Surgical site marker delivery system

A site marker delivery system is provided that may be used in combination with a tissue cutting device for marking a biopsy site. The system includes a tube attached to a hub. A push-rod is slidably disposed within the lumen of the tube. The push-rod is advanced forward through the lumen of the tube causing a marker seated within the tube to be deployed at a biopsy site.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

This application claims the benefit of U.S. Provisional Application Ser. No. 60/618,868 filed Oct. 14, 2004 which is hereby incorporated by reference in its entirety.

FIELD OF THE INVENTION

The invention generally relates to a biopsy site marker delivery system that may be used with a biopsy tissue cutting device. More particularly, the invention relates to a biopsy site marker delivery system for non-surgically implanting a site marker at a biopsy.

BACKGROUND OF THE INVENTION

In the field of breast cancer, stereotactically guided and percutaneous biopsy procedures have increased in frequency as well as in accuracy as modern imaging techniques allow the physician to locate lesions with ever increasing precision. However, for a given biopsy procedure, a subsequent examination of the biopsy site is very often desirable.

For example, in those cases where the lesion is found to be benign, a follow-up examination of the biopsy site may be conducted at a later time. Where the lesion is found to be malignant, the physician may want to place additional site markers to help guide the surgeon to the malignancy.

A number of procedures and devices for marking and locating particular tissue locations are known in the prior art. For example, location wire guides are well known for locating lesions, particularly in the breast. One such known device includes a tubular introducer needle and an attached wire guide, which has at its distal end, a helical coil configuration for locking into position about the targeted lesion. The needle is introduced into the breast and guided to the lesion site using an imaging system of a known type, for example, X-Ray, ultrasound or magnetic resonance imaging (MRI), at which time the helical coil at the distant end is deployed about the lesion. Then, the needle may be removed from the wire guide, which remains locked in position distally about the lesion for guiding a surgeon down the wire to the lesion site during subsequent surgery. While such a location system is effective, it is obviously intended and designed to be only temporary, and is removed once the surgery or other procedure has been completed.

It is also known to employ biocompatible dyes or stains to mark breast lesions. First, a syringe containing the colorant is guided to the detection lesion, using an imaging system. Later, during the extraction procedure, the surgeon harvests a tissue sample from the stained tissue. However, while such staining techniques can be effective, it is difficult to precisely localize the stain. Also, the stains are difficult to detect fluoroscopically and may not always be permanent.

Additionally, it is known to implant markers directly into a patient's body using an invasive surgical technique. This enables a practitioner to later return to the site of the graft by identifying the rings, for evaluation purposes.

Each of the above systems and methods for marking a biopsy site has disadvantages associated with effectiveness, accuracy, and invasive surgical techniques. Accordingly, what is needed is a site marker delivery system for delivering a marker to a biopsy site, and deploying the marker at the site effectively, accurately, and without the need for additional invasive surgical procedures.

SUMMARY OF THE INVENTION

In one embodiment of the present invention, the marker delivery system further includes a hub having a proximal end, a distal end and a channel extending between these ends. A tube having a lumen, a proximal end and a distal end, is attachable to the hub proximate the distal end thereof. The tube includes an aperture in communication with the lumen. The aperture is formed through a portion of a side wall of the tube proximate the distal end thereof.

A push-rod is dimensioned to be slidably passed through the channel of the hub and the lumen of the tube to the distal end thereof. The push-rod is operative to advance a marker seated in the lumen of the tube and out of the lumen through the aperture formed in the side wall of the tube.

A tube guide may be provided that is selectively attachable to a non-working end of a tissue cutting device to facilitate the proper alignment of the tube with a channel of the tissue cutting device. The tube guide includes proximal and distal ends and is formed with a channel extending between these ends.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a perspective view of an embodiment of a site marker delivery system according to the invention.

FIG. 1A is an enlarged view of a distal end of the site marker delivery system of FIG. 1 in area A after deployment of a site marker.

FIG. 1B is an enlarged view of a distal end of the site marker delivery sytem of FIG. 1 in area A before deployment of a site marker.

FIG. 2 is an exploded view of the embodiment of the site marker delivery system of FIG. 1.

FIG. 3A is an enlarged view of the hub and deployment trigger of the embodiment of the site marker delivery system of FIG. 1 in a first position.

FIG. 3B is an enlarged view of the hub and deployment trigger of the embodiment of the site marker delivery system of FIG. 1 in a second position.

FIG. 4A is a perspective view of a tissue cutting device that may be used with the embodiment of the site marker delivery system of FIG. 1.

FIG. 4B is a cross-section of the tissue cutting device of FIG. 4A illustrating the channel formed along the longitudinal access of the tissue cutting device.

FIG. 5 is a fragmentary view of the tissue cutting device of FIG. 4A and the tube guide of the embodiment of FIG. 1.

FIG. 5A is an enlarged view of the tube guide of the site marker delivery system of FIG. 1.

FIG. 6 is a side view of the site marker delivery system of FIG. 1A in a first position prior to deployment of the site marker.

FIG. 7 is a side view of the site marker delivery system of FIG. 1 attached to the tissue cutting device in a second position after the site marker has been deployed.

FIG. 8 is a flow diagram of a method of using the site marker delivery system of FIG. 1 to mark a biopsy site.

FIG. 9 is an alternative embodiment of a site marker delivery system.

DETAILED DESCRIPTION OF THE INVENTION

An embodiment of a site marker delivery system 10 that may be used in combination with a tissue cutting device for efficiently, accurately and sanitarily depositing a marker at a biopsy site, is disclosed. The marker delivery system 10 includes advantages over conventional delivery devices which are sometimes difficult to use, often result in inaccurate placement of the marker within the biopsy cavity, and allow for relatively large volumes of biological fluids to spill out from the biopsy device onto other equipment, medical professionals, the surrounding work area and floor.

The site marker delivery system 10 is formed of medical grade materials, for example, stainless steel, plastic and rubber. The site marker delivery system 10 includes universal features that allows the system to be used with a number of tissue cutting devices of different sizes, particularly with regard to an inner diameter of an inner cannula and the length of the cutting element of a particular tissue cutting device. The system 10 is adaptable for use in conventional biopsy procedures which may be performed manually and stereo-tactically. Other advantages provided by the site marker delivery system 10 over conventional marker delivery devices will become apparent from reading the following.

a. Hub

FIG. 1 illustrates an embodiment of a site marker delivery system 10 according to the invention. The marker delivery system 10 includes a hub 12 having a proximal end 14 and a distal end 16. The hub 12 is formed with a channel 15 (as best seen in FIGS. 3A-3B) that extends between the proximal 14 and distal 16 ends.

In one embodiment, the hub 12 includes a tactile indicator 40 adjacent the proximal end 14 that is indicative of the circumferential orientation of an aperture 24 of a tube 18 to be described hereinafter. The tactile indicator 40 may include a marking 64 that allows the indicator 40 to be visible in low light conditions as an additional means of indicating the orientation of the aperture 24 of the tube 18.

b. Tube

A tube 18 having a lumen (not shown) is provided having a proximal end 20 and distal end 22. The tube 18 is fixedly attachable to the hub 12 adjacent the distal end 16 of the hub 12. As mentioned above, the tube 18 includes an aperture 24 that is in communication with the lumen. The aperture 24 is formed through a portion of a side-wall of the tube 18 proximate the distal end 22. In one embodiment, the tube 18 is dimensioned to slidably pass through a channel C of a tissue cutting device (See FIG. 4B).

The tube 18 is preferably formed of a substantially rigid medical grade material such as stainless steel, plastic or other materials suitable. A marker (M) may be seated within the tube 18. It is preferred that the marker M is seated adjacent a proximal end of the aperture 24 (See FIG. 6). To retain marker M within tube 1 & at least one retention tab 41 may be provided. Prior to deployment, retention tab 41 is depressed inwardly from an outer surface of tube 18 so as to form a lip to prevent a marker M from prematurely deploying out of aperture 24 (See FIG. 1B). Once ejection of the marker M is facilitated (to be explained in further detail below), the marker M is pushed against retention tab 41, overcoming the spring force in retention tab 41 such that retention tab 41 is forced upwardly (See FIG. 1A) to allow passage of marker M through to aperture 24.

In one embodiment, the tube may further include an inclined wall 42 formed proximate a distal end 43 of the aperture 24 (See FIG. 1A). The inclined wall 42 operates as a ramp that assists in facilitating the ejection of the marker M out of the aperture 24 (to be explained in further detail below).

c. Tube Guide

A tube guide 26 may be provided. The tube guide 26 is selectively attachable to a non-working end of a tissue cutting device. The tube guide 26 includes a proximal end 28 and a distal end 30. The tube guide 26 is formed with a channel 32 that extends between the proximal 28 and distal 30 ends (See FIG. 5).

Preferably, the tube guide 26 includes at least one attachment pin 36 disposed on an exterior wall thereof. The attachment pin 36 is constructed for engaging a complimentary mounting groove 38 formed on the non-working end of the tissue cutting device so as to key the tube guide to the tissue cutting device. After the tube guide 26 is keyed to the tissue cutting device, the channel 32 of the tube guide 26 is longitudinally aligned with the channel C of the tissue cutting device. Accordingly, tube guide 26 operates to maintain the orientation between the marker delivery system 10 and the tissue cutting device.

As best illustrated in FIG. 6, the proximal end 28 of the tube guide 26 is formed as a funnel shaped wall 45. The funnel shaped wall 45 operates to direct the tube 18 into the channel 32 of the tube guide 26 such that the tube 18 can be advanced through the channel C of the tissue cutting device. In this fashion, the tube 26 can be directed into the channel 32 of the tube guide without having to visibly guide the tube 18 into the channel 32, unlike conventional marker delivery devices that required that the apparatus holding the markers be visibly guided into a channel C of a tissue cutting device.

As shown in FIG. 5A, the tube guide 26 preferably includes a first fluid sealing ring 46 disposed on its exterior wall adjacent the distal end 30 and a second fluid sealing ring 48 disposed within the channel 32 adjacent the distal end 30. The first and second fluid sealing rings 46, 48 operate to prevent bodily fluids from spilling out through the tissue cutting device or the site marker delivery system when the biopsy site is being marked. This helps maintain a safe, clean, and sanitary environment for medical personnel and patients.

The tube guide 26 may also include an air venting aperture 50 that has an inner diameter less than an inner diameter of the channel 32 of the tube guide 26. The disparate diameters insures that the tube 18 cannot be erroneously fitted into the air venting aperture 50 causing it to be out of alignment with the channel C of the tissue cutting device.

d. Push-Rod

A push-rod 34 is dimensioned to slidably pass through the channel 15 of the hub 12 and the lumen of the tube 18 to the distal end 22 of the tube 18. The push-rod 34 is operable to advance the marker M seated in the lumen of the tube 18 out of the lumen through the aperture 24. In one embodiment, the push-rod 34 has an outer diameter that is substantially contiguous with the lumen of the tube 18. In this fashion, the push-rod 34 operates to close or block the aperture 24 such that after the marker M has been deployed it can not fall back into the aperture 24.

e. Deployment Trigger

The site marker delivery system 10 preferably also includes a deployment trigger 44 that is selectively attachable to the proximal end 14 of the hub 12. As seen in FIG. 2, the push rod 34 is attachable to a first surface 54 of the deployment trigger 44 such that the deployment trigger 44 is operable to advance the push rod 24 toward the distal end 22 of the tube 18 when the deployment trigger 44 is being attached to the proximal end 14 of the hub 12.

Preferably, the deployment trigger 44 is formed as a push plate having opposing surfaces and at least one retaining arm 52 extending from the first surface 54. The at least one retaining arm 52 operates to engage a complimentary retaining rim 56 (best seen in FIG. 3A) disposed adjacent the proximal end 14 of the hub 12. The engagement of the at least one retaining arm 52 and the retaining rim 56 operates to lock the push rod 34 in place after the marker has been advanced out through the aperture 24 of the tube 18. The engagement procedure provides a tactile and audible indication to the user of the site marker delivery system 10 that the marker has been deployed. The tactile indication is force feedback from snapping the at least one retaining arm 52 onto the retaining rim 56. The audible indication is provided by the user actually hearing a “snapping” sound when the deployment trigger 44 is engaged with the hub 12.

As best illustrated in FIG. 3A, the deployment trigger 44 also includes a spring 58 disposed between the proximal end 14 of the hub 12 and the deployment trigger 44. The spring 58 concentrically surrounds a proximal end of the push rod 34 wherein a first end 60 of the spring 58 frictionally engages a central portion of the deployment trigger 44 and a second end 62 of the spring 58 frictionally engages the proximal end 14 of the hub 12. The spring 58 is adapted to maintain the longitudinal alignment between the deployment trigger 44 and the proximal end 14 of the hub 12. This allows for the push-rod 34 to be substantially stabilized when being axially advanced toward the distal end 22 the tube 18.

f. Method of Using the Marker Delivery System

FIG. 8 illustrates a method of using the site marker delivery system 10 in combination with a tissue cutting device for the purpose of marking a biopsy site. The method begins at 100 with attaching the tube guide 26 to the non-working end of the tissue cutting device. This step ensures that the channel 32 of the tube guide 26 is in alignment with the channel C of the tissue cutting device.

At 110, the method continues by sliding the tube 18 through the channel 32 of the tube guide 26 and the channel C of the tissue cutting device toward the distal end of the tissue cutting device.

At 120, the user of the site marker delivery system 10 receives a tactile indication from contacting the distal end of the tissue cutting device with the distal end 22 of the tube 18. This indicates that the marker delivery system 10 is in position for deployment of the site marker.

At 130, the method continues by aligning the aperture 24 of the tube 18 with an aperture formed proximate the distal end of the tissue cutting device. The tactile indicator 40 assists the user in orientating the aperture 24 with the aperture in the tissue cutting device. The method advances to 140.

At 140, the biopsy site is marked by depositing a marker seated in the lumen of the tube 18 at the biopsy site. This is accomplished by advancing the push-rod 34 through the channel 15 of the hub 12 and the lumen of the tube 18 toward the distal end 22 of the tube 18 until the marker M is discharged from the lumen and out through the aperture 24. If a retention tab 41 is provided, this step may also pushing retention tab 41 upwardly such that marker M may be advanced to the aperture 24 by push-rod 34.

At 150, the push-rod is locked in place after the marker M has been discharged from the lumen through the aperture 24 by engaging the deployment trigger 44 onto the proximal end 14 of the hub 12. In this fashion, the push rod 34 operates to prevent the marker from falling back into the aperture 24 during removal of the side marker delivery system 10 and the tissue cutting device from the biopsy site.

Referring now to FIG. 9, an alternative embodiment of an end deployment site marker delivery system 200 is shown. End deployment site marker delivery system 200 includes a cannula 202, a push rod 204, and a handle 206. Cannula 202 is hollow and defines an inner lumen having a proximal end 208 and a distal end 210. Both proximal and distal ends 208 and 210 are open. In one embodiment, proximal end 208 further includes at least one retaining rim 212 (to be explained in further detail below).

In one embodiment, positioned slightly inboard of distal end 210 is at least one holding tab 214. Holding tab 214 is formed on an internal surface of cannula 202 and is sized so as to frictionally engage a portion of a site marker 216 (to be explained in further detail below). In one embodiment holding tab 214 is constructed of a suitable material having a predetermined degree of flexibility such that a predetermined amount of force may flex the holding tab out of engagement with site marker 216.

Push rod 204 is connected to a deployment plunger 218 at its proximal end. Push rod 204 further includes a distal end 220 that is selectively contactable with site marker 216. Push rod 204 is dimensioned to slidaby pass through the lumen of cannula 202 to the distal end 210 of cannula 202. However, push rod 204 further may be dimensioned so as to be substantially contiguous with the lumen of cannula 202 to block or close open distal end 210 such that after marker 216 has been deployed, it cannot reenter cannula 202.

Deployment plunger 218 is formed as a push plate having opposing surfaces 222, 224 and at least one retaining arm 226 extending from one of the opposing surfaces 222. Retaining arm 226 operates to engage retaining rim 212 of cannula 202 in a complementary fashion. Engagement of retaining arm 226 and retaining rim 212 operates to lock push rod 204 in place after marker 216 has been advanced out though distal end 210. The engagement of retaining arm 226 and 212 provides a tactile (force feedback from snapping retaining arm 226 onto retaining rim 212) and audible (the “snapping” sound generated when retaining arm 226 engages retaining rim 212) indication to the user of site marker delivery system 200 that marker 216 has been deployed.

Handle 206 is connected to cannula 202. In one embodiment, handle 206 is integrally formed with cannula 202. Handle 206 provides a convenient gripping portion for grasping cannula 202 to maintain the position of cannula 202 while activating the deployment plunger 218.

Marker 216 is positioned within open distal end 210 of cannula. In one embodiment, marker 216 includes a head portion 228 and a body portion 230, where head portion 228 is sized to be at least slightly larger than the outside diameter of cannula 202 such that head portion 228 remains outside of the lumen of cannula 202. While head portion 228 is configured as a “cap” in FIG. 9, it is understood that other geometries may be employed for head portion 228 such as a blunt end or a trocar tip. Further, it is also understood that marker 216 need not be provided with a head portion 228 at all.

Body portion 230 is sized to at least partially slidably pass into distal end 210 of cannula 202. However, body portion 230 is also sized such that it frictionally engages holding tab 214. Holding tab 214 retains marker 216 to cannula 202 until it is deployed via push rod 204.

When deployment plunger 218 is activated, push rod 204 moves through cannula 202 until distal end 220 of push rod 204 comes into contact with an end 232 of body portion 230. Push rod 204 then over comes the frictional force of holding tab 214 and pushes marker 216 out through distal end 210 of cannula 202 into the body cavity. When deployment plunger 218 has reached distal end 210 of cannula 202, retaining arm 226 engages retaining rim 212 thereby indicating deployment of marker 216.

The foregoing embodiments of the site marker delivery system is disclosed for illustrative purposes. Many adaptations and modifications will become apparent to one of ordinary skill in the art upon reading the above descriptions. The scope of the invention should be determined with reference to the appended claims, along with the full scope of equivalence to which such claims are entitled.

Claims

1-31. (canceled)

32. A marker delivery system comprising:

a hub having a proximal end and a distal end and a channel extending between said ends;
a tube having a lumen, a proximal end and a distal end, said proximal end of said tube being attachable to said hub, said tube having an aperture in communication with said lumen;
a tube guide operatively connected to said tube, said tube guide having proximal and distal ends and a channel extending between said ends; and
a push-rod dimensioned to slidably pass through said channels of said hub and tube guide, and said lumen of said tube to said distal end of said tube, said push-rod being selectively operable to advance a marker seated in said lumen of said tube out of said lumen through said aperture.

33. The marker delivery system of claim 32, wherein said tube guide may be selectively attachable to a non-working end of a tissue cutting device.

34. The marker delivery system of claim 32 wherein said tube guide further comprises concentrically arranged inner and outer sleeve portions, said inner sleeve portion being formed with said channel extending between said ends.

35. The marker delivery system of claim 32 wherein said tube guide further comprises at least one attachment pin disposed on an exterior wall thereof, said attachment pin being constructed for engaging a complementary mounting groove formed on the non-working end of the tissue cutting device, said channel of said tube guide being in alignment with said channel of the tissue cutting device after engagement.

36. The marker delivery system of claim 32 wherein said proximal end of said tube guide is funnel shaped.

37. The marker delivery system of claim 32 wherein said tube guide further comprises an air venting aperture, said air venting aperture having a inner diameter less than an inner diameter of said channel thereof.

38. The marker delivery system of claim 32, wherein said tube guide further includes at least one seal disposed on an outer surface thereof.

39. The marker delivery system of claim 38 wherein said tube guide further comprises a first fluid sealing ring disposed on said exterior wall adjacent said distal end and a second fluid sealing ring disposed within said channel adjacent said distal end.

40. The marker delivery system of claim 32 wherein said hub further comprises a tactile indicator proximate said proximal end, said tactile indicator being indicative of a circumferential orientation of said aperture.

41. The marker delivery system of claim 40 wherein said tactile indicator further comprises a marking that is visible in low light conditions.

42. The marker delivery system of claim 32 further comprising a deployment trigger attachable to said proximal end of said hub, said push-rod being attachable to said deployment trigger, said deployment trigger being operable to advance said push-rod toward said distal end of said tube when being attached to said hub.

43. The marker delivery system of claim 42 wherein said deployment trigger comprises a push-plate having opposing surfaces and at least one retaining arm extending substantially perpendicularly from a first surface thereof, said retaining arm being operable to engage a complementary retaining rim disposed proximate said proximal end of said hub to lock said push-rod in place.

44. The marker delivery system of claim 42 wherein said deployment trigger includes a spring between said proximal end of said hub and said deployment trigger, said spring concentrically surrounding a proximal end of said push rod.

45. The marker delivery system of claim 44 wherein said spring comprises a first end that frictionally engages a central portion of said deployment trigger and a second end that frictionally engages said proximal end of said hub, said spring adapted to maintain longitudinal alignment between said deployment trigger and said proximal end of said hub.

46. The marker delivery system of claim 32 wherein said tube further comprises an inclined wall proximate a distal end of said aperture.

47. The marker delivery system of claim 32, wherein said tube further comprises a retention tab that is selectively movable from a first position whereby said retention tab prevents a marker from traveling through said tube, to a second position whereby said retention tab is positioned upwardly from said first position to allow a marker to travel through said tube.

48. The marker delivery system of claim 32 wherein said tube is substantially rigid.

Patent History
Publication number: 20070010738
Type: Application
Filed: Sep 11, 2006
Publication Date: Jan 11, 2007
Inventors: Joseph Mark (Indianapolis, IN), Michael Hoffa (Brownsburg, IN), Brian Zimmer (Indianapolis, IN), Zachary Nicoson (Indianapolis, IN)
Application Number: 11/518,972
Classifications
Current U.S. Class: 600/427.000
International Classification: A61B 5/05 (20060101);