Laparoscopic surgical instrument for in situ tool exchange
A method is presented for replacing a tool through a sleeve of a laparoscopic instrument without removing the sleeve from a body. The method includes rotating a housing portion of the laparoscopic instrument to expose an end of a first tool to be removed, removing the first tool from the sleeve, and inserting a second tool into the sleeve without removing it from the body.
This application claims priority to U.S. Provisional Patent Application Ser. No. 60/690,968 filed Jun. 16, 2005, titled “Laparoscopic Tool Coupler,” and U.S. Provisional Patent Application Ser. No. 60/711,347 filed Aug. 25, 2005, titled “Laparoscope's Tool With In Situ Tool Exchange,” each of which is incorporated herein in its entirety.
FIELD OF THE INVENTIONThe present invention relates generally to laparoscopic instruments and, more particularly, to a laparoscopic instrument for in situ tool exchange.
BACKGROUND OF THE INVENTIONLaparoscopic instruments are used during laparoscopy procedures, which are generally used to examine a patient and/or to perform minor surgery on the patient. For example, a laparoscopic instrument can be used to examine the patient's abdominal cavity for signs of disease or abnormality. In addition, fully invasive surgery may be avoided by using the laparoscopic instrument to perform relatively minor surgery. Similarly, in minimally invasive arthroscopic procedures, such as on a knee joint, an arthroscopic instrument is used to access joints or bones.
The laparoscopic (or arthroscopic) instrument generally includes a grasping end and an operating end that are connected by a flexible hollow cylindrical shaft. The laparoscopic instrument is introduced into the patient through a cannula/trocar unit. After the laparoscopic instrument is inserted into the patient through a cannula that is anchored to the body via a small incision, the surgeon may insert one of a plurality of laparoscopic tools into the laparoscopic instrument to perform a particular surgical procedure. For example, if a grasping procedure is required the surgeon will insert a grasping tool in the laparoscopic instrument. Similarly, if a cutting procedure is required the surgeon will insert a cutting tool in the laparoscopic instrument.
One problem associated with current laparoscopic instruments is that they may cause the surgeon to lose his or her “feel” when changing laparoscopic tools. During surgery, the surgeon develops a particular “feel” associated with the location and positioning of the laparoscopic instrument relative to the patient's internal cavities. Because the surgeon may be required to perform several procedures during a single surgery, each procedure requiring a different laparoscopic tool, the surgeon may lose the “feel” when changing the laparoscopic tools.
In one exemplary scenario, the surgeon uses an examination tool to find the best location for performing a cutting procedure. After finding the best location, the surgeon retrieves the laparoscopic instrument from within the patient, replaces the examination tool with a cutting tool, and reinserts the laparoscopic instrument inside the patient. It can be time consuming and frustrating for the surgeon to locate, for a second time, the best location for performing the cutting procedure.
Another problem associated with current laparoscopic instruments is that they have a fixed grasping end and, therefore, limit the ability and/or comfort of the surgeon in attaining desired positions within the patient's body. Depending on the surgical procedure, the surgeon must often change the position of the laparoscopic instrument or contort his or her body position to reach various parts of a patient's internal cavity. For example, the surgeon will often attempt to achieve the best cutting position before performing a delicate cutting procedure by rotating and/or moving the grasping end of the laparoscopic tool at various uncomfortable and awkward positions. Because the grasping end of the laparoscopic instrument is fixed, the surgeon must perform the cutting procedure by grasping the laparoscopic tool at an uncomfortable or awkward position that decreases the likelihood of a successful surgical procedure, or must contort his or her body to access a hard-to-reach area of the patient's internal cavity.
Yet another problem associated with current laparoscopic instruments is that the surgeon must clasp the operating end together in order to hold a grasping tool in a closed position. Prolonged clasping results in hand fatigue and also undesirably ties up one of the surgeon's hands to perform other tasks. If the surgeon removes or relaxes his hand from the grasping end, then the grasping tool may lose its grip on the internal body structure it was grasping.
Thus, there is a need to provide a laparoscopic tool that allows the surgeon to retain the “feel” developed during a surgical procedure by changing laparoscopic tools without having to remove the laparoscopic instrument from within the patient's body. There is also a need for an adjustable grasping end for a laparoscopic or arthroscopic instrument for attaining desired and/or comfortable operating positions. There is yet another need for a laparoscopic or arthroscopic instrument that can lock a grasping tool in a fixed position without requiring manual clasping by the surgeon. The present invention fulfills these and other needs.
SUMMARY OF THE INVENTIONIn an aspect of the present invention, a method is presented for replacing a tool of a laparoscopic instrument without removing the laparoscopic instrument from a body. The method includes rotating a housing portion of the laparoscopic instrument to expose an end of the tool to be removed, removing the tool from the laparoscopic instrument without removing the laparoscopic instrument from the body, and inserting a second tool into a sleeve of the laparoscopic instrument. The method may further include registering the exposed end of the tool in at least one of a ball-receiving slot and a ball-receiving hole of the housing portion when the housing assembly portion is in a locked position or pressing a locking lever to unlock the housing assembly from a locked position. The rotating may include rotating the housing portion about an axis of the laparoscopic instrument selected from a group consisting of an X-axis, a Y-axis, and a Z-axis. The X-axis is any axis lying in the 3-dimensional space occupied by the laparoscopic instrument. Alternately, the rotating may include rotating the housing assembly about a hinge of the laparoscopic instrument, the housing assembly being pivotably coupled to the hinge via a hinge pin. The method may further include grasping a pair of handles when rotating the housing assembly. The pair of handles is attached to the housing assembly. The method may still further include linearly displacing the tool when the housing assembly is in a locked position to manipulate a tool device located at an opposing end of the tool.
In another aspect of the present invention, a laparoscopic instrument includes a housing assembly that includes a pair of handles and a hinge portion. The hinge portion is pivotally connected to the housing portion and includes a tool knob extension for insertion into an incision of a body. The knob extension includes an open end and an elongated hollow shaft (sleeve) for receiving a first tool for insertion into the sleeve through the open end. The hinge portion is pivotable between a closed position and an open position and is positioned in the open position with the knob extension remaining in the body when changing the first tool with a second tool. The housing assembly may include a drum assembly having at least two drums connected to respective ones of the pair of handles. The drums rotate independently of one another to permit movement of the handles relative to one another. The drums also rotate together in a fixed relationship about an axis passing through the center of the drums to permit rotation of the handles in a fixed relationship about the axis. The hinge in the closed position may rotate around an axis perpendicular to an axis of the knob extension to achieve the open position. Alternately, the hinge portion in the closed position may rotate around an axis parallel to an axis of the knob extension to achieve the open position. The hinge portion may further include a locking lever for locking the hinge portion in at least the locked position and the open position. The housing assembly may include a ball-receiving slot for receiving a ball end of any of the first tool and the second tool when the hinge portion is in the closed position.
In yet another aspect of the present invention, a method of replacing a tool of a laparoscopic instrument includes inserting a laparoscopic instrument into an incision of a body having a first tool and a pair of handles coupled to the first tool. A housing assembly of the laparoscopic instrument is rotated from a locked position to an open position to expose an end of the first tool. The first tool is removed and a second tool is inserted without removing the laparoscopic instrument from the body. The housing assembly is rotated from the open position to the locked position to couple the second tool to the handles of the laparoscopic instrument. The method may further pressing a locking lever to release the housing assembly from the locked position or pressing the locking lever to release the housing assembly from the open position. The method may further rotating one of the handles to cause a linear movement of a tool device of the first tool or the second tool. The method may still further include rotating the housing assembly about any axis of the laparoscopic instrument lying in the 3-dimensional space occupied by the laparoscopic instrument.
In still another aspect of the present invention, a method of exchanging tools in a surgical instrument includes inserting a first tool through an elongated sleeve of the surgical instrument, moving part of the surgical instrument to permit removal of the first tool from the elongated sleeve, removing the first tool from the elongated sleeve, and inserting a second tool into the elongated sleeve. The surgical instrument can be a laparoscopic instrument or an arthroscopic instrument. The method may further include inserting the surgical instrument together with its elongated sleeve through a cannula into the body. The moving may include rotating a housing assembly of the surgical instrument to expose an end of the first tool to be removed.
The above summary of the present invention is not intended to represent each embodiment, or every aspect, of the present invention. Additional features and benefits of the present invention are apparent from the detailed description, figures, and claims set forth below.
BRIEF DESCRIPTION OF THE FIGURES
While the invention is susceptible to various modifications and alternative forms, specific embodiments are shown by way of example in the drawings and are described in detail herein. It should be understood, however, that the invention is not intended to be limited to the particular forms disclosed. Rather, the invention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
DETAILED DESCRIPTION OF THE ILLUSTRATED EMBODIMENTS Referring to
The tool cover 110 is a generally cylindrical plate that includes a central hole and a plurality of tapped periphery holes. The winged shaft 104 protrudes through the central hole of the tool cover 110 toward the push button 102. Two connecting screws 112 connect the tool cover 110 to a housing 114.
The housing 114 includes a drum receiving portion 116 for accommodating at least in part a tool drum 118, a trigger drum 120, and a fixing drum 122, each of which is located adjacent to one another as shown. The housing 114 further includes a ball-receiving slot 115 for allowing pivoting movement of the housing 114, as described in more detail below in reference to
Referring to
A drum washer 124 and a plug 126 is located between the tool drum 118 and the housing 114. The tool drum 118 includes a ball-receiving hole 127 along its periphery as shown.
The trigger drum 120 is generally cylindrical and is attached to a trigger handle 128 that includes a latching mechanism 130. The trigger drum 120 is attached to the trigger handle 128 directly or through a mechanical linkage. The trigger drum 120 includes a central slotted hole having substantially the same shape and dimensions as the slotted hole of the tool drum 118 through which the winged shaft 104 protrudes. The fixing drum 122 is generally cylindrical and is attached to a fixing handle 132 that includes a locking part 134 for the latching mechanism 130. The fixing drum 122 is attached to the fixing handle 132 directly or through a mechanical linkage. The fixing drum 122 includes a central slotted hole having substantially the same shape and dimensions as the slotted holes of the tool drum 118 and the trigger drum 120 through which the winged shaft 104 protrudes. The fixing drum 122 further includes a plurality of fixing holes 135 for securing the fixing drum 122 as described in more detail below.
The winged shaft 104 includes a generally cylindrical shaft 136 and a plurality of winglets 138, which are arranged in two symmetrical pairs along the shaft 136. The winglet end of the winged shaft 104 is attached to a locking plate 140 via a locking screw 142. In alternate embodiments, the winglets 138 can be splines or parts thereof, keys, or pins.
A fixing cover 144 is located along the winged shaft 104, between the locking plate 140 and the fixing drum 122. The fixing cover 144 includes a central slotted hole having substantially the same shape and dimensions as the slotted holes of the tool drum 118, the trigger drum 120, and the fixing drum 122 through which the winged shaft 104 protrudes. In addition, the fixing cover 144 includes a plurality of push-pin receiving holes through which corresponding push pins 146 are inserted. The push pins 146 protrude through the locking plate 140, the fixing cover 144, and the fixing holes 135 to secure the fixing drum 122 to the locking plate 140.
The locking plate 140 includes a recessed groove 148 for receiving the winged shaft 104 and a plurality of push-pin receiving holes through which corresponding push pins 146 are inserted. A locking washer 150 is inserted between the head of the locking screw 142 and the locking plate 140.
Turning now to
The hinge 152 includes a locking lever 158, which is attached to the hinge 152 via a lever screw 160. The locking lever 158 is inserted in a lever slot 159, which is located at a bottom end of the hinge 152. A lever spring 162 is positioned within the lever slot 159 for maintaining the locking lever 158 in a closed position. The locking lever 158 includes an actuating end 163 and a locking end 165. The actuating end 163 is actuated by urging the locking lever 158 toward the lever spring 162 to unlock the hinge 152 from a closed position to an open position, as described in more detail below in reference to FIGS. 17-19. When the locking lever 158 is pressed, it rotates around the axis of the lever screw 160 such that the locking end 165 causes the hinge 152 to pivot about the axis of the hinge pin 154 (the Z-axis).
A long bearing 164 and a short bearing 166 are used to rotatably attach a knob 168 to the hinge 152. A plurality of set-screws 170 are screwed into the knob 168 for retaining the long bearing 165 and the short bearing 166 relative to the knob 168.
A knob extension or sleeve 172 is attached to the knob 168 using a threaded end of the knob extension 172. The knob extension 172 is a hollow shaft (or sleeve) that is used for accommodating a tool holder 174, which is inserted into the hollow of the knob extension 172. The tool holder 174 is a hollow shaft that accommodates a tool 176, which includes a ball 178 at an insertion end and a scissors device 180 at an operating end. The tool 176 is inserted into the tool holder 174, as shown. According to the shown embodiment, the scissors device 180 is a three-member claw device. The outer surface of the sleeve 172 may be composed of or coated with an insulating material, such as Teflon, to electrically insulate the operator of the instrument 100 from the sleeve 172 when using an electric tool such as a cauterizing tool. For example, the sleeve 172 is wrapped with a Teflon shrink tube.
As represented by the phantom lines, the trigger handle 128 is rotated relative to the fixing handle 132 in a counter clock-wise direction (from the locked position) to open the scissors device 180 at the operating end of the tool 176. In general, the rotation of the trigger handle 128 causes the rotation of the tool drum 118, which in turn causes the linear movement of the tool 176. The linear movement of the tool 176 causes an opening/closing movement for the scissors device 180. The relationship between the three drums 118, 120, 122 (also referred to as the drum sandwich assembly) is described in more detail below.
In addition, as best seen in
An electrical probe 182 is protruding from and is attached to the housing 114. The electrical probe 182 is electrically coupled to the tool 176 (such as a cauterizing tool) to supply electrical current from an external power supply. For example, electrical current is supplied via the electrical probe 182 to an electrocautery tool 176 for cauterizing organ tissue during a surgical procedure. Alternatively, a hole or plug is formed in the housing 114 for receiving an electrode therein.
Referring to
The winglets 138 attached to the shaft 136 are adapted to protrude only through corresponding slots of the tool drum 118, the trigger drum 120, the fixing drum 122, and the fixing cover 144. Depending on whether the push button 102 is in a depressed or un-depressed position, the winglets 138 protrude through only some of the tool drum 118, the trigger drum 120, the fixing drum 122, and the fixing cover 144. Depending on the position of the winglets 138, the rotatable movement of the trigger drum 120 is locked with respect to either the tool drum 118 or the fixing drum 122.
The winglets 138 include a pair of top winglets 138a and a pair of bottom winglets 138b. As shown in
Referring to
In another alternative embodiment, shown in
Referring to
At position A, the winglets 1338 are positioned to the right of the fixing drum 1322. In this position, each of the drums 1318, 1320, 1322 is free to rotate with respect to each other.
At position B, the winged shaft 1304 is moved toward the drums 1318, 1320, 1322 such that the winglets 1338 are positioned within the fixing drum 1322 only. Accordingly, in this position the fixing drum 1322 is fixed from rotational movement, while the tool drum 1318 and the trigger drum 1320 are free to rotate.
At position C, the winged shaft 1304 is moved further toward the drums 1318, 1320, 1322 such that the winglets 1338 are positioned within both the trigger drum 1320 and the fixing drum 1322. Accordingly, in this position the trigger drum 1320 and the fixing drum 1322 are fixed from rotational movement, while the tool drum 1318 is free to rotate.
At position D, the winged shaft 1304 is moved further toward the drums 1318, 1320, 1322 such that the winglets 1338 are positioned within all three drums. Accordingly, in this position each of the drums 1318, 1320, 1322 is fixed from rotational movement.
At position E, the winged shaft 1304 is moved further toward the drums 1318, 1320, 1322 such that the winglets 1338 are positioned within the tool drum 1318 and the trigger drum 1320. Accordingly, in this position the tool drum 1318 and the trigger drum 1320 are fixed from rotational movement, while the fixing drum 1322 is free to rotate.
At position F, the winged shaft 1304 is moved further toward the drums 1318, 1320, 1322 such that the winglets 1338 are positioned within the tool drum 1318 only. Accordingly, in this position the tool drum 1318 is fixed from rotational movement, while the trigger drum 1320 and the fixing drum 1322 are free to rotate.
Referring to
Accordingly, in the depressed position the trigger drum 120 and the fixing drum 122 are locked with respect to each other. Further, because the fixing drum 122 is now disengaged from the locking plate 140 and the push pins 146, the combination of the trigger drum 120 and the fixing drum 122 is free to rotate around the Z-axis (the axis of the winged shaft 104).
In
As can be seen in
In
Referring to
In
The location of the ball-receiving hole 127 is found by drawing a circle about the hinge pin 154, whose radius extends to the end of the ball 178 (when the tool 176 is fully inserted into the knob extension 172). Where the circle intersects the tool drum 118 is where the manufacturer should form the ball-receiving hole 127.
In an alternate embodiment, instead of adapting the hinge portion 1700 to swing open, the hinge portion 1700 is adapted to slide open. For example, instead of having the housing 114 rotatable with respect to the hinge 152, the housing 114 slides open with respect to the hinge 152 in, for example, a direction of the Z-axis, to allow the removal and/or insertion of the tool 176.
Referring to
Referring to
Referring to
The trigger handle 128 further includes a latching lever 2284, which is pivotally connected to the trigger handle 128 at a pivoting point 2286, and a lever limiter 2288. The lever limiter 2288 limits the rotational movement of the latching lever 2284 to a distance that is sufficient for disengaging engaged ones of the teeth 2282. A reason for limiting the rotational movement of the latching lever 2284 is to prevent the latching lever 2284 from interfering with the operation of the laparoscopic instrument 100. The latching mechanism 130 is mounted on the latching lever 2284 such that the latching mechanism 130 moves whenever the latching lever 2284 is moved. The aligned position shows the latching lever 2284 parallel to the fixing handle 132 in the X-Y plane.
In
In
In
Preferably, the latching lever 2284 is positioned to be manipulatable by the surgeon with a single finger, such as with the pinky finger of the hand grasping the handles 128, 132. In this respect, the surgeon is not required to remove the hand from the handles 128, 132 in order to lock or unlock them. In operation, the surgeon simply moves the latching lever 2284 with the pinky finger, which is typically not positioned within the handle 128 as are the ring and middle fingers.
At least some of the parts described above in reference to
Although the foregoing embodiments have been described in connection with a laparoscopic instrument 100, the present invention is equally applicable to an arthroscopic instrument.
While the invention is susceptible to various modifications and alternative forms, specific embodiments thereof have been shown by way of example in the drawings and herein described in detail. It should be understood, however, that it is not intended to limit the invention to the particular forms disclosed, but on the contrary, the intention is to cover all modifications, equivalents, and alternatives falling within the spirit and scope of the invention as defined by the appended claims.
Claims
1. A method of replacing a tool from a sleeve of a laparoscopic instrument without removing the sleeve from a body, comprising:
- rotating a housing assembly of the laparoscopic instrument to expose an end of the tool to be removed;
- removing the tool from the sleeve of the laparoscopic instrument without removing the sleeve from the body; and
- inserting a second tool into the laparoscopic instrument.
2. The method of claim 1, further comprising registering the exposed end of the tool in at least one of a ball-receiving slot and a ball-receiving hole of the housing portion when the housing assembly portion is in a locked position.
3. The method of claim 2, wherein the ball-receiving slot is included in a housing of the housing assembly.
4. The method of claim 2, wherein the ball-receiving hole is included in a drum of the housing assembly.
5. The method of claim 1, pressing a locking lever to unlock the housing assembly from a locked position.
6. The method of claim 1, wherein the rotating includes rotating the housing portion about an axis of the laparoscopic instrument selected from a group consisting of an X-axis, a Y-axis, and a Z-axis, wherein the X-axis is any axis lying in the 3-dimensional space occupied by the laparoscopic instrument.
7. The method of claim 1, wherein the rotating includes rotating the housing assembly about a hinge of the laparoscopic instrument, the housing assembly being pivotably coupled to the hinge via a hinge pin.
8. The method of claim 1, further comprising grasping a pair of handles when rotating the housing assembly, the pair of handles being attached to the housing assembly.
9. The method of claim 1, further comprising linearly displacing the tool when the housing assembly is in a locked position to manipulate a tool device located at an opposing end of the tool.
10. A laparoscopic instrument comprising:
- a housing assembly including a pair of handles; and
- a hinge portion pivotally connected to the housing portion and including a tool knob extension for insertion into an incision of a body, the knob extension having an open end and an elongated hollow shaft for receiving a first tool for insertion into the hollow shaft through the open end, the hinge portion being pivotable between a closed position and an open position, the hinge portion being positioned in the open position with the knob extension remaining in the body when changing the first tool with a second tool.
11. The laparoscopic instrument of claim 10, wherein the housing assembly includes a drum assembly having at least two drums connected to respective ones of the pair of handles, the drums rotating independently of one another to permit movement of the handles relative to one another, the drums also rotating together in a fixed relationship about an axis passing through the center of the drums to permit rotation of the handles in a fixed relationship about the axis.
12. The laparoscopic instrument of claim 10, wherein the. hinge in the closed position rotates around an axis perpendicular to an axis of the knob extension to achieve the open position.
13. The laparoscopic instrument of claim 10, wherein the hinge portion in the closed position rotates around an axis parallel to an axis of the knob extension to achieve the open position.
14. The laparoscopic instrument of claim 10, wherein the hinge portion further includes a locking lever for locking the hinge portion in at least the locked position and the open position.
15. The laparoscopic instrument of claim 10, wherein the housing assembly includes a ball-receiving slot for receiving a ball end of any of the first tool and the second tool when the hinge portion is in the closed position.
16. A method of replacing a tool of a laparoscopic instrument, comprising:
- inserting a laparoscopic instrument into an incision of a body, the laparoscopic instrument having a first tool and a pair of handles coupled to the first tool;
- rotating a housing assembly of the laparoscopic instrument from a locked position to an open position to expose an end of the first tool;
- removing the first tool from a sleeve of the laparoscopic instrument and inserting a second tool without removing the sleeve from the body; and
- rotating the housing assembly from the open position to the locked position to couple the second tool to the handles of the laparoscopic instrument.
17. The method of claim 16, further comprising pressing a locking lever to release the housing assembly from the locked position.
18. The method of claim 16, further comprising pressing the locking lever to release the housing assembly from the open position.
19. The method of claim 16, further comprising rotating one of the handles to cause a linear movement of a tool device of the first tool or the second tool.
20. The method of claim 16, further comprising rotating the housing assembly about any axis of the laparoscopic instrument lying in the 3-dimensional space occupied by the laparoscopic instrument.
21. A method of exchanging tools in a surgical instrument, comprising:
- inserting a first tool through an elongated sleeve of the surgical instrument;
- moving part of the surgical instrument to permit removal of the first tool from the elongated sleeve;
- removing the first tool from the elongated sleeve; and
- inserting a second tool into the elongated sleeve.
22. The method of claim 21, wherein the surgical instrument is a laparoscopic instrument or an arthroscopic instrument.
23. The method of claim 21, further comprising inserting the surgical instrument together with its elongated sleeve through a cannula into the body.
24. The method of claim 21, wherein the moving includes rotating a housing assembly of the surgical instrument to expose an end of the first tool to be removed.
Type: Application
Filed: Feb 7, 2006
Publication Date: Dec 21, 2006
Inventor: Alfred Perlin (Highland Park, IL)
Application Number: 11/349,769
International Classification: A61B 17/00 (20060101);