Back-light module for image scanning device and method for calibrating illumination with the back-light module
A back-light module for an image scanning device includes a casing, a pair of tubular lamps, a light guide plate, and a frosted transparent plate. The image scanning device includes a document supporting plate and an optical scanning module movable in a longitudinal direction. A calibration of illumination with the back-light module is done by (1) activating the back-light module to project light onto the optical scanning module, (2) driving the optical scanning module in the longitudinal direction, (3) obtaining illumination signals associated with selected pixels of a longitudinally-extending calibration zone formed on the document supporting plate, (4) comparing each illumination signal with a reference to obtain a result and manipulating the result to obtain a calibration parameter, and (5) calibrating the illumination of pixels of an image with the corresponding calibration parameters in scanning a transmissive original document.
1. Field of the Invention
The present invention generally relates to a back-light module of image scanning devices for transmissive original documents, and in particular to a method for calibration of illumination in order to obtain a substantially uniform illumination over an original document.
2. Description of the Prior Art
Document scanners are generally classified in two types for respectively handling a reflective original document which comprises an opaque substrate and a transmissive original document which comprises a transparent substrate. A transmissive original document scanner comprises a back-light module for generating light projecting the image formed on an original onto an image sensor system of the document scanner.
A conventional back-light module comprises a movable line-type light source which is moved in a given direction from one end of the original document to an opposite end. A driving system is required to move the light source which complicates the overall structure of the back-light module.
Another conventional back-light module comprises a surface-type light source which requires no movement of any parts of the back-light module.
As shown in
As shown in
Since uniform distribution of light is required in obtaining good result of scanning transparent original documents, the diffusion boards 35, 36 are important parts for the conventional scanner. Although an illumination calibration zone 2 extending in the direction of the CCD array, namely the X direction (or the lateral direction as defined above), for calibration of illumination of the back-light source, there is no way in the conventional design to calibrate illumination in the Y direction (or the longitudinal direction as defined above). Uniformity of illumination in the Y direction is in generally achieved by the diffusion boards 35, 36. However, using diffusion boards to uniformly distribute light complicates the overall structure of the back-light module and increases costs.
Thus, it is desired to provide a back-light module of an image scanning device for overcoming the above discussed problems.
SUMMARY OF THE INVENTIONAccordingly, an object of the present invention is to provide a back-light module of an image scanning device having a simple structure and thus low costs.
Another object of the present invention is to provide a method for operating the back-light module to achieve an excellent scanning result of a transparent original document.
According to the present invention, a back-light module of an image scanning device comprises a casing having an open bottom, a pair of tubular lamps mounted inside the casing with a light guide plate arranged between the lamps and a frosted transparent plate attached to the open bottom of the casing. The image scanning device includes a document supporting plate for supporting a transmissive original document and an optical scanning module containing sensing elements arranged in a line in a lateral direction and movable in a longitudinal direction in a scan line by scan line fashion. The back-light module is selectively positioned on the document supporting plate with the frosted plate facing the document. Light is projected from the back-light module through the document and toward the sensing elements. The frosted plate functions to more uniformly distribute the light over the document supporting plate.
A method for calibrating illumination of a surface type back-light source is also provided in the present invention. The calibration of illumination is done by (1) activating the back-light module to project light onto the sensing elements, (2) driving the optical scanning module in the longitudinal direction, (3) obtaining illumination signals associated with selected pixels of a longitudinally-extending calibration zone formed on the document supporting plate, (4) comparing each illumination signal with a reference to obtain a result and manipulating the result to obtain a calibration parameter, and (5) calibrating illumination of pixels of an image with the corresponding calibration parameters in scanning a transmissive original document on which the image is formed to obtain an excellent scanning result of the document.
BRIEF DESCRIPTION OF THE DRAWINGSThe present invention will be apparent to those skilled in the art by reading the following description of a preferred embodiment and the best mode of operation thereof with reference to the attached drawings, in which:
With reference to the drawings and in particular to
The back-light module 3′ comprises a casing 31 inside which two spaced tubular lamps 41, 42, such as cold cathode fluorescent lamps. A light guide plate 34 is arranged between the tubular lamps 41, 42. A reflective sheet 33 is located between the light guide plate 34 and the casing 31. A frosted light-transmissive plate 38, such as a frosted transparent acrylic board, is attached to a bottom opening (not labeled) of the casing 31 opposing the light guide plate 34 for distributing light from the light guide plate 34. The frosted light-transmissive plate 38 also protects the light guide plate 34 and prevents debris and other contamination from entering the casing 31.
The image scanning device 1 comprises a line of image sensing elements (not shown), such as a CCD array, extending in a lateral direction (X direction) for detecting a scan line of the original document when light is generated by and projected from the back-light module 3′, through the transmissive original document, onto the optical scanning module 11.
A first calibration zone or X-directional calibration zone 2 extending in the X direction (lateral direction) is attached to the bottom surface of the document supporting plate 10 for calibration of illumination in the lateral direction, namely the X direction. A second calibration zone or Y-directional calibration zone 4 extending in the Y direction (longitudinal direction) is attached to the bottom surface of the document supporting plate 10 for calibration of illumination in the Y direction. By means of the provision of the second calibration zone 4, a calibration of illumination of the light projected from the frosted plate 38 can be performed to obtain an excellent scanning result without using diffusion boards employed in the conventional scanner.
In step 105, a preset illumination reference signal is provided, which may be stored in a memory unit of the scanner. Then, the electrical representation of the illumination of selected pixel is compared with the preset illumination reference signal in step 106. The comparison result is then used to evaluate the difference of illumination between two successively-taken pixels that belong to different scan lines and a calibration parameter indicating the difference is obtained based on the difference of illumination (step 106). The parameters are then stored. In case of color scanners, different parameters are obtained for red, green and blue colors of each image pixel.
The stored parameters may be retrieved later to calibrate the illumination of pixels of an image obtained from a transmissive original document. When an original document is scanned, the illumination of each pixel is obtained through the sensing elements of the image scanning device. The illumination of each pixel is then calibrated with the corresponding parameter that is obtained previously and stored in the memory means (step 107). After each pixel is calibrated with the corresponding parameter, the whole image may then output through suitable output means (step 108).
In brief, the scanner in accordance with the present invention employs a frosted plate to replace the diffusion boards adapted in the conventional scanner. This simplifies the overall structure and reduces the costs. The illumination of each pixel of an image that is being scanned is then calibrated with the corresponding calibration parameter previously obtained to alleviate and even overcome the possible non-uniform distribution of illumination in the longitudinal direction. An excellent quality of image can thus be obtained.
Although the present invention has been described with reference to the preferred embodiment and the best mode of operation thereof, it is apparent to those skilled in the art that a variety of modifications and changes may be made without departing from the scope of the present invention which is intended to be defined by the appended claims.
Claims
1-8. (canceled)
9. A scanning system comprising an image scanning device capable of calibrating illumination in a first direction and calibrating illumination in a second direction.
10. The scanning system of claim 9, wherein the image scanning device further comprises:
- an optical scanning module comprising at least one image sensing element, the at least one image sensing element capable of sensing an image signal of at least one selected pixel;
- a back-light module capable of illuminating the optical scanning module; and
- at least one processing module capable of obtaining an image signal of at least one selected pixel, wherein said processing module is further capable of obtaining at least one calibration parameter.
11. The system of claim 10, wherein the image signal is associated with red, green or blue colors, or combinations thereof.
12. The system of claim 10, wherein the at least one calibration parameter comprises parameters for red, green or blue colors, or combinations thereof.
13. The system of claim 10, wherein said processing module is further capable of determining said at least one calibration parameter with respect to the image signal and a reference.
14. The system of claim 13, further comprising a memory unit capable of storing the reference.
15. A system comprising:
- an image scanning device capable of calibrating illumination in a first direction and calibrating illumination in a second direction, the image scanning device comprising a calibration zone extending in the first direction and a calibration zone extending in a second direction, the image scanning device further comprising: an optical scanning module; at least one image sensing element disposed within the optical scanning module capable of detecting a first image signal of a first selected pixel and a second image signal of a second selected pixel of the calibration zone extending in the second direction; at least one processing unit capable of: comparing the first image signal with a reference to obtain a first comparison result; comparing the first image signal with the second image signal to obtain a second comparison result; manipulating the first comparison result and the second comparison result to determine at least one calibration parameter; and calibrating an illumination of an image based, at least in part, on the at least one calibration parameter.
16. The system of claim 15, wherein the first selected pixel is associated with red, green or blue colors, or combinations thereof.
17. The system of claim 15, further comprising a memory unit capable of storing the reference.
18. An image scanning device capable of calibrating illumination in a first direction and calibrating illumination in a second direction.
19. The image scanning device of claim 18, further comprising:
- an optical scanning module comprising at least one image sensing element, the at least one image sensing element capable of sensing an image signal of at least one selected pixel;
- a back-light module capable of illuminating the optical scanning module; and
- at least one processing module capable of obtaining an image signal of at least one selected pixel, wherein said processing module is further capable of obtaining at least one calibration parameter.
20. A scanning method comprising:
- illuminating a document; and
- calibrating illumination in a first direction and calibrating illumination in a second direction.
21. An apparatus for scanning comprising:
- means for illuminating a document; and
- means for calibrating illumination in a first direction and calibrating illumination in a second direction.
Type: Application
Filed: Aug 30, 2006
Publication Date: Mar 22, 2007
Inventors: Che-Kuei Mai (Hsinchu City), Tsung-Yin Chen (Hsinchu City)
Application Number: 11/513,748
International Classification: H04N 1/46 (20060101);