Catheter-based fastener implantation apparatus and methods
Apparatus and methods utilize an intraluminal fastener applier having a guide body with a longitudinal axis. The guide body is sized and configured for intraluminal deployment in a hollow body organ. An actuated assembly is carried by the guide body that is selectively operable to generate an implantation force to implant at least one fastener into tissue within the hollow body organ. The actuated assembly includes a driven member extending generally along the longitudinal axis, which is sized and configured to engage a selected fastener. The actuated assembly also includes a drive member coupled to the driven member to impart the implantation force to the driven element in a direction that is at an angle to the longitudinal axis of the guide body.
Latest Patents:
- Imaging systems and methods
- Integration of ferroelectric memory devices having stacked electrodes with transistors
- Organic light emitting diode display device with barrier wall and method of manufacturing the same
- Ferroelectric memory device and method of manufacturing the same
- Self-aligned multilayer spacer matrix for high-density transistor arrays and methods for forming the same
This application is a divisional of co-pending U.S. patent application Ser. No. 10/669,881, filed Sep. 24, 2003, entitled “Catheter-Based Fastener Implantation Apparatus and Methods With Implantation Force Resolution, which is a continuation-in-part of U.S. patent application Ser. No. 10/307,226, filed Nov. 29, 2002, and which is also a continuation-in-part of U.S. patent application Ser. No. 10/271,334, filed Oct. 15, 2002 (now U.S. Pat. No. 6,960,217), and which is also a continuation-in-part of U.S. patent application Ser. No. 10/099,149, filed Mar. 15, 2002, which is a divisional of U.S. patent application Ser. No. 09/787,135, filed Sep. 17, 1999, entitled “Endovascular Fastener Applicator,” which claims the benefit of U.S. Provisional Application Ser. No. 60/101,050 filed Sep. 18, 1998 as well as the benefit of U.S. Provisional Application Ser. No. 60/333,937 filed 28 Nov. 2001, and which is also a continuation-in-part of U.S. patent application Ser. No. 09/640,554, filed Aug. 18, 2000, entitled “Endovascular Device for Application of Prosthesis with Sutures” (now U.S. Pat. No. 6,336,933), which is a continuation of U.S. patent application Ser. No. 09/266,200, filed Mar. 10, 1999, entitled “Endovascular Device for Application of Prosthesis with Sutures” (now abandoned), and which further claims the benefit of Argentine Patent Application Serial No. P19980101145, filed Mar. 13, 1998, entitled “Endovascular Device for Application of Prosthesis with Sutures.”
FIELD OF THE INVENTIONThe invention relates generally to the delivery of a prosthesis to a targeted site within the body, e.g., for the repair of diseased and/or damaged sections of a hollow body organ and/or blood vessel.
BACKGROUND OF THE INVENTIONThe weakening of a vessel wall from damage or disease can lead to vessel dilatation and the formation of an aneurysm. Left untreated, an aneurysm can grow in size and may eventually rupture.
For example, aneurysms of the aorta primarily occur in abdominal region, usually in the infrarenal area between the renal arteries and the aortic bifurcation. Aneurysms can also occur in the thoracic region between the aortic arch and renal arteries. The rupture of an aortic aneurysm results in massive hemorrhaging and has a high rate of mortality.
Open surgical replacement of a diseased or damaged section of vessel can eliminate the risk of vessel rupture. In this procedure, the diseased or damaged section of vessel is removed and a prosthetic graft, made either in a straight of bifurcated configuration, is installed and then permanently attached and sealed to the ends of the native vessel by suture. The prosthetic grafts for these procedures are usually unsupported woven tubes and are typically made from polyester, ePTFE or other suitable materials. The grafts are longitudinally unsupported so they can accommodate changes in the morphology of the aneurysm and native vessel. However, these procedures require a large surgical incision and have a high rate of morbidity and mortality. In addition, many patients are unsuitable for this type of major surgery due to other co-morbidities.
Endovascular aneurysm repair has been introduced to overcome the problems associated with open surgical repair. The aneurysm is bridged with a vascular prosthesis, which is placed intraluminally. Typically these prosthetic grafts for aortic aneurysms are delivered collapsed on a catheter through the femoral artery. These grafts are usually designed with a fabric material attached to a metallic scaffolding (stent) structure, which expands or is expanded to contact the internal diameter of the vessel. Unlike open surgical aneurysm repair, intraluminally deployed grafts are not sutured to the native vessel, but rely on either barbs extending from the stent, which penetrate into the native vessel during deployment, or the radial expansion force of the stent itself is utilized to hold the graft in position. These graft attachment means do not provide the same level of attachment when compared to suture and can damage the native vessel upon deployment.
SUMMARY OF THE INVENTIONThe invention provides apparatus and methods for implanting a fastener in a targeted body region, e.g., within a hollow body organ or an intraluminal space.
One aspect of the invention provides an intraluminal fastener applier comprising a guide body having a longitudinal axis sized and configured for intraluminal deployment in a hollow body organ. The fastener applier includes an actuated assembly carried by the guide body that is selectively operable to generate an implantation force to implant at least one fastener into tissue within the hollow body organ. The actuated assembly includes a driven member extending generally along the longitudinal axis, which is sized and configured to engage a selected fastener. The actuated assembly also includes a drive member coupled to the driven member to impart the implantation force to the driven element in a direction that is at an angle to the longitudinal axis of the guide body.
In one embodiment, the actuated assembly includes structure that maintains the angle between the driven member and the drive member at about ninety-degrees or less.
In one embodiment, the actuated assembly includes structure that maintains a fixed angle between the driven member and the drive member, which can be, e.g., ninety-degrees or less.
In one embodiment, the actuated assembly includes a control mechanism to articulate the driven member relative to the drive member to adjust the angle.
In one embodiment, stabilization means is associated with the guide body for applying a resolving force in a direction different than the implantation force direction to resolve at least a portion of the implantation force within the hollow body organ.
Another aspect of the invention provides a method that deploys an intraluminal fastener applier hollow body organ. The intraluminal fastener applier comprises a guide body having a longitudinal axis sized and configured for intraluminal deployment in a hollow body organ. The fastener applier includes an actuated assembly carried by the guide body that is selectively operable to generate an implantation force to implant at least one fastener into tissue within the hollow body organ. The actuated assembly includes a driven member extending generally along the longitudinal axis, which is sized and configured to engage a selected fastener. The actuated assembly also includes a drive member coupled to the driven member to impart the implantation force to the driven element in a direction that is at an angle to the longitudinal axis of the guide body.
The method places the driven member into contact with tissue along a side wall of the hollow body while the longitudinal axis of the guide body remains substantially aligned with a long axis of the hollow body organ. The method operates the drive member to impart the implantation force to the driven element in the direction that is at an angle to the longitudinal axis of the guide body, to thereby implant the fastener in the side wall while the guide body remains substantially aligned with the long axis of the hollow body organ.
In one embodiment, the method applies a resolving force at or near the drive member to resolve within the hollow body organ at least a portion of the implantation force.
In one embodiment, the guide body includes a catheter body having a column strength that applies a resolving force in a direction different than the implantation force direction to resolve at least a portion of the implantation force within the hollow body organ.
Another aspect of the invention provides a method that advances an intraluminal fastener applier to a location within a prosthesis that has been deployed at a target site along a side wall of an aorta where a diseased or damaged section exists. The intraluminal fastener applier comprises a guide body having a longitudinal axis sized and configured for intraluminal deployment in a hollow body organ. The fastener applier includes an actuated assembly carried by the guide body that is selectively operable to generate an implantation force to implant at least one fastener into tissue within the hollow body organ. The actuated assembly includes a driven member extending generally along the longitudinal axis, which is sized and configured to engage a selected fastener. The actuated assembly also includes a drive member coupled to the driven member to impart the implantation force to the driven element in a direction that is at an angle to the longitudinal axis of the guide body.
The method places the driven member in alignment with a desired fastening site on the prosthesis along the side wall of the aorta. Due to the angle, the longitudinal axis of the guide body remains substantially aligned with a long axis of the aorta. The method anchors the prosthesis to a side wall of the aorta by operating the drive member to impart the implantation force to the driven element in the direction that is at an angle to the longitudinal axis of the guide body. The method thereby implants the fastener into tissue in a side wall of the aorta, while the longitudinal axis of the guide body remains substantially aligned with a long axis of the aorta.
In one embodiment, the method applies a resolving force at or near the drive member to resolve within the aorta at least a portion of the implantation force.
In one embodiment, the guide body includes a catheter body having a column strength that applies a resolving force in a direction different than the implantation force direction to resolve at least a portion of the implantation force within the aorta.
According to any aspect of the invention, the fastener includes a tissue-piercing fastener having a sharpened distal tip for piercing and penetrating tissue. The tissue-piercing fastener can comprise, e.g., a helical fastener.
BRIEF DESCRIPTION OF THE DRAWINGSThe invention will be understood from the following detailed description of preferred embodiments, taken in conjunction with the accompanying drawings, wherein:
I. Delivering a Prosthesis
For the purposes of illustration,
The process of graft deployment is continued, until the graft 14 is fully deployed or partially deployed within the vessel. The graft 14 can be sized and configured to be either straight or bifurcated form.
A. The Prosthesis
The graft 14 desirably incorporates a support frame or scaffold 16. The scaffold 16 may be elastic, e.g., comprised of a shape memory alloy elastic stainless steel, or the like. For elastic scaffolds, expanding typically comprises releasing the scaffolding from a constraint to permit the scaffold to self-expand at the implantation site. In the illustrated arrangement, the cover 13 serves as a radial constraint. Alternatively, placement of a tubular catheter, delivery sheath, or the like over the scaffold 16 can serve to maintain the scaffold in a radially reduced configuration. In this arrangement, self-expansion of the scaffold 16 is achieved by pulling back on the radial constraining member, to permit the scaffold 16 to assume its larger diameter configuration.
Alternatively, the scaffold 16 may be constrained in an axially elongated configuration, e.g., by attaching either end of the scaffold to an internal tube, rod, catheter or the like. This maintains the scaffold 16 in the elongated, reduced diameter configuration. The scaffold 16 may then be released from such axial constraint in order to permit self-expansion.
Alternatively, the scaffold 16 may be formed from a malleable material, such as malleable stainless steel of other metals. Expansion may then comprise applying a radially expansive force within the scaffold to cause expansion, e.g., inflating a scaffold delivery catheter within the scaffold in order to affect the expansion. In this arrangement, the positioning and deployment of the endograft can be accomplished by the use of an expansion means either separate or incorporated into the deployment catheter. This will allow the endograft to be positioned within the vessel and partially deployed while checking relative position within the vessel. The expansion can be accomplished either via a balloon or mechanical expansion device. Additionally, this expansion stabilizes the position of the endograft within the artery by resisting the force of blood on the endograft until the endograft can be fully deployed.
The graft 14 may have a wide variety of conventional configurations. It can typically comprise a fabric or some other blood semi-impermeable flexible barrier which is supported by the scaffold 16, which can take the form of a stent structure. The stent structure can have any conventional stent configuration, such as zigzag, serpentine, expanding diamond, or combinations thereof. The stent structure may extend the entire length of the graft, and in some instances can be longer than the fabric components of the graft. Alternatively, the stent structure can cover only a small portion of the prosthesis, e.g., being present at the ends. The stent structure may have three or more ends when it is configured to treat bifurcated vascular regions, such as the treatment of abdominal aortic aneurysms, when the stent graft extends into the iliac arteries. In certain instances, the stent structures can be spaced apart along the entire length, or at least a major portion of the entire length, of the stent-graft, where individual stent structures are not connected to each other directly, but rather connected to the fabric or other flexible component of the graft.
One illustrative embodiment of the graft scaffold 16 or stent structure is illustrated in the area broke away in
In all of the just-described embodiments, if the prosthesis 14 has been fully deployed prior to the introduction of the fasteners 28, and/or the prosthesis delivery catheter 600, 700, or 800 has been withdrawn from the targeted site, the guidewire 610, 710, 810 can be subsequently used to deploy a fastener attachment assembly for the prosthesis 14 to the targeted site, as will be described in greater detail next. Alternatively, if the prosthesis 14 has not been fully deployed at the time the fasteners 28 are applied—or if, for whatever reason, withdrawal of the prosthesis delivery catheter 600, 700, or 800 is not desired—the prosthesis delivery catheter 600, 700, or 800, and its respective guidewire 610, 710, or 810, can be retained at the targeted site, while a fastener attachment assembly for the prosthesis 14 is introduced into the targeted site over a separate guidewire from another body access point. In this arrangement, deployment of the prosthesis 14 and/or withdrawal of the prosthesis delivery catheter 600, 700, or 800 can be completed after the fasteners 28 have been applied.
II. Fastening the Prosthesis
In a desired embodiment, a fastener attachment assembly is provided that makes possible intraluminal fastener attachment. The attachment assembly can be variously constructed.
A. Two Component Fastener Guide and Attachment Assembly
In one arrangement, the fastener attachment assembly comprises a fastener guide or directing component 18 and a fastener applier component 27. The guide component 18 desirably has a steerable or deflectable distal tip, which is initially deployed over the guidewire 12. In use in the illustrated embodiment, the guidewire 12 that is used to deliver and position the prosthesis 14 remains within the vessel for subsequent deployment of the fastener guide component 18. Alternatively, another guidewire from a different body access point can be used for deployment of the fastener guide component 18. In either arrangement, the fastener applier component 27 is desirably deployed through the guide component 18 after removal of the guidewire over which the guide component 18 has been delivered. The fastener applier 27 carries at least one fastener 28 and a fastener drive mechanism 100 for advancing the fastener 28, so that it penetrates the prosthesis 14 and underlying vessel wall, to thereby anchor the prosthesis 14 firmly in place.
1. Fastener Directing Component
In the illustrated embodiment (see
Located at the distal end of the fastener applier component 27 (see
The carrier 102 is sized and configured to engage a selected fastener 28. In
The carrier 102 in
The actuation of the drive mechanism 100 can, of course, be accomplished in various ways, e.g., mechanical (i.e., manual or hand-powered), electrical, hydraulic, or pneumatic. In the illustrated embodiment (see
In use, the applier component 27 is advanced through the directing component 18 and into contact with the prosthesis. The operator actuates the control unit 31 by contacting a control switch 110 (see
With the deployment of a fastener 28, the fastener applier component 27 is retrieved through the directing component 18, and another fastener 28 is loaded into the carrier 102. The directing component 18 is repositioned, and the applier component 27 is advanced again through the directing component 18 and into contact with the prosthesis 14. The operator again actuates the control unit 31 by contacting the control switch 110 to deploy another fastener 28. This process is repeated at both proximal and/or distal ends of the prosthesis 14 until the prosthesis 14 is suitably attached and sealed to the vessel wall 34. It is contemplated that from about two to about twelve fasteners 28 may be applied at each end of the prosthesis 14 to affect anchorage. The fasteners 28 can be applied in a single circumferentially space-apart row, or may be applied in more than one row with individual fasteners being axially aligned or circumferentially staggered.
An alternative embodiment of the drive mechanism 100 is shown in
The carrier 150 includes a slot 182. The slot 182 engages a drive flange 184 on the driver 29 (see
The coupling engagement between the carrier 150 and the driver 29 could be accomplished in various ways, e.g., by separate graspers or grippers, a magnetic couple, or any other suitable mechanical connecting means. In the illustrated embodiment, the driver 29 is made of a magnetized material, and the carrier 150 is made from a material that is magnetically attracted toward the magnetized material. Of course, a reverse arrangement of magnetized and magnetically attracted materials could be used.
In this arrangement, the motor coupling 132 between the drive cable 30 and the motor 106 accommodates axial displacement of the motor cable 30 (left and right in
As before described, with the deployment of a fastener 28, the applier component 27 is retrieved through the directing device 18, and another fastener 28 is magnetically coupled to the driver 29. The directing component 18 is repositioned, and the applier component 27 is advanced again through the directing component 18 and into contact with the prosthesis 14. The operator again actuates the control unit 31 by contacting a control switch 110 to deploy another fastener 28. This process is repeated at both proximal and/or distal ends of the prosthesis 14 until the prosthesis 14 is suitably attached and sealed to the vessel wall 34.
As indicated in the above description, the outer diameter of the applier component 27 is desirably sized and configured to pass through the lumen of the directing component 18, which can take the form of a suitable steerable guide catheter, to direct the applier component 27 to the desired location. As also above described, the applier component 27 is desirably configured to implant one fastener 28 at a time (a so-called “single fire” approach). This is believed desirable, because it reduces the complexity of the design and accommodates access of the applier component 27 through tortuous anatomy. A fastener applier component 27 which carries a single fastener can have a lower profile and may be more effective and less traumatic than fastener appliers which carry multiple fasteners. Still, in alternative embodiments, the applier component 27 may, if desired, be configured to carry multiple fasteners. Moreover, the fastener applier 27 may simultaneously deploy multiple fasteners in the preferred circumferentially spaced-apart space pattern described above.
3. Force ResolutionPenetration and implantation of the fastener 28 into tissue using the applier component 27 requires the applier component 27 to exert an implantation force at or near the prosthesis 14 and vessel wall 34. In the illustrated embodiment, the applier component 27 comprises a driven member for implanting a helical fastener. However, the applier component 27 can comprise virtually any actuated member for exerting an implantation force using, e.g., ultrasonic, laser, or impact concepts.
Regardless of the particular way that the implantation force is generated, the implantation force of the applier component 27 is desirably resolved in some manner to provide positional stability and resist unintended movement of the applier component 27 relative to the implantation site. Stated differently, a resolution force is desirably applied to counteract and/or oppose the implantation force of the applier component 27. It is desirable to resolve some or all or a substantial portion of the implantation force within the vessel lumen (or other hollow body organ) itself, and preferably as close to the implantation site as possible.
The tubular body of the directing component 18 and/or the shaft of the fastener applier component 27 can be sized and configured to possess sufficient column strength to resolve some or all or at least a portion of the implantation force within the vessel lumen or hollow body organ. In addition, or alternatively, the directing component 18 and/or the fastener applier component 27 can include stabilization means 20 for applying a counteracting force at or near the driven member of the fastener applier component 27 that implants the fastener.
The illustrated embodiments show various alternative embodiments for the stabilization means 20. As shown in
In all embodiments the stabilizing means 20 could be use to stabilize the directing component 18 either concentrically or eccentrically within the vessel.
Of course, any of these alternative forms of the stabilization means 20 can be associated with the fastener applier 27 in the same fashion they are shown to be associated with the directing component 18, or take some other form of a stabilization mechanism having the equivalent function. In yet another embodiment, the stabilization means 20 can take the form of a separate stabilization device used in cooperation with the directing component 18 and/or the fastener applier component 27. In this arrangement, the separate stabilization device could incorporate any of the alternative forms of the stabilizing devices described above, or some other form of stabilization mechanism.
For example (see
In the generally collapsed condition, the fastener applier 27 can be deployed through a vessel into proximity to a graft 14.
When situated at the graft site (see
In all these alternative embodiments, the stabilization means 20 functions to apply a substantially equal and opposite counteracting resolution force within a vessel (see
The force resolving function that the guiding component 18 and/or the fastener applier component 27 provide serves to counteract or oppose or otherwise resolve the tissue penetration and implantation force of the applier component 27. The force resolving function thereby also resists movement of the applier component 27 relative to the implantation site, thereby making possible a stable and dependable intraluminal (or intra organ) fastening platform.
4. Prosthesis/Tissue Contact SensingThe fastener applier component 27 desirably incorporates a function that prevents actuation of the motor 106 until the tip of the applier component 27 is in a desired degree of contact with the prosthesis or tissue surface. This prevents inadvertent discharge of a fastener 28 and/or separation of the fastener 28. This function can be implemented, e.g., using a contact or force sensor, which is either mechanical or electrical in design.
When the fastener applier component 27 is of the type shown in
In the illustrated embodiment, the switch 122 includes a stationary switch element 128 (coupled to the interior of the handle 108) and a movable switch element 130 (carried by the drive cable 31). In this arrangement, the motor coupling 132 between the drive cable 30 and the motor 106 accommodates axial displacement of the motor cable 30 (left and right in
Due to this arrangement, axial displacement of the drive cable 30 moves the switch element 130 relative to the switch element 128. More particularly, displacement of the drive cable 30 to the left in
A spring 126 normally biases the switch elements 128 and 130 apart, comprising an electrically opened condition. In this condition, operation of the actuating switch 110 does not serve to actuate the control unit 31, as the electrically open switch 122 interrupts conveyance of the actuation signal to the motor control unit 31. When the switch elements 128 and 130 are in the electrically opened condition, the drive cable 30 is displaced to the left to position the carrier tip 120 beyond the distal tip 124 of the fastener applier 27. The carrier tip 120 therefore makes contact with the prosthesis 14 or tissue in advance of the applier tip 124.
When the carrier tip 120 contacts the surface of the prosthesis or tissue with sufficient force to compress the spring 126, the drive cable 30 is displaced against the biasing force of the spring to the right in
Upon removal of contact force, or in the absence of sufficient contact force, the spring 126 urges the switch elements 128 and 130 toward the electrically opened condition. The distal tip of the carrier 102 is located distally beyond the distal tip of the applier 27.
It should be appreciated that the translation of movement of the carrier tip 120 to the switch 122 need not occur along the entire length of the drive cable 30. For example, the switch 122 can be located in a translation space between the carrier 102 and the driver 29. In this arrangement, the driver 29, coupled to the drive cable 30 need not accommodate axial displacement. Instead, relative movement of the carrier 102 toward the driver 29 in response to contact with the prosthesis 14 will mechanically couple the carrier 10 with the driver 29 (e.g., through a slot and flange connection similar to that shown in
When the fastener applier component 27 is of the type shown in
As in the preceding embodiment, the spring 126 normally biases the switch elements 128 and 130 apart, comprising an electrically opened condition. When the switch elements 128 and 130 are in the electrically opened condition, the force sensing rod 190 is displaced to the left beyond the distal tip 124 of the fastener applier component 27. The force sensing rod 190 therefore makes contact with the prosthesis 14 or scaffold structure 16 in advance of the applier tip 124.
When the rod 190 contacts the surface of the prosthesis or scaffold structure with sufficient force to compress the spring 126, the rod 190 is displaced against the biasing force of the spring 126 to the right in
Upon removal of contact force, or in the absence of sufficient contact force, the spring 126 urges the switch elements 128 and 130 toward the electrically opened condition, moving the tip of the rod 190 out beyond the distal tip 124 of the applier 27.
The contact or force sensing arrangements just described can also generate an audible and/or visual output to the operator, to indicate that sufficient contact force between the applier device 27 and the prosthesis or tissue exists.
B. Angled Component Fastener Guide and Attachment Assembly
In another arrangement (see
The drive mechanism 162 can vary. In the illustrated embodiment (shown in
As
III. The Fasteners
As illustrated and described thus far, introduction of the fasteners 28 will typically be affected after the prosthesis 14 has been initially placed. That is, initial placement of the prosthesis 14 will be achieved by self-expansion or balloon expansion, after which the prosthesis 14 is secured or anchored in place by the introduction of a plurality of individual fasteners. The fasteners 28 may be placed only through the fabric of the prosthesis 14, i.e., avoiding the scaffold structure. Alternately, the fasteners 28 can be introduced into and through portions of the scaffold structure itself. The prosthesis 14 may include preformed receptacles, apertures, or grommets, which are specially configured to receive the fasteners. The fasteners 28 may be introduced both through the fabric and through the scaffold structure. The fasteners can be introduced singly, i.e., one at a time, in a circumferentially spaced-apart pattern over an interior wall of the prosthesis 14.
In the exemplary embodiment, the fasteners 28 are helical fasteners, so that they can be rotated and “screwed into” the prosthesis 14 and vessel wall. A desired configuration for the helical fastener 28 (see
As
The proximal end 144 of the fastener serves two design functions. The first function is to engage the carrier 102 of the fastener applier 27, which rotates the helical fastener during the implantation process. The second function is to act as a stop to prevent the helical fastener from penetrating too far into the tissue.
In one embodiment (see
Alternatively (as shown in
In
The fasteners 28 shown in
IV. Prosthesis with Integrated Fastener Assembly
The prosthesis 500 desirably includes a fabric material or the like carried by a support frame or scaffold 504, as previously described. The scaffold 504 can be made, e.g., from an elastic material that self-expands radially during deployment from a sheath, or from a malleable material that expands radially in response to a radially expansive force applied within the scaffold by a balloon or a mechanical expansion device.
Following deployment of the prosthesis 500 in the targeted region, the integrated fastener assembly 502 on the prosthesis 500 is manipulated to anchor the prosthesis 500 to the vessel wall. In the illustrated embodiment, the prosthesis 500 carries two integrated fastener assemblies 502, one in each end region of the prosthesis 500.
In the illustrated embodiment, each fastener assembly 502 is imbedded in a reinforced flange area 506 in the respective end region. Each fastener assembly 502 comprises an array of fasteners 508 circumferentially spaced about the flange 506. The number of fasteners 508 in the array can vary, e.g., from about two to about twelve fasteners on each flange area 506. The configuration of the array can also vary, e.g., in the circumferential array, the fasteners 508 can by axially spaced apart as well.
The fasteners 508 can be formed of a metal or plastic material and can be variously constructed. In the illustrated embodiment, each fastener 508 includes a disc-shaped head 512 and a stem 514 that is bifurcated into two wings 516 and 518, which are joined by a plastic or memory material hinge region 520. The material of the hinge region 520 is formed with a resilient memory that biases the wings 516 and 518 to a spread-apart condition (as
Each fastener 508 is carried within a grommet 510 on the flange area 506 (see
In this arrangement, an intraluminal tool 522 (see
In use, the punch member 526 is manipulated to apply a pushing or punching force upon the selected fastener head 5.12. As
In one embodiment (see
In an alternative embodiment, an integrated fastener assembly 502 on the prosthesis 500 can be used to temporarily tack the prosthesis 500 in place while a permanent anchoring technique is carried out. For example, in this arrangement, after using the integrated fastener assembly 502 to temporarily hold the prosthesis 500 in a desired location, the separate helical fasteners 28 are deployed in the manner previously described, to permanently anchor the prosthesis 500 against the vessel wall.
It will be appreciated that the components and/or features of the preferred embodiments described herein may be used together or separately, while the depicted methods and devices may be combined or modified in whole or in part. It is contemplated that the components of the directing device, fastener applier and helical fastener may be alternately oriented relative to each other, for example, offset, bi-axial, etc. Further, it will be understood that the various embodiments may be used in additional procedures not described herein, such as vascular trauma, arterial dissections, artificial heart valve attachment and attachment of other prosthetic device within the vascular system and generally within the body.
The preferred embodiments of the invention are described above in detail for the purpose of setting forth a complete disclosure and for the sake of explanation and clarity. Those skilled in the art will envision other modifications within the scope and sprit of the present disclosure.
Claims
1. An intraluminal fastener applier comprising a guide body having a longitudinal axis sized and configured for intraluminal deployment in a hollow body organ, and an actuated assembly carried by the guide body that is selectively operable to generate an implantation force to implant at least one fastener into tissue within the hollow body organ, the actuated assembly including a driven member extending generally along the longitudinal axis and being sized and configured to engage a selected fastener, and a drive member coupled to the driven member to impart the implantation force to the driven element in a direction that is at an angle to the longitudinal axis of the guide body.
2. An intraluminal fastener applier according to claim 1
- wherein the actuated assembly includes structure that maintains the angle between the driven member and the drive member at about ninety-degrees or less.
3. An intraluminal fastener applier according to claim 1
- wherein the actuated assembly includes structure that maintains a fixed angle between the driven member and the drive member.
4. An intraluminal fastener applier according to claim 3
- wherein the fixed angle is about ninety-degrees or less.
5. An intraluminal fastener applier according to claim 1
- wherein the actuated assembly includes a control mechanism to articulate the driven member relative to the drive member to adjust the angle.
6. An intraluminal fastener applier according to claim 5
- wherein the control mechanism articulates the drive member from a first position generally aligned with the longitudinal axis and a second position articulated at the angle relative to the longitudinal axis.
7. An intraluminal fastener applier according to claim 6
- wherein the control mechanism articulates the drive member in a range of positions between the first position and the second position.
8. An intraluminal fastener applier according to claim 6
- wherein, in the second position, the angle is about ninety-degrees or less.
9. An intraluminal fastener applier according to claim 1
- further including stabilization means associated with the guide body for applying a resolving force in a direction different than the implantation force direction to resolve at least a portion of the implantation force within the hollow body organ.
10. An intraluminal fastener applier according to claim 9
- wherein the stabilizing means includes a strut assembly.
11. An intraluminal fastener applier according to claim 9
- wherein the stabilizing means includes a spring-loaded arm adapted for contact with tissue.
12. An intraluminal fastener applier according to claim 9
- wherein the stabilizing means includes an expandable member adapted for contact with tissue.
13. An intraluminal fastener applier according to claim 9
- wherein the stabilizing means includes a tissue grasping element.
14. An intraluminal fastener applier according to claim 1
- wherein the at least one fastener includes a tissue-piercing fastener having a sharpened distal tip for piercing and penetrating tissue.
15. An intraluminal fastener applier according to claim 14
- wherein the tissue-piercing fastener comprises a helical fastener.
16. An intraluminal fastener applier according to claim 1
- wherein the guide body includes a catheter body having a column strength that applies a resolving force in a direction different than the implantation force direction to resolve at least a portion of the implantation force within the hollow body organ.
17. A method comprising
- deploying an intraluminal fastener applier as defined in claim 1 within a hollow body organ,
- placing the driven member into contact with tissue along a side wall of the hollow body while the longitudinal axis of the guide body remains substantially aligned with a long axis of the hollow body organ, and
- operating the drive member to impart the implantation force to the driven element in the direction that is at an angle to the longitudinal axis of the guide body, to thereby implant the fastener in the side wall while the guide body remains substantially aligned with the long axis of the hollow body organ.
18. A method according to claim 17
- further including applying a resolving force at or near the drive member to resolve within the hollow body organ at least a portion of the implantation force.
19. A method according to claim 17
- wherein the hollow body organ comprises an aorta.
20. A method according to claim 17
- wherein the fastener includes a tissue-piercing fastener having a sharpened distal tip for piercing and penetrating tissue.
21. A method according to claim 20
- wherein the tissue-piercing fastener comprises a helical fastener.
22. A method according to claim 17
- wherein the guide body includes a catheter body having a column strength that applies a resolving force in a direction different than the implantation force direction to resolve at least a portion of the implantation force within the hollow body organ.
23. A method comprising
- advancing an intraluminal fastener applier as defined in claim 1 to a location within a prosthesis that has been deployed at a target site along a side wall of an aorta where a diseased or damaged section exits,
- placing the driven member in alignment with a desired fastening site on the prosthesis along the side wall of the aorta, wherein, due to the angle, the longitudinal axis of the guide body remains substantially aligned with a long axis of the aorta, and
- anchoring the prosthesis to a side wall of the aorta by operating the drive member to impart the implantation force to the driven element in the direction that is at an angle to the longitudinal axis of the guide body, thereby implanting the fastener into tissue in a side wall of the aorta while the longitudinal axis of the guide body remains substantially aligned with a long axis of the aorta.
24. A method according to claim 23
- further including applying a resolving force at or near the drive member to resolve within the aorta at least a portion of the implantation force.
25. A method according to claim 23
- wherein the fastener includes a tissue-piercing fastener having a sharpened distal tip for piercing and penetrating tissue.
26. A method according to claim 25
- wherein the tissue-piercing fastener comprises a helical fastener.
27. A method according to claim 23
- wherein the guide body includes a catheter body having a column strength that applies a resolving force in a direction different than the implantation force direction to resolve at least a portion of the implantation force within the aorta.
Type: Application
Filed: Sep 29, 2006
Publication Date: Jan 25, 2007
Applicant:
Inventors: Lee Bolduc (Sunnyvale, CA), Juan Parodi (St. Louis, MO)
Application Number: 11/540,428
International Classification: A61F 2/00 (20060101);