogonal laser scanning planes within said 3-D scanning volume, and wherein said plurality of groups of quasi-orthogonal laser scanning planes form a complex omni-directional 3-D laser scanning pattern within said 3-D scanning volume capable of scanning a bar code symbol located on the surface of an object presented within said 3-D scanning volume at any orientation and from any direction at said POS station.
89. The bioptical laser scanning system of claim 88, wherein the height dimension of the said horizontal section is less than about 4.5 inches for installation of said horizontal section within a countertop surface at said POS.
90. The bioptical laser scanning system of claim 88, wherein said plurality of groups of quasi-orthogonal laser scanning planes comprises over 60 different laser scanning planes cooperating within said 3-D scanning volume to generate said complex omni-directional 3-D laser scanning pattern.
91. The bioptical laser scanning system of claim 90, wherein each said group of quasi-orthogonal laser scanning planes comprises (i) a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e., ladder type bar code symbols) that are oriented substantially horizontal with respect to said horizontal-scanning window, and (ii) a plurality of substantially-horizontal laser scanning plane for reading bar code symbols having bar code elements (i.e., picket-fence type bar code symbols) that are oriented substantially vertical with respect to said horizontal-scanning window.
92. The bioptical laser scanning system of claim 88, wherein said first laser beam production module comprises a first visible laser diode (VLD), and said second laser beam production module comprises a second visible laser diode (VLD).
93. The bioptical laser scanning system of claim 88, wherein said first plurality of laser beam folding mirrors and said first laser production module cooperate with first and second light collecting/focusing optical elements and first and second photodetectors disposed within said bottom housing section to form first and second scanning stations disposed about said first polygonal scanning element, and wherein the light collecting/focusing optical element within each said laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
94. The bioptical laser scanning system of claim 93, wherein said second plurality of laser beam folding mirrors and said second laser production module cooperate with a third light collecting/focusing optical element and a third photodetector disposed within said vertical housing section to form third scanning station disposed about said second polygonal scanning element, and wherein the light collecting/focusing optical element within said third laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
95. The bioptical laser scanning system of claim 88, wherein said first polygonal scanning element comprises a first polygonal scanning mirror having a first plurality of rotating mirror facets, and wherein said polygonal scanning element comprises a second polygonal scanning mirror having a second plurality of rotating mirror facets.
96. The bioptical laser scanning system of claim 95, wherein said second plurality of rotating mirror facets on said second polygonal scanning mirror are classifiable into a first class of facets having High Elevation (HE) angle characteristics, and a second class of facets having Low Elevation (LE) angle characteristics.
97. The bioptical laser scanning system of claim 96, wherein said high and low elevation angle characteristics are referenced by a plane P1 that contains the incoming laser beam and is normal to the rotational axis of said second polygonal scanning mirror; wherein each facet in said first class of facets, having high beam elevation angle characteristics, produces an outgoing laser beam that is directed above the plane P1 as the facet sweeps across the point of incidence of said third laser scanning station; and wherein each facet in said second class of facets, having low beam elevation angle characteristics, produces an outgoing laser beam that is directed below the plane P1 as the facet sweeps across the point of incidence of said third laser scanning station.
98. The bioptical laser scanning system of claim 88, wherein said complex omni-directional 3-D laser scanning pattern is generated from said horizontal-scanning window and said vertical-scanning window during the revolution of said first and second polygonal scanning mirrors.
99. The bioptical laser scanning system of claim 95, wherein during each evolution of said first polygonal scanning mirror, a first group of laser scanning planes are produced by said first and second laser scanning stations, and concurrently therewith, during each revolution of said second polygonal scanning mirror, second and third groups of laser scanning planes are produced by said third laser scanning station.
100. A bioptical laser scanning system capable of scanning a bar code symbol located on the surface of an object presented within a 3-D scanning volume at any orientation and from any direction at a point of sale (POS) station, said bioptical laser scanning system comprising: a housing having a bottom housing section integrally connected to a side housing section; a bottom-scanning window provided in said bottom housing section; a side-scanning window provided in said side housing section, and being substantially orthogonal to said bottom-scanning window; a first plurality of laser beam folding mirrors disposed within said bottom housing section; a second plurality of laser beam folding mirrors disposed within said side housing section; a first laser beam production module for producing a first laser beam, and a second laser beam production module for producing a second laser beam; a first polygonal scanning element disposed within said bottom housing section and having multiple reflective surfaces rotating about a first axis of rotation, for scanning said first laser beam and producing a first laser scanning beam that reflects off said first plurality of laser beam folding mirrors to generate and project a first plurality of laser scanning planes through said bottom-scanning window, and a second polygonal scanning element disposed within said side housing section and having multiple reflective surfaces rotating about a second axis of rotation, for scanning said second laser beam and producing a second laser scanning beam that reflects off said second plurality of laser beam folding mirrors to generate and project a second plurality of laser scanning planes through said side-scanning window, whereby said first and second pluralities of laser scanning planes (i) intersect within predetermined scan regions contained within a 3-D scanning volume defined between said bottom-scanning window and side-scanning window, and (ii) generate a plurality of groups of quasi-orthogonal laser scanning planes within said 3-D scanning volume, and wherein said plurality of groups of quasi-orthogonal laser scanning planes form a complex omni-directional 3-D laser scanning pattern within said 3-D scanning volume capable of scanning a bar code symbol located on the surface of an object presented within said 3-D scanning volume at any orientation and from any direction at said POS station.
101. The bioptical laser scanning system of claim 100, wherein the height dimension of the said bottom housing section is less than about 4.5 inches for installation of said bottom housing section within a countertop surface at said POS.
102. The bioptical laser scanning system of claim 100, wherein said plurality of groups of quasi-orthogonal laser scanning planes comprises over 60 different laser scanning planes cooperating within said 3-D scanning volume to generate said complex omni-directional 3-D laser scanning pattern.
103. The bioptical laser scanning system of claim 102, wherein each said group of quasi-orthogonal laser scanning planes comprises (i) a plurality of substantially-vertical laser scanning planes for reading bar code symbols having bar code elements (i.e., ladder type bar code symbols) that are oriented substantially horizontal with respect to said bottom-scanning window, and (ii) a plurality of substantially-horizontal laser scanning plane for reading bar code symbols having bar code elements (i.e., picket-fence type bar code symbols) that are oriented substantially vertical with respect to said bottom-scanning window.
104. The bioptical laser scanning system of claim 100, wherein said first laser beam production module comprises a first visible laser diode (VLD), and said second laser beam production module comprises a second visible laser diode (VLD).
105. The bioptical laser scanning system of claim 100, wherein said first plurality of laser beam folding mirrors and said first laser beam production module cooperate with first and second light collecting/focusing optical elements and first and second photodetectors disposed within said bottom housing section to form first and second scanning stations disposed about said first polygonal scanning element, and wherein the light collecting/focusing optical element within each said laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
106. The bioptical laser scanning system of claim 105, wherein said second plurality of laser beam folding mirrors and said second laser beam production module cooperate with a third light collecting/focusing optical element and a third photodetector disposed within said vertical housing section to form third scanning station disposed about said second polygonal scanning element, and wherein the light collecting/focusing optical element within said third laser scanning station collects light from predetermined scan regions within said 3-D scanning volume and focuses such collected light onto the photodetector to produce an electrical signal having an amplitude proportional to the intensity of light focused thereon, and said electrical signal being supplied to analog/digital signal processing circuitry for processing analog and digital scan data signals derived therefrom to perform bar code symbol reading operations.
107. The bioptical laser scanning system of claim 100, wherein said first polygonal scanning element comprises a first polygonal scanning mirror having a first plurality of rotating mirror facets, and wherein said said polygonal scanning element comprises a second polygonal scanning mirror having a second plurality of rotating mirror facets.
108. The bioptical laser scanning system of claim 107, wherein said second plurality of rotating mirror facets on said second polygonal scanning mirror are classifiable into a first class of facets having High Elevation (HE) angle characteristics, and a second class of facets having Low Elevation (LE) angle characteristics.
109. The bioptical laser scanning system of claim 100, wherein said high and low elevation angle characteristics are referenced by a plane P1 that contains the incoming laser beam and is normal to the rotational axis of said second polygonal scanning mirror; wherein each facet in said first class of facets, having high beam elevation angle characteristics, produces an outgoing laser beam that is directed above the plane P1 as the facet sweeps across the point of incidence of said third laser scanning station; and wherein each facet in said second class of facets, having low beam elevation angle characteristics, produces an outgoing laser beam that is directed below the plane P1 as the facet sweeps across the point of incidence of said third laser scanning station.
110. The bioptical laser scanning system of claim 100, wherein said complex omni-directional 3-D laser scanning pattern is generated from said bottom-scanning window and said side-scanning window during each revolution of said first and second polygonal scanning mirrors.
111. The bioptical laser scanning system of claim 107, wherein during each revolution of said first polygonal scanning mirror, a first group of laser scanning planes are produced by said first and second laser scanning stations, and concurrently therewith, during each revolution of said second polygonal scanning mirror, second and third groups of laser scanning planes are produced by said third laser scanning station.
112. A bioptical laser scanning system, wherein a single visible laser diode (VLD) is used to create a laser scanning pattern projected through a side-scanning window.
113. A bioptical laser scanning system which generates a plurality of quasi-orthogonal laser scanning planes that project through a bottom-scanning window and a side-scanning window to provide 360 degrees of scan coverage at a POS station.
114. A bioptical laser scanning system providing 360 degrees of scan coverage at a POS station comprising a means for producing a plurality of pairs of quasi-orthogonal laser scanning planes that are projected within predetermined scanning regions contained within a 3-D scanning volume defined between bottom and side scanning windows of the system.
Type: Application
Filed: May 26, 2006
Publication Date: Nov 9, 2006
Applicant: PSC Scanning, Inc. (Eugene, OR)
Inventors: Mohan Bobba (Eugene, OR), Jorge Acosta (Eugene, OR), Timothy Eusterman (Plano, TX), James Ring (Eugene, OR), Alexander McQueen (Eugene, OR)
Application Number: 11/441,795
International Classification: G06K 7/10 (20060101);