Apparatus And Method For Generating Data Signals
An ergonomic apparatus for generating data signals that may be indicative of alphanumeric characters for use with an electronic device or system such as a computer or electric typewriter, for example. The apparatus may be configured in accordance with ergonomic principles and use one or two hands to generate the data signals. The apparatus may include a set of domes that are shaped and contoured to conform to the shape of hands in a relaxed state and to distribute pressures across the splayed underside of the user's hand. Each dome may be capable of movement in a plurality of directions extending radially from a home position to generate the data signal or a portion of the data signal. The two-handed implementation disclosed utilizes input movements that enable keystroke actuation via only slight arm or hand movement, no finger movement being required. A keyboard layout may be used with the domes to associate movement of each dome with an alphanumeric layout of characters on a conventional keyboard such as a QWERTY keyboard layout. Dome movement may also be associated with the relative location of alphanumeric characters on an associated keyboard and the repsective relative frequency of use of an alphanumeric character to be produced. Hand-held embodiments of the apparatus are provided that may be used with portable or other similar electronic devices.
This application is a division of U.S. continuation-in-part application Ser. No. 10/609,168, filed Jun. 27, 2003, which claims the benefit of pending U.S. application Ser. No. 09/993,260 filed Nov. 14, 2001, which claims the benefit of U.S. provisional application No. 60/248,472 filed Nov. 14, 2000 which are incorporated in their entirety herein by reference.
BACKGROUND OF THE INVENTIONThe present invention relates to a human-computer interface for data entry, and more particularly, to a device that is ergonomically designed with reference to the architecture and functions of the human hand, wrist, and arm for generating data signals and/or providing data input to a computing device.
The development of ergonomically designed keyboards has resulted from an increased awareness and identification of physical problems associated with the use of conventional typewriter-like keyboards. An ergonomically designed keyboard attempts to create a key layout that reduces finger travel and fatigue; promotes a more natural hand, wrist, and arm typing posture through design and support structures; or employs various key activation schema in order to enhance typing performance.
Due to the proliferation and availability of computer systems, there has been a dynamic growth in the use of keyboard devices. The term “computer systems” is used generically to refer to any microprocessor based device having a hand or finger operated data entry system, including, for example, PC's, McIntosh, Palm Pilots®, Sony Play Station, Nintendo Game Boys® or Game Stations, Microsoft Xbox or other video game stations. Various annoying and debilitating muscular syndromes have accompanied this expansion, resulting from the repetitive and fatiguing hand, wrist, and finger motions that are required in the use of conventional typewriter like keyboards. There has been a growing concern over neuromuscular injuries among clerical workers, journalists, computer programmers, and others who use computers or typewriters extensively. These injuries, one widely publicized of which is carpal tunnel syndrome, translate not only into pain and potential disability for the affected users, but also into significant loss of money, time, and productivity for businesses. Attention to these problems is not new in the art, as is evidenced by many serious attempts to alleviate keyboard-use “injuries” through innovative keyboard layouts and architectural designs.
Force, repetition, posture, rest, and stress are major factors to be considered in controlling and eliminating keyboard-related injuries (KRIs). Analysis of each factor, both independently and in relation to one another, is necessary in designing a keyboard that eliminates or reduces KRIs, force and repetition being perhaps the most important in the development of an ergonomically designed keyboard. Force is related to the musculature and conformation of the fingers and hands, which place limitations on their ability to perform a given task. Individuals suffering from various musculoskeletal disabilities frequently have special needs in order to perform routine tasks such as using a standard keyboard for entering data into a personal computer.
An abundance of human-computer interaction literature has suggested that some of the recently developed alphanumeric input devices may be more efficient, easier to learn, and may cause less physical trauma than conventional typewriter like keyboards. Of these recently designed keyboards, most incorporate one or more design features that enhance typing performance and reduce or eliminate fatigue or injury. These design features include: (1) splitting the keyboard to minimize wrist deviations; (2) key contouring and flexible key mapping to minimize finger travel; (3) built-in hand and arm support; (4) a ternary capability in which keys rock back and forth to type; (5) a capability to rotate and tilt the device into numerous positions; and (6) a chordal capability, in which more than one key must be depressed for a single character to be output.
In reference to eliminating or reducing force and repetition fatigue factors, three approaches are illustrated in U.S. Pat. No. 4,332,493, issued to Einbinder, U.S. Pat. No. 4,849,732, issued to Dolenc, and U.S. Pat. No. 5,178,477, issued to Gambaro. Einbinder discloses a typewriter keyboard in which the keys are arranged to conform to the “footprint” of the human hand. This layout of keys is designed with topographically height- and angle-differentiated actuation pads that attempt to minimize overall hand and finger motion. The Einbinder device stresses the importance of having “home positions” for the finger and thumb tips, from which position the fingers, and therefore the hands, must travel appreciably in order to perform typical typing operations. Thus, the Einbinder device eliminates only a portion of the problem in solving the motion difficulties encountered with conventional keyboards.
Similarly motivated by safety-related concerns, Dolenc teaches a one-hand key layout that includes a fanlike array of plural keys distributed in elongated rows and organized for specific actuation by the thumb and four fingers of the hand. Dolenc's device is concerned with minimizing hand motion, but not finger motion. In fact, Dolenc speaks in terms of organizing keys in arrays in such a fashion that they take into account the “motion and range of the respective fingers of the hand.” Thus, Dolenc clearly considers fingertip actuation of each key. While Dolenc addresses the issue of minimizing hand motion, the disclosed system does not appreciably contribute to minimizing finger motion, or to related wrist motion. In addition, this device does not address the angular and topographical distinctions for individual keys, such as those described in the Einbinder patent. Dolenc also does not establish a “home position” for the tips of the fingers and thumb, as did Einbinder.
Gambaro discloses an ergonomically designed keyboard that is organized with an array of keys that are disposed generally “to complement the splayed underside architecture of the user's hand.” A two-handed implementation is disclosed wherein each array includes, for each finger of the hand, a cluster of input keys that are placed in such a manner that they enable key actuation via only “slight, gestural, relatively closing motion of a portion of a confronting finger, and for the thumb in each hand.” In addition, this design tries to overcome ergonomic problems with a set of keys disposed within two adjustable “hand-print”-shaped depressions. No appreciable movement of the fingers from the fingertip down to immediately below the first finger joint is required, each finger being capable of accessing four keys for the middle, ring, and little fingers, eight keys for the first finger, and a multitude of keys for the thumb. Again, even though drastically reduced, finger movement is still required, and all fingers are required for full key set actuation.
Computing and other devices that respond to data signals are regularly used for relatively long periods of time by people of all ages and abilities. Consequently, it is becoming increasingly important that a device accommodate extended periods of usage and take into account the special needs of those who may be physically challenged or otherwise disabled. Prior art devices in general demand considerable manual and digital dexterity to operate, making them relatively difficult for extended usage and a portion of the population to utilize efficiently and effectively.
SUMMARY OF THE INVENTIONGiven the growing concern over keyboard-related finger and hand motion problems, one aspect of the present invention provides an ergonomic human-computer interface apparatus that obviates overuse injuries, with the primary focus being on the entire aggregate of hand, wrist, and finger motions. Applicant has previously obtained U.S. Pat. Nos. 5,638,062 and 5,473,325 for ergonomically designed data input devices. Both of these patents disclose a hand or palm operated device that may be used to generate data input signals by the sliding of a dome-shaped member towards different sectors of a circle. For typing or the generation of other alphanumeric characters, two such members may be used, one controlled by each hand, so that two signals may be generated and combined to produce as many keystroke entries as are generated by a conventional typewriter style keyboard.
One exemplary embodiment of an apparatus in accordance with aspects of the present invention may comprise a pair of input devices, one for each hand. The apparatus may comprise a base and two palm engaging supports each in the shape of a dome that fits in close complementary relationship with the palmar architecture of a user's hand in a relaxed state. Thus, the hands and wrists of the user may be maintained in their most relaxed position and in one exemplary embodiment the domes may be tilted downwardly and away from the user's left-right midplane. Each dome may be coupled through movable means to the apparatus base, which may be shaped with a pair of shallow recesses dimensioned to receive a respective dome so that a lower edge of each dome may be positioned above a peripheral edge defining each recess. In one exemplary embodiment each dome may be maintained in a “home” or “centered” attitude when not under stress. When a dome is subjected to a sliding motion, a biasing means such as a coil spring, for example, may exert a force on a means for sensing the location or movement of the dome. This means for sensing may be provided to sense the movement and/or location of the dome for a specified direction of moving from the “home” position. In one exemplary embodiment, the biasing means may be an eight-legged spring that may exert tangential forces to the means for sensing movement and/or location that correlate one-to-one to the motions of each dome. Means for guiding each dome may be provided such as a flower pedal shaped impression as more fully described below.
In one exemplary embodiment, an ergonomic handpiece, or dome, may be coupled to a kinematic map plate that is positioned above and coupled to an actuation armature. The kinematic map plate may include a means for guiding the dome such as a variable depth kinematic impression in the shape of a flower such that the flower-pedal shaped impression has a number of discrete pedals. One exemplary embodiment allows for the kinematic map plate to mate to a four post spider mechanism that may actuate or move vertically along a pair of guide posts on the upper director plate. Respective ones of the four spider posts may mate to the respective centers of the kinematic map plate flower pedal impressions to provide a means for guiding a domes into one of eight cardinal movement zones. When the dome is moved a sufficiently linear distance, it may be moved into one of the flower points defining the end of a flower-pedal impression. Means for registering dome displacement may be provided via the mating of a flower pedal point and a respective spider post, which in turn may generate a location signal. When a location signal is generated by each input device or dome sequentially or simultaneously, the pair of location signals may be translated into a unique “keystroke” signal. It can be appreciated that the possible number of unique keystroke signals available is related to the number of flower pedals in each input device. That is, it is at least equal to the number of flower pedals in the right-hand input device times that in the left-hand input device. This combination of signals to generate a unique keystroke is referred to herein as “chording”. Chording may be used to generate a set of user-definable alphanumeric characters or functions, for example, which may then be processed into a form suitable for transmission to a computer or other electronic device, for example.
One exemplary embodiment allows for accessing a set of keystrokes by generating signals indicative of the location or movement of each input device or dome used alone or jointly. A color-coded annulus may be provided for each dome in accordance with aspects of the present invention wherein each annulus may contain indicia that provide a correspondence between dome attitude and keystroke. Each annulus may be affixed to the top edge of the apparatus base wall where each is visible. Another exemplary embodiment allows for generating a data signal indicative of a keystroke by combining movement of one or more domes with switching the apparatus among various operating modes such as a “num lock” mode, a “shift” mode, a “shift-lock” and/or a “caps lock” mode, for example. Using the movement or position of one or both domes in combination with various modes increases the number of keystrokes available for generating alphanumeric or other special characters or functions.
Various embodiments of the invention described herein require no appreciable hand or wrist motion and no finger motion. Instead, the movement required is relatively small such that only a slight motion of a user's arms is required to output a desired keystroke. More specifically, use of various embodiments requires little shifting of the hand from a rest position and does not require wrist rotation for maneuvers that are performed on conventional keyboards by the four fingers and the thumb. Since the fingers are not required to perform any maneuvering for typing, instead of focusing on finger-tip activation, various embodiments of the present apparatus require only slight motion of a person's arm and/or hand for actuation of keystrokes. Also, the left hand and right hand domes, in one exemplary embodiment, may have different switches to activate various keyboard functions. For example, in the left hand dome a switch may be provided at the location of the top surface of the upper director plate. Applying vertical pressure to the dome may activate this switch. When the switch has not been depressed, a first set of unique keystroke signals may be available, as described above. A single depression and release of the dome allows for access to a second set of keystroke signals that may be equal in number to the first set. For example, depressing and holding of the left dome may access the “shift” function or depressing and releasing the left dome may activate the “shift-lock” function.
In another aspect of the present invention, switching means may be provided for selectively altering or controlling the location of a cursor by placing one dome into a “mouse” mode. A single sequential depression and release of the right hand dome, for example, may allow that dome to act as a positioning cursor or “mouse”. This vertical actuation may disengage the spider mechanism from the dome to allow the dome freedom of movement for cursor control. In this respect, the spider mechanism may move vertically between one of two positions on vertical actuation by the right hand dome. An engaged position allows the spider member to seat firmly in the flower pedal impressions to aid in dome guidance. A disengaged position may place the spider mechanism in a position so it is not seated in the flower pedals impressions. The disengaged position allows for the kinematic map plate the about freely in 360 degrees for cursor control. To effect this capability, one exemplary embodiment allows for an opposing ramp geometry or camming mechanism to be seated within a center aperture of the spider mechanism. In one exemplary embodiment, as the spider mechanism is depressed via the dome, a plurality of camming protruberances within the aperture may engage the ramps or camming surfaces causing the spider mechanism to disengage from the kinematic map plate and rotate approximately 45 degrees. Depression of the dome may also actuate a switch that enables the mouse mode. The spider mechanism may re-engage the underside of the kinematic map plate after rotation and release of the dome at points that do not contain the flower-pedal impressions. Concave impressions may be formed on the underside of the kinematic map plate for receiving posts of the spider mechanism allowing for the dome's freedom of movement. When the dome is depressed and released again the spider mechanism may rotate and re-engage the flower-pedal impressions and the keyboard mode may be enabled.
In another exemplary embodiment, depression of the dome may lower the spider mechanism without rotation to a position below the kinematic map plate and retain it in that position. In this respect, the camming mechanism may rotate within the aperture formed in the kinematic map plate to activate the mouse mode and retain the spider mechanism below the kinematic map plate via the camming protuberances and surfaces so the dome is in the “free form” position. When the camming mechanism is rotated and the mouse switch is activated the mouse mode is initiated. Once initiated, the electronic logic of a control processing module may sense the mode and allow for mouse cursor movement using the right hand dome. In one exemplary embodiment the left hand dome may then be used for the mouse left, right, and middle clicks and one embodiment allows for up to sixteen different clicks to be programmed in the apparatus. This type of built-in cursor or “mouse” activation and control allows a user to keep their hands on the respective domes continuously for total hand on-board typing and cursor control. In one exemplary embodiment the right switch may be mounted on the top surface of the upper director plate on the right hand dome assembly. Applying vertical pressure to the dome may activate this switch. When the switch has not been depressed, a first set of unique keystroke signals may be available. A single depression and release of the dome allows for access to the mouse navigation signal.
Another exemplary aspect of the present invention allows for palm and finger rests or pads to be provided on one or both of the domes that engage and support the hand during motion of the hand when moving a respective dome rather than being contoured to only fit the shape of a static hand. Various aspects of the present invention allow for maximum flexibility in defining character location, activation force, activation displacement, and physical orientation of the apparatus. For example, it can be used by a physically challenged individual because it will permit adaptation to his or her unique physical requirements. In addition, because finger movement may be totally eliminated, individuals with partial hand or finger paralysis or absence can still manipulate the apparatus. Additional flexibility is provided in that variable dome sizes may be made to accommodate any user. In recognition that a “one-size-fits-all” approach may not be entirely appropriate to deal with users' hands that are significantly larger or smaller than a “median” hand size, various embodiments of the present invention allow for different dome sizes to accommodate a range of hand sizes and finger spans. In addition, it can be appreciated by one skilled in the art that other ergonomically satisfactory shapes besides contoured domes may be utilized, such as balls or flat boards, for example.
Miniaturization of conventional keyboards has been a difficult task because of the need to accommodate human fingers. One exemplary embodiment of the invention described herein allows for easy miniaturization and requires the use of only one finger, such as the thumb, of each hand, to operate the apparatus. For example, an exemplary embodiment of a thumb controlled mechanism disclosed herein can be implemented as a pair of thumb-operated elements on the face of computing devices such as a Palm Pilot® or Game Boy® hand-held units, for example. Further, since various embodiments of the present invention contain no unitary “keys” requiring independent movement, it is possible to make the apparatus completely sealed for weatherproofing so that they are hostile-environment ready. Their design allows for total enclosure and therefore protection from water, dirt, dust, etc.
It can be appreciated that another alternate embodiment of the present invention may comprise a unitary input apparatus as already described for one-handed operation. A certain set of keystrokes may be accessible by rocking the dome into the available signal-generating sectors, the number of keystrokes available being equal to the number of sectors. In addition, chording is possible with the use of the switching means described above. In this exemplary embodiment, the user may rock the dome into one sector while simultaneously depressing the dome sufficiently to activate the switching means. While maintaining vertical pressure on the dome, the dome may be returned to the “home” position and then moved into a second sector. The signals generated by the motion of the dome are then “chorded” in a similar fashion to that utilized in the dual input device embodiments.
BRIEF DESCRIPTION OF THE DRAWINGS
Referring to
In accordance with aspects of the present invention, keyboard 10 may take on a sculpted form that is intended to complement closely the typical palmar architecture of the human hand at rest. Accordingly, keyboard 10 may have bilateral symmetry, which can be seen in
For simplification, the structure and operation of the interface keyboard 10 is described hereinafter primarily with reference to right-hand input device 104, it being understood that device 102 may be structurally and operatively identical with certain exceptions described herein in accordance with aspects of the present invention. Keyboard 10 may include a housing 28 formed with a top half 29 and a bottom half 31 as more clearly shown in
One aspect of the present invention provides a means for selecting a reference or “resident North” direction for each respective dome 102, 104 so that an end user may select the “resident North” direction for each dome to accommodate that end user's needs or preferences. The “resident North” or reference direction may be the easiest direction for an end user to move a respective dome, for example, when the user's hands are placed on the domes. Each dome 102, 104 may be moved in different directions into its “resident North” position as selected by the end user. The upper director plate 135 may move in response to movement of a respective dome 102, 104 into its respective “resident North” position, which may correspondingly translate an actuation armature, as more fully described below. The means for selecting may include opposing sets of teeth 38 on the underside of upper director plate 135 that may matingly engage respective ones of opposing sets of recesses 39 formed within annular rims 36. In this respect, corresponding ones of the teeth 38 and recesses 39 may be engaged when the respective upper director plates 135 are attached to the top half 29 of housing 28 in a “resident North” position selected by the user. This means for selecting is advantageous in that it provides one degree of freedom for individual users to independently adjust the direction for sliding each dome, when attached to respective upper director plates 135, into a “resident North” position. This degree of freedom accommodates a user's particular hands and arms positions for sliding the respective domes. Alternate means will be recognized by those skilled in the art.
One aspect of the present invention allows for a second degree of freedom with respect to a user's sliding or movement of respective domes 102, 104. Referencing
In an exemplary embodiment suitable for hostile environments, keyboard 10 may be completely sealed and airtight. This may be accomplished by attaching one edge of a rubberized expandable gasket (not shown) around the lower edge of respective domes 102, 104 and the other edge of the gasket to a top surface of housing 28. The gasket may be sufficiently flexible to enable the working of the domes and may be accomplished by using an accordion pleated gasket, for example.
With reference to
A tension parameter associated with the sliding motion of the dome 104 may be modified in the actuator armature 110 with the use of a biasing means such as a spring 116 as shown in
Referencing
In one exemplary embodiment, the eight flower pedal-shaped impressions 128 define the possible planar movements of the dome 104. In this respect, when dome 104 is moved linearly or laterally from a center resting location in a plane perpendicular to central post 142, a corresponding displacement is induced in the kinematic map plate 126. It will be recognized by those skilled in the art that in alternate embodiments dome 104 may be moved in a plane oblique to central post 142. The flower pedal shaped impressions 128 may function as a guide when mated with the spider mechanism 130 such that the motions of the dome 104 are restricted to the motions allowed for by the impressions 128. An alternate embodiment of the impressions 128 allows them to be shallower so that a user may disengage the dome 104 from the kinematic map plate 126 for moving the dome 104 in a “mouse” mode as more fully described below. The impressions 128 may engage and move along or be guided by the statically located spider tips 131. This provides guidance of the domes 104 into one of eight respective positions, for example, as defined by the impressions 128. The linear displacement of kinematic map plate 126 may only be induced to the extent of the spider posts or tips 131 reaching a point 132 defined by the end of each groove of the impressions 128. Thus, each of the points 132 creates a “stop” to kinematic map plate 126 movement. The extent of the displacement of kinematic map plate 126 needed to reach one of these “stops” defines the point at which the position sensing means 122 may output a location signal indicating a respective position of dome 104. Alternate embodiments allow for the eight-position impressions 128 to be replaced with an aperture having from zero to twelve points 132, for example, and may vary in size as will be recoginzed by those skilled in the art. Since the transduction of linear displacement into a location signal is software controlled, there is virtually unlimited flexibility inherent in this system.
One exemplary embodiment allows for the kinematic map plate 126 to translate in relation to the upper director plate 124 in both the vertical and horizontal directions. Referencing
Another exemplary embodiment of the present invention is shown in
The embodiment of
As can be appreciated from the camming surfaces 89 configuration shown in
Referring to
The generation of data signals for producing keystroke signals will be described with reference to
One advantage of this design is that it enables a user to utilize the keyboard 10 with less precision with one hand than the other. In this respect, if a user has less dexterity, etc. in their left hand relative to their right then the embodiment illustrated in
Referring to
Another exemplary embodiment of hand-held device 159 is shown in
One exemplary embodiment of the device 159 shown in
Another exemplary arrangement of the device 159 of
A director plate 314 may include a post 316 supported on an arcuate cantilever arm 318 for mating with the dome plate 308 and coupling the dome 304 to the top housing 300. In this respect, the director plate 314 may include at least one slot 320 having an offset width for receiving respective locking tabs 321, shown in
A guide plate 324 is provided that may rest on respective guide walls 326 that allow for sliding the dome 304 laterally or “east” and “west” when coupled with the top housing 300. Corresponding guide rails (not shown) may be formed on the underside of the guide plate 324 that fit over respective ones of the guide walls 326. A button plunger 328 may have a ball bearing 330 affixed centrally on its top when button plunger 328 is placed over a corresponding plunger post 332. A compression spring (not shown) may be inserted within the plunger post 332 for creating an upward bias on the plunger button 328 so that it may be depressed and released in response to pressing down and releasing dome 304 to activate a switch 334. A pair of ball plungers 336 may be provided having respective ball bearings affixed to their tops when coupled with the bottom housing 302. Ball bearings 338 may engage the underside of the director plate 314 when the keyboard 10 is assembled as more fully described below. The ball plungers 336 may be placed within respective housings 340, each having a compression spring 342 placed therein for creating an upward bias on the ball plungers 336. One of the ball plungers 336 may include a snap retainer 341 and a snap ring 342 that may be placed over the respective ball plunger 336 so that a portion of the plunger 336 extends above the top of the snap retainer 341 when inserted into housing 340. The snap retainer and ring may provide auditory and/or tactile feedback to a user that the dome 304 has been translated a sufficient distance indicating the proximate end of a keystroke in accordance with aspects of the present invention. In this respect, referencing
Means for guiding dome 304 may be provided as a patterned impression 346 formed in the underside of the director plate 314 for receiving the other one of the ball plungers 336. The impression 346 may be a flower-pedal arrangement having eight grooves within which respective ball bearing 338 may be received to guide the dome 304 in a plurality of directions for generating alphanumeric characters in accordance with aspects of the present invention. Alternate means for guiding dome 304 will be recognized by those skilled in the art such as a similarly patterned aperture in director plate 314, for example. An aperture 348 and associated cylindrical extension 349 may be formed in the director plate 314 for receiving a guide ball 350 affixed to the top of an arm vertically extending from position sensing means 352 when keyboard 10 is assembled. In this respect, guide ball 350 may be situated within the cylindrical extension 349 and consequently move in response to movement of dome 304. Guide ball 350 in turn moves the vertically extending arm or shaft that is pivotally connected at its base within the position sensing means 352. The position sensing means 352 may generate a data signal to the control circuit board 312 in response to movement of the vertically extending arm indicative of the dome's 304 movement and/or position. The control circuit board 312 may be programmed to interpret the data signals received from the position sensing means 352 to generate a corresponding data signal indicative of an alphanumeric character to be produced and/or a keyboard function to be performed. The underside of director plate 314 may also include a pair of guide posts 354 that fit within respective slots 356 of the guide plate 324 that allow for guiding the dome 304 in a “north” and “south” direction when keyboard 10 is assembled.
The “home row” keys of a QWERTY keyboard in accordance with traditional typing methodology are “a, s, d and f” for fingers of the left hand and “j, k, I and ;” for fingers of the right hand. With the exception of these “home row” keys, a QWERTY user will move respective fingers in a particular direction to access all other keys on the keyboard. In accordance with aspects of the present invention, each direction a QWERTY user moves a finger may be associated with a point of a compass. For example, when typing the letter “q” on a QWERTY keyboard, the left pinky finger moves “northwest”. In typing the same letter with the exemplary layout of
Another aspect of the present invention allows for generating a keystroke by moving a first dome 303, 304 in the general compass direction of the character as it is found on a QWERTY layout and moving a second dome in a direction that is at least a function of the ease of dome movement and/or the frequency with which that character is used. In this respect, when generating a keystroke for a character having a high relative frequency of use, one aspect allows for moving one of the domes in a compass direction that is relatively easier for a user to use. It has been determined that moving or directing a dome in one of the “north”, “south”, “east”, or “west” directions is typically easier for a user than moving or directing a dome in the “northwest”, “northeast”, “southeast” or “southwest” directions. When generating a data signal for producing an alphanumeric character having a low relative frequency of use, a dome may be moved or directed into one of the “northwest”, “northeast”, “southeast” or “southwest” directions. These four positions or directions are typically less easy for users to direct the dome and may therefore be used with less frequency. For example, the letter “e” is the most commonly or frequently used character in the English alphabet. The exemplary layout of
The letter “a” is also a character with a high relative frequency of use. To generate a data signal or keystroke for producing the “a” character, the exemplary layout allows for a left hand motion that is to the left or “west” and a right hand motion that is in the up or “north” direction. Because the letter “a” is a “home row” key it requires no movement of a user's finger for its production on a QWERTY keyboard other than to press the “a” key with the user's left pinky finger. In this respect, the association between movement of the left dome and the QWERTY keyboard layout is the relative location of the letter “a” on the QWERTY keyboard. This is, the “a” is located on the left side of the QWERTY keyboard. Consequently, the left hand movement of the dome is in the left or “west” direction and the right hand movement or motion is in the up or “north” direction because the letter “a” is a character having a high relative frequency of use and the “north” direction is relatively easier for users to move a dome.
One aspect of the exemplary layout of
The exemplary keyboard layouts illustrated in
Certain keyboards and associated software known in the art that are used with personal computers employ a function commonly referred to as “sticky keys”. Enabling the “sticky keys” function allows a user to sequentially depress a combination of keys to execute a function rather than having to depress and hold those keys down simultaneously, which may be difficult for some users to do such as those having arthritic hands. For example, depressing and holding the “Ctrl”, “Alt” and “Delete” keys on a standard keyboard will pull up a Task Manager in some versions of the Windows operating system. With “sticky keys” enabled, a user may press and release these keys in sequence to pull up the Task Manager. Exemplary embodiments of the present invention may include a “sticky key” function. In this respect, referring to FIGS. 11 or 12, a “sticky key” function may be provided for the “Ctrl” and/or “Alt” functions. One exemplary embodiment allows for activating the “Ctrl” function by moving a first controller, such as dome 303, “southeast” and a second controller, such as dome 304, “north”, allowing the controllers to return to their respective home positions. With the “Ctrl” function activated, a user may then enter a series of alphanumeric characters, for example, by moving respective controllers in the directions indicated on the exemplary layouts of FIGS. 11 or 12 that represent an executable function such as a command or other instruction. After entering these alphanumeric characters, the user may then execute the function by deactivating the “Ctrl” function by moving the first and second controllers in the respective directions indicated above. The “Alt” function may be similarly executed. Respective LEDs may illuminate on the surface of device 10 when the “Ctrl” and “Alt” functions are enabled, as well as other functions, in this manner to indicate to a user that the respective “sticky key” functions are activated.
It will be recognized by those skilled in the art that the various embodiments of an interface device, such as keyboard 10, may be used to generate electronic data signals that may be used to perform a wide range of functions and are not limited to data signals that may be used to produced alphanumeric characters and/or to execute standard keyboard functions. For example, software and/or firmware may be configured to interpret data signals produced in accordance with aspects of the present invention to interact with and/or control a range of electronic devices such as computer games, simulators, robots, telecommunications equipment or other devices responsive to an electronic data signal. Embodiments of keyboard 10 may be configured to transmit data signals over wireless communications mediums as will be recognized by those skilled in the art.
It will be recognized by those skilled in the art that the exemplary embodiments of the present invention may generate data signals and/or instructions having specified characteristics as required for use in a wide range of applications such as the formation of alphanumeric or special characters in a computing or communications environment or as an input data signal to and/or for control of a wide range of electronic, electro-mechanical or other devices. For example, exemplary embodiments may be configured to select phonemes by moving one or more domes in a specific direction. The association between dome movement and the phoneme selected may be a function of an end user's physical ability or limitations, for example. Alternate embodiments may be integral with an automobile's steering wheel, for example, to control various functions such as the radio functions, AC control, radio tuner, dialing a cell phone through the car system, etc. Various other embodiments may be used for industrial, aircraft or robotics control, controlling motorized wheelchairs, controlling functions in an automated house such as turning lights on and off, generating characters or icons for pictorial communication vs. alphanumeric, or a voice synthesized embodiment may be used for phoneme and icon reading in combination, for example. An LCD panel may be built into the housing of various embodiments of the present invention for a typing tutor, troubleshooting instructions, sound programming or other settings. Alternate embodiments may be used to control instant messaging functions or the buttons at the top of a Web browser, for example.
While the exemplary embodiments of the present invention have been shown and described by way of example only, numerous variations, changes and substitutions will occur to those of skill in the art without departing from the invention herein. Accordingly, it is intended that the invention be limited only by the spirit and scope of the appended claims.
Claims
1. An apparatus for generating a data signal, the apparatus comprising:
- a housing;
- at least one controller moveably coupled with the housing;
- a kinematic map plate moveable in response to movement of the at least one controller;
- at least one impression formed in the kinematic map plate defining a number of directions that the at least one controller may be moved;
- a spider mechanism that cooperatively engages the at least one impression of the at least one controller to guide the at least one controller;
- an upper director plate for guiding the at least one controller in at least one direction;
- an actuator armature moveable in response to movement of the at least one controller;
- means for sensing a position of the at least one controller operatively coupled with the actuator armature;
- means for biasing the at least one controller so that it may be depressed and released and for biasing the spider mechanism against the kinematic map plate; and
- a processing means configured to receive a signal from the means for sensing a position of the at least one controller and generate the data signal.
2. The apparatus of claim 1 further comprising:
- a second controller moveably coupled with the housing;
- a second kinematic map plate moveable in response to movement of the second controller;
- at least one impression formed in the second kinematic map plate defining a number of directions that the second controller may be moved;
- a second spider mechanism that cooperatively engages the at least one impression of the second kinematic map plate to guide the second controller;
- means for engaging and disengaging the second spider mechanism with the at least one impression of the second kinematic map plate;
- a second upper director plate for guiding the second controller in at least one direction;
- an second actuator armature moveable in response to movement of the second controller;
- second means for sensing a position of the second controller operatively coupled with the second actuator armature;
- second means for biasing the second controller so that it may be depressed and released and for biasing the second spider mechanism against the second kinematic map plate;
- means for switching the apparatus between a mouse mode and a keyboard mode, the switching means activatable by depressing and releasing the second controller; and
- wherein the processing means is configured to receive a signal from the second means for sensing a position of the second controller and generate the data signal.
3. The apparatus of claim 2 wherein the at least one controller and the second controller are each formed having a contoured upper surface that substantially conforms to the palmer architecture of a human hand and wherein the at least one controller and the second controller are positioned within the housing to have a bilateral symmetry.
4. The apparatus of claim 2 wherein the at least one impression formed in the kinematic map plate and the second kinematic map plate form eight directions that the at least one controller and the second controller may be moved.
5. The apparatus of claim 2 further comprising:
- means for switching the apparatus among a num lock mode, a shift mode and a caps lock mode, the switching means activatable by depressing and releasing the at least one controller and wherein the processing means is configured to generate a data signal indicative of an alphanumeric character.
6. The apparatus of claim 2, the means for engaging and disengaging the second spider mechanism with the at least one impression of the second kinematic map plate comprising a camming mechanism positioned within a center aperture of the second spider mechanism, the camming mechanism including a plurality of opposing camming surfaces that cooperatively engage a plurality of camming protuberances disposed in the center aperture of the second spider mechanism, the plurality of opposing camming surfaces and the plurality of camming protuberances configured to cause the spider mechanism to rotate approximately 45 degrees when the second controller is depressed and released.
7. The apparatus of claim 1, the means for sensing a position of the at least one controller comprising a strain gauge.
8. The apparatus of claim 1 further comprising:
- a biasing means operatively coupling the actuator armature to the means for sensing a position of the at least one controller.
9. The apparatus of claim 8, the biasing means operatively coupling the actuator armature to the means for sensing a position of the at least one controller comprising a coil spring.
10. The apparatus of claim 7, the biasing means operatively coupling the actuator armature to the means for sensing a position of the at least one controller comprising a spring having curvilinear legs.
11. The apparatus of claim 10, the spring comprising eight curvilinear legs.
12. The apparatus of claim 11 wherein the spring is formed of a polymer composition.
13. The apparatus of claim 1, the means for biasing the at least one controller so that it may be depressed and released comprising a spring coupled with the spider mechanism and positioned on an upper surface of the upper director plate.
14. The apparatus of claim 1, the at least one impression comprising a centrally located indentation have a first depth and a plurality of grooves each having a second depth and extending radially from the centrally located indentation wherein the first depth is greater than the second depth.
15. An apparatus for generating a data signal, the apparatus comprising:
- a housing;
- at least one control assembly coupled with the housing, the at least one control assembly comprising:
- a controller;
- a kinematic map plate coupled with the controller;
- at least one impression having a plurality of grooves formed within the kinematic map plate;
- a spider mechanism having at least one post that impinges upon the at least one impression for guiding the controller among a plurality of directions defined by the plurality of grooves;
- an upper director plate seated within an annular rim formed in the housing, the annular rim defining a circumference of an aperture formed within the housing for receiving the at least one control assembly;
- a guide plate;
- means for sensing a position of the controller; and
- a control circuit configured to receive a position signal from the means for sensing a position of the controller and generate the data signal in response to receipt of the position signal.
16. The apparatus of claim 15, the means for sensing a position of the controller comprising:
- an actuator armature coupled with the spider mechanism to move in response to movement of the controller;
- a biasing means coupled with the actuator armature; and
- a strain gauge coupled with the biasing means such that the biasing means exerts a force against the strain gauge in response to movement of the controller.
17. The apparatus of claim 16, the biasing means comprising a coil spring.
18. The apparatus of claim 16, the biasing means comprising a spring having curvilinear legs.
19. The apparatus of claim 18, the spring comprising eight curvilinear legs.
20. The apparatus of claim 18 wherein the spring is formed of a polymer composition.
21. The apparatus of claim 16 further comprising:
- means for biasing the controller so that it may be depressed and released.
22. The apparatus of claim 21, the means for biasing the controller so that it may be depressed and released comprising a plurality of compression springs fitted over a plurality of corresponding legs extending from the kinematic map plate that fit within a plurality of corresponding apertures formed in the actuator armature.
23. The apparatus of claim 16 further comprising:
- means for engaging and disengaging the spider mechanism with the kinematic map plate.
24. The apparatus of claim 23, the means for engaging and disengaging the spider mechanism with the kinematic map plate comprising a camming mechanism positioned within a center aperture of the spider mechanism, the camming mechanism including a plurality of opposing camming surfaces that cooperatively engage a plurality of camming protuberances disposed in the center aperture of the spider mechanism, the plurality of opposing camming surfaces and the plurality of camming protuberances configured to cause the spider mechanism to disengage from the kinematic map plate and be retained in a position below the kinematic map plate when the second controller is depressed and released a first time and wherein the spider mechanism is released from the retained position and engages the spider mechanism when the controller is depressed and released a second time.
25. The apparatus of claim 15, the at least one control assembly further comprising:
- means for selecting a reference direction for the controller.
26. The apparatus of claim 25, the means for selecting a reference direction for the controller comprising at least one tooth formed on an underside of the upper director plate and at least one recess formed within the annular rim for receiving the at least one tooth.
27. The apparatus of claim 15, the at least one control assembly further comprising:
- means for adjusting the rotational position of the controller relative to the kinematic map plate.
28. The apparatus of claim 27, the means for adjusting the rotational position of the controller relative to the kinematic map plates comprising a plurality of teeth circumferentially disposed on an upper surface of the kinematic map plate that matingly engage a plurality of opposing teeth on an underside of the controller.
29. The apparatus of claim 15, the at least one control assembly further comprising:
- means for biasing the controller so that it may be depressed and released;
- means for engaging and disengaging the spider mechanism with the kinematic map plate;
- means for selecting a reference direction for the controller;
- means for adjusting the rotational position of the controller relative to the kinematic map plate; and
- means for switching the apparatus among a num lock mode, a shift mode and a caps lock mode, the means for switching activatable by depressing and releasing the controller and wherein the data signal is indicative of an alphanumeric character.
30. The apparatus of claim 29, the at least one control assembly further comprising:
- a base plate;
- a central post extending through the upper director plate, the spider mechanism and the kinematic map plate;
- a top cover plate attached to an upper end of the central post; and
- a receptacle mounted to the at least one control assembly operatively coupled with the control circuit so that the control assembly may be removed from and operate remotely from the housing.
31. The apparatus of claim 15 further comprising:
- a second control assembly, the second control assembly comprising:
- a second controller;
- a second kinematic map plate coupled with the second controller;
- at least one impression having a plurality of grooves formed within the second kinematic map plate;
- a second spider mechanism having at least one post that impinges upon the at least one impression for guiding the second controller among a plurality of directions defined by the plurality of grooves;
- a second upper director plate seated within an annular rim formed in the housing, the annular rim defining a circumference of an aperture formed within the housing for receiving the at least one control assembly;
- a second guide plate;
- means for biasing the second controller so that it may be depressed and released;
- means for engaging and disengaging the spider mechanism with the kinematic map plate;
- means for switching the apparatus between a keyboard mode and a mouse mode;
- means for sensing a position of the second controller; and
- wherein the data signal is indicative of an alphanumeric character.
32. The apparatus of claim 31, the second control assembly further comprising:
- means for selecting a reference direction for the second controller; and
- means for adjusting the rotational position of the second controller relative to the second kinematic map plate.
33. The apparatus of claim 32 wherein the controller of the at least one control assembly and the second controller are formed having a contoured upper surface that substantially conforms to the palmer architecture of a human hand.
Type: Application
Filed: Jun 27, 2006
Publication Date: Jan 25, 2007
Inventor: Peter McAlindon (Orlando, FL)
Application Number: 11/426,856
International Classification: B41J 5/00 (20060101);