Method for compressing dictionary data
The invention relates to pre-processing of a pronunciation dictionary for compression in a data processing device, the pronunciation dictionary comprising at least one entry, the entry comprising a sequence of character units and a sequence of phoneme units. According to one aspect of the invention the sequence of character units and the sequence of phoneme units are aligned using a statistical algorithm. The aligned sequence of character units and aligned sequence of phoneme units are interleaved by inserting each phoneme unit at a predetermined location relative to the corresponding character unit.
Latest Patents:
- EXTREME TEMPERATURE DIRECT AIR CAPTURE SOLVENT
- METAL ORGANIC RESINS WITH PROTONATED AND AMINE-FUNCTIONALIZED ORGANIC MOLECULAR LINKERS
- POLYMETHYLSILOXANE POLYHYDRATE HAVING SUPRAMOLECULAR PROPERTIES OF A MOLECULAR CAPSULE, METHOD FOR ITS PRODUCTION, AND SORBENT CONTAINING THEREOF
- BIOLOGICAL SENSING APPARATUS
- HIGH-PRESSURE JET IMPACT CHAMBER STRUCTURE AND MULTI-PARALLEL TYPE PULVERIZING COMPONENT
This is a continuation application of application Ser. No. 10/292,122, filed Nov. 11, 2002, the content of which is incorporated herein by reference in its entirety.
BACKGROUND OF THE INVENTIONThe invention relates to speaker-independent speech recognition, and more precisely to the compression of a pronunciation dictionary.
Different speech recognition applications have been developed during recent years for instance for car user interfaces and mobile terminals, such as mobile phones, PDA devices and portable computers. Known methods for mobile terminals include methods for calling a particular person by saying aloud his/her name into the microphone of the mobile terminal and by setting up a call to the number according to the name said by the user. However, present speaker-dependent methods usually require that the speech recognition system is trained to recognize the pronunciation for each name. Speaker-independent speech recognition improves the usability of a speech-controlled user interface, because the training stage can be omitted. In speaker-independent name selection, the pronunciation of names can be stored beforehand, and the name spoken by the user can be identified with the pre-defined pronunciation, such as a phoneme sequence. Although in many languages pronunciation of many words can be represented by rules, or even models, the pronunciation of some words can still not be correctly generated by these rules or models. However, in many languages, the pronunciation cannot be represented by general pronunciation rules, but each word has a specific pronunciation. In these languages, speech recognition relies on the use of so-called pronunciation dictionaries in which a written form of each word of the language and the phonetic representation of its pronunciation are stored in a list-like structure.
In mobile phones the memory size is often limited due to reasons of cost and hardware size. This imposes limitations also on speech recognition applications. In a device capable of having multiple user interface languages, the speaker-independent speech recognition solution often uses pronunciation dictionaries. Because a pronunciation dictionary is usually large, e.g. 37 KB for two thousand names, it needs to be compressed for storage. Broadly speaking, most text compression methods fall into two classes: dictionary-based and statistics-based. There are several different implementations at the dictionary-based compression, e.g. LZ77/78 and LZW (Lempel-Ziv-Welch). By combining a statistical method, e.g. arithmetic coding, with powerful modelling techniques, a better performance can be achieved than with dictionary-based methods alone. However, the problem with the statistical based method is that it requires a large working memory (buffer) during the decompression process. Therefore this solution is not suitable for use in small portable electronic devices such as mobile terminals.
Although the existing compression methods are good in general, the compression of the pronunciation dictionaries is not efficient enough for portable devices.
BRIEF DESCRIPTION OF THE INVENTIONThe object of the invention is to provide a more efficient compression method for compressing a pronunciation dictionary. The object of the invention is achieved with a method, electronic devices, a system and a computer program product that are characterized by what is disclosed in the independent claims. The preferred embodiments of the invention are set forth in the dependent claims.
According to a first aspect of the invention, the pronunciation dictionary is pre-processed before the compression. The pre-processing can be used together with any method for compressing a dictionary. In the pre-processing each entry in the pronunciation dictionary is aligned using a statistical algorithm. During the alignment, a sequence of character units and a sequence of phoneme units are modified to have an equal number of units in the sequences. The aligned sequences of character units and phoneme units are then interleaved so that each phoneme unit is inserted at a predetermined location relative to the corresponding character unit.
A sequence of character units is typically a text sequence containing letters. Depending on the language, the alphabetical set can be extended to include more letters or symbols than the conventional English alphabet.
A sequence of phoneme units represents the pronunciation of the word and it usually contains letters and symbols, e.g. ‘@’, ‘A:’, ‘{’ in SAMPA (Speech Assessment Methods Phonetic Alphabet) notation. The phonetic alphabet can also contain non-printable characters. Because one phoneme can be represented with more than one letter or symbol, the phonemes are separated by a whitespace character.
According to a second aspect of the invention, an electronic device is configured to convert a text string input into a sequence of phoneme units. A pre-processed pronunciation dictionary comprising entries, the entries comprising a first set of units comprising character units and a second set of units comprising phoneme units, wherein the units of the first set and the units of the second set are aligned and interleaved by inserting each phoneme unit at a predetermined location relative to the corresponding character unit, is stored into the memory of the device. A matching entry for the text string input is found from the pre-processed pronunciation dictionary by using the units of the first set of units of the entry form the predetermined locations. From the matching entry units of the second set of units are selected and concatenated into a sequence of phoneme units. Also the empty spaces are removed from the sequence of phoneme units.
According to a third aspect of the invention, an electronic device is configured to convert a speech information input into a sequence of character units. A pre-processed pronunciation dictionary comprising entries, the entries comprising a first set of units comprising character units and a second set of units comprising phoneme units, wherein the units of the first set and the units of the second set are aligned and interleaved by inserting each phoneme unit at a predetermined location relative to the corresponding character unit, is stored into the memory of the device. Pronunciation models for each entry's phonemic representation are either stored into the memory together with the pronunciation dictionary or created during the process. A matching entry for the speech information is found by comparing the speech information to the pronunciation models and selecting the most corresponding entry. From the matching entry units of the first set of units are selected and concatenated into a sequence of character units. Finally the empty spaces are removed from the sequence of character units.
One advantage of the invention is that with the described pre-processing, the entropy (H) of the dictionary is lowered. According to information theory, a low entropy rate (H) indicates that a more effective compression can be achieved, since the entropy rate determines the lower limit for compression (the compression ratio with the best possible non-lossy compression). This enables better compression, and the memory requirement is smaller. Furthermore, the pronunciation dictionary is relatively simple and fast to apply for speech recognition.
In one embodiment of the invention the HMM-Viterbi algorithm is adapted to be used for the alignment. The HMM-Viterbi algorithm ensures that the alignment is performed in an optimal manner in the statistical sense, and therefore minimizes the leftover entropy of the dictionary entry. Furthermore, an advantage of using the HMM-Viterbi algorithm in the alignment is that a more optimal alignment in the statistical sense can be reached.
In another embodiment of the invention a mapping step is added to the pre-processing. The mapping can be done either before or after the alignment. In this step, each phoneme unit is mapped into one symbol and instead of the phoneme units being represented by multiple characters, a single symbol is used to denote the phoneme units. By using the mapping technique, the whitespace characters can be removed from the entry, and yet decoding of the interleaved sequence is still possible. The removal of whitespace characters further improves the compression ratio. Additionally, an advantage of the mapping is that the method can be adapted to multiple languages, or even a large mapping table for all the languages in the device can be used.
BRIEF DESCRIPTION OF THE DRAWINGSIn the following, the invention will be described in further detail by means of preferred embodiments and with reference to the accompanying drawings, in which
The pronunciation dictionary that needs to be pre-processed and compressed is stored in the memory (MEM). The dictionary can also be downloaded from an external memory device, e.g. from a CD-ROM or a network, using the I/O means (I/O). The pronunciation dictionary comprises entries that, in turn, each include a word in a sequence of character units (text sequence) and in a sequence of phoneme units (phoneme sequence). The sequence of phoneme units represents the pronunciation of the sequence of character units. The representation of the phoneme units is dependent on the phoneme notation system used. Several different phoneme notation systems can be used, e.g. SAMPA and IPA. SAMPA (Speech Assessment Methods Phonetic Alphabet) is a machine-readable phonetic alphabet. The International Phonetic Association provides a notational standard, the International Phonetic Alphabet (IPA), for the phonetic representation of numerous languages. A dictionary entry using the SAMPA phoneme notation system could be for example:
Entropy, denoted by H, is a basic attribute, which characterises the data content of the signal. It is possible to find the shortest way to present a signal (compress it) without losing any data. The length of the shortest representation is indicated by the entropy of the signal. Instead of counting the exact entropy value individually for each signal, a method to estimate it has been established by Shannon (see, for example, C. E. Shannon, A Mathematical Theory of Communication, The Bell System Technical Journal, Vol. 27, pp. 379-423, 623-656, July, October, 1948). This will be described briefly in the following.
Let P(Ij|Ii) be the conditional probability that the present character is the jth letter in the alphabet, given that the previous character is the ith letter, and P(Ii) the probability that the previous character is the ith letter of the alphabet. The entropy rate H2 of the second order statistics is
The entropy rate H in a general case is given by
where Bn represents the first characters. It is virtually impossible to calculate the entropy rate according to the above equation (2). Using this prediction method of equation (1), it is possible to estimate that the entropy rate of an English text of 27 characters is approximately 2.3 bits/character.
To improve the compression of a pronunciation dictionary, pre-processing of the text is used to lower its entropy.
Each entry is aligned (200), i.e. the text and phoneme sequences are modified in order to have as many phoneme units in the phoneme sequence as there are character units in the text sequence. In the English language, for example, a letter may correspond to zero, one, or two phonemes. The alignment is obtained by inserting graphemic or phonemic epsilons (nulls) between the letters in the text string, or between the phonemes in the phoneme sequence. The use of graphemic epsilons can be avoided by introducing a short list of pseudophonemes that are obtained by concatenating two phonemes that are known to correspond to a single letter, for example, “x->k s”. In order to align the entries, the set of allowed phonemes has to be defined for each letter. The phoneme list includes the pseudophonemes for the letter and the possible phonemic epsilon. The general principle is to insert a graphemic null (defined as epsilon) into the text sequence and/or a phonemic null (also called an epsilon) into the phoneme sequence when needed. Below is the word used above as an example after alignment.
Here, the word ‘father’ has 6 units and after aligning there are 6 phonemes in the phoneme sequence; ‘f A: D ε ε @’. The aligning can be done in several different ways. According to one embodiment of the invention the alignment is done with the HMM-Viterbi algorithm. The principle of the alignment is illustrated and described in more detail in
After aligning (200) each phoneme used in the phoneme notation system is preferably mapped (202) into a single symbol, for example, one byte ASCII code. However, mapping is not necessary to achieve the benefits of the invention, but can further improve them. The mapping can be represented, for example, in a mapping table. Below is an example of how the phonemes in the word used as an example could be mapped:
By representing each phoneme with one symbol, the two characters representing one phoneme unit can be replaced with just one 8-bit ASCII symbol. As a result, the example is:
After representing the phonemes with one symbol the spaces between the units can be removed. Also the space between the text sequence and the mapped and aligned phoneme sequence can be removed because there is an equal number of units in both sequences and it is clear which characters belong to the text and which to the phonetic representation.
Aligned and Mapped Entry fatherfAD_@Mapping the phoneme units to single symbols (202) is an important step for interleaving, since the whitespace characters can be avoided. Mapping also further enhances the end result in itself, since single characters take less space compared to, for example, two-character combinations, and the correlation to the corresponding text character is increased. The order of aligning (200) and mapping (202) does not affect the end result, the mapping (202) can be carried out before aligning as well.
The mapping table is only dependent on the phoneme notation method used in the pronunciation dictionary. It can be implemented to be language-independent so that different systems or implementations are not needed for different dialects or languages. If a plurality of pronunciation dictionaries use in a different phoneme notation methods were used, there would be a need for separate mapping tables for each phoneme notation method.
After aligning (200) and mapping (202), the entries are interleaved (204). Since the character ->phoneme pattern has a higher probability (lower entropy) than the consecutive letter pattern, especially if the alignment has been carried out optimally, redundancy is increased. This can be done by inserting pronunciation phonemes between the letters of the word to form a single word. In other words, the phoneme units are inserted next to the corresponding character units. After aligning (200), the text sequence and the phoneme sequence have an equal number of symbols and the character-phoneme pair is easy to find. For example:
where italic and bold symbols stand for pronunciation phonemes. It is obvious from the example that composing and decomposing an entry between the original and new formats are uniquely defined, since the text sequence and the phoneme sequence, that are interleaved, contain an equal number of units.
After the pre-processing, the compression (206) of the pre-processed phoneme dictionary can be carried out.
The Hidden Markov Model (HMM) is a well-known and widely used statistical method that has been applied for example in speech recognition. These models are also referred to as Markov sources or probabilistic functions of the Markov chain. The underlying assumption of the HMM is that a signal can be well characterized as a parametric random process, and that the parameters of the stochastic process can be determined/estimated in a precise, well-defined manner. The HMMs can be classified into discrete models and continuous models according to whether observable events assigned to each state are discrete, such as codewords, or whether they are continuous. In either case, the observation is probabilistic. The model in the underlying stochastic process is not directly observable (it is hidden) but can be seen only through another set of stochastic processes that produce the sequence of observations. The HMM is composed of hidden states with transition between the states. The mathematical representation includes three items: state transition probability between the states, observation probability of each state and initial state distribution. Given HMM and observation, the Viterbi algorithm is used to give the observation state alignment through following the best path.
It is acknowledged in the current invention that the HMM can be used to solve the problem of optimal alignment of an observed sequence to the states of the Hidden Markov Model. Furthermore, the Viterbi algorithm can be used in connection with the HMM to find the optimal alignment. More information about the Hidden Markov Models and their applications can be found e.g. from the book “Speech Recognition System Design and Implementation Issues”, pp. 322-342.
First, for a given letter-phoneme pair, the penalties p(f|l) are initialised with zero if the phoneme f can be found in the list of the allowed phonemes of the letter l, otherwise they are initialised with large positive values. With the initial penalty values, the dictionary is aligned in two steps. In the first step, all possible alignments are generated for each entry in the dictionary. Based on all the aligned entries, the penalty values are then re-scored. In the second step, only a single best alignment is found for each entry.
For each entry, the optimal alignment is found with the Viterbi algorithm on the grapheme HMM. The grapheme HMM has entry (ES), exit (EXS) and letter states (S1, S2 and S3). The letters that may map to pseudophonemes are handled by having a duration state (EPS). The states 1 to 3 (S1, S2, S3) are the states that correspond to the letters in the word. State 2 (S2) corresponds to a letter that may produce a pseudophoneme. Skips from all previous states to the current state are allowed in order to support the phonemic epsilons.
Each state and the duration state hold a token that contains a cumulative penalty (as a sum of logarithmic probabilities) of aligning the phoneme sequence against the grapheme HMM and the state sequences that correspond to the cumulative score. The phoneme sequence is aligned against letters by going through the phoneme sequence from the beginning to the end one phoneme at a time. In order to find the Viterbi alignment between the letters and the phonemes, token passing is carried out. As the tokens pass from one state to another, they gather the penalty from each state. Token passing may also involve splitting tokens and combining or selecting tokens to enter the next state. The token that in the end has the lowest cumulative penalty is found over all the states of the HMM. Based on the state sequence of the token, the alignment between the letters of the word and the phonemes can be determined.
The alignment works properly for most entries, but there are some special entries that cannot be aligned. In such cases, another simple alignment is applied: graphemic or phonemic epsilons are added to the end of the letter or phoneme sequences.
The original entry (400) has the two parts, a text sequence ‘father’ and a phoneme sequence ‘f A: D @’. These two sequences are separated with a whitespace character and also the phoneme units are separated with whitespace characters.
In aligning (402) the phonemic and graphemic epsilons are added to have an equal number of units in both sequences. In the example word two phonemic epsilons are needed and the result of the phoneme sequence is ‘f A: D ε ε @’.
The mapping (404) of the phoneme units into one symbol representation changes only the phoneme sequence. After mapping the phoneme sequence of the example word is ‘f A D_ _@’.
When the entry is mapped (404) it is possible to remove the white space characters (406). As a result there is one string ‘fatherfAD_ _@’.
The last step is interleaving (408) and the example entry is ‘ffaAtDh_e_r@’. Now the entry can be processed further, for instance, it can be compressed.
All these steps are described in more detail in
The pre-processing method described above, including also mapping (202), was tested experimentally. The experiment was carried out using the Carnegie Mellon University Pronouncing Dictionary, which is a pronunciation dictionary for North American English that contains more than 100,000 words and their transcriptions. In the experiment the performance was evaluated first by using typical dictionary-based compression methods, LZ77 and LZW, and a statistical based compression method, the 2nd order arithmetic compression. The performance was then tested with the pre-processing method together with the compression methods (LZ77, LZW and arithmetic). In Table 1 the results, given in kilobytes, show that the pre-processing method performs better in all cases. In general, it can be used with any compression algorithms.
As we can see from Table 1, the pre-processing improves the compression with all compression methods. Combined with the LZ77 compression method, the pre-processing improved the compression by over 20%. The improvement is even larger when the pre-processing was combined with the LZW method or with the Arithmetic method, providing about 40% better compression.
It should be understood that the invention can be applied to any general-purpose dictionary that is used in speech recognition and speech synthesis or all the applications when a pronunciation dictionary needs to be stored with efficient memory usage. It is also possible to apply the invention to the compression of any other lists comprising groups of textual entries that have a high correlation on the character level, for example, common dictionaries showing all the forms of a word and spell-checker programs.
The steps shown in
In
When the matching entry is found, the phoneme units of the entry are selected (602). Because of the interleaving (done according to the preferred embodiment described in
As the entries are aligned, the sequence of phoneme units may include empty spaces, e.g. phonemic epsilons. The empty spaces are removed in order to create a sequence consisting only of phonemes (604).
If the pre-processing of the phoneme dictionary also included mapping, a reversed mapping is needed (606). The reversed mapping can be carried out using a similar mapping table as the one used during the pre-processing, but in a reverse order. This step changes the first representation method, e.g. one character representation, of the phonemic units into the second representation method, e.g. SAMPA, that is used in the system.
When the sequence of phoneme units is created, it is typically further processed, e.g. a pronunciation model of the sequence is created. According to one embodiment a pronunciation model is created for each phoneme using e.g. HMM-algorithm. The phoneme pronunciation models are stored in the memory (ME). To create a pronunciation model of an entry, a pronunciation model for each phoneme of the phoneme sequence is retrieved from the memory (608). These phoneme models are then concatenated (610) and the pronunciation model for the phoneme sequence is created.
The converting of a text string input into a pronunciation model described above can also be distributed between two electronic devices. For instant, the pre-processed dictionary is stored in the first electronic device, e.g. in the network, where the finding of a matching entry (600) is performed. The matching entry is then distributed to the second electronic device, e.g. a mobile terminal, where the rest of the process (steps 602-610) is performed.
Finding a matching entry (702) is based on comparing the input speech information to the pronunciation models of each entry in the pronunciation dictionary. Therefore, before the comparison, the pronunciation of each entry is modelled (700). According to one preferred embodiment, the models are created in the electronic device (ED). The phoneme dictionary is already interleaved and aligned, therefore the modelling can be done as described in
According to a second preferred embodiment, the models are created before the pre-processing of the pronunciation dictionary in the data processing device (TE). The modelling can be done as described in
The finding of a match entry (702) is done using the input speech information and the pronunciation models of the entries stored in the memory (ME). The speech information is compared with each entry and a probability of how well the input speech information matches with each entry's pronunciation model is computed. After computing the probabilities the match entry can be found by selecting the entry with the highest probability.
The character units are then selected from the matching entry (704). Because of the interleaving, done as described in
Because of the aligning, the sequence of the graphemic units may include empty spaces, e.g. graphemic epsilons. To create a sequence that has only graphemes, the empty spaces are removed (706). As a result we have a text string that can be used further in the system.
An electronic device, e.g. a mobile phone with a car user interface, has a speaker-independent voice recognition for voice commands. Each voice command is an entry in the pronunciation dictionary. The user wants to make a phone call while driving. When the voice recognition is active the user says ‘CALL’. The phone receives the voice command with a microphone and transmits the speech information through the I/O means to the central processing unit. The central processing unit converts the speech input into a text sequence as described in
The accompanying drawings and the description pertaining to them are only intended to illustrate the present invention. Different variations and modifications to the invention will be apparent to those skilled in the art, without departing from the scope and spirit of the invention defined in the appended claims.
Claims
1. An electronic device comprising a processing unit and a memory for storing a pre-processed pronunciation dictionary including a first set of units having character units and a second set of units having phoneme units, the units of the first set and the units of the second set being aligned and interleaved by having each phoneme unit at a predetermined location relative to the corresponding character unit, wherein
- the electronic device is configured to find a matching entry for a text string input from the pre-processed pronunciation dictionary using said first set of units of the entry from the predetermined locations;
- the electronic device is configured to select from said matching entry phoneme units of said second set of units from predetermined locations; and
- the electronic device is configured to concatenate the selected phoneme units into a sequence of phoneme units.
2. The electronic device of claim 1, wherein the electronic device is configured to remove empty spaces from said sequence of phoneme units.
3. The electronic device of claim 1, wherein the electronic device is configured to retrieve from the memory a pronunciation model for each phoneme unit in said sequence of phoneme units, and
- the electronic device is configured to concatenate the pronunciation models.
4. The electronic device of claim 1, wherein the electronic device is configured to map each phoneme unit from a first phonemic representation method to a second phonemic representation method.
5. The electronic device of claim 1, wherein the electronic device is a mobile communications device.
6. An electronic device comprising a processing unit and memory for storing a pre-processed pronunciation dictionary including entries, the entries having a first set of units having character units and a second set of units having phoneme units; the units of the first set and the units of the second set being aligned and interleaved by having each phoneme unit at a predetermined location relative to the corresponding character unit;
- the electronic device is configured to store or create pronunciation models of each entry's phonemic representation;
- the electronic device is configured to find a matching entry for a speech information input by comparing said speech information input to said pronunciation models and selecting the most corresponding entry;
- the electronic device is configured to select from said matching entry character units of said first set of units from predetermined locations; and
- the electronic device is configured to concatenate the selected character units into a sequence of character units.
7. The electronic device of claim 6, wherein the electronic device is configured to remove empty spaces from said sequence of character units.
8. The electronic device of claim 6, wherein, for creating the pronunciation models, the electronic device is configured to:
- find a matching entry for a text string input from the pre-processed pronunciation dictionary using said first set of units of the entry from the predetermined locations;
- select from said matching entry phoneme units of said second set of units from predetermined locations and concatenate them into a sequence of phoneme units;
- remove empty spaces from said sequence of phoneme units;
- retrieve from the memory a pronunciation model for each phoneme unit in said sequence of phoneme units, and
- concatenate the pronunciation models.
9. The electronic device of claim 8, wherein the electronic device is configured to map each phoneme unit from a first phonemic representation method to a second phonemic representation method.
10. The electronic device of claim 6, wherein the electronic device is configured to receive the pre-processed pronunciation dictionary and the pronunciation models, and
- the electronic device is configured to store the received pre-processed pronunciation dictionary and the pronunciation models into the memory.
11. The electronic device of claim 6, wherein the electronic device is a mobile communications device.
12. A system comprising a first electronic device and a second electronic device arranged in a communication connection with each other, the system being configured to convert a text string input into a sequence of phoneme units, wherein:
- the first electronic device comprises means for storing a pre-processed pronunciation dictionary including a first set of units having character units and a second set of units having phoneme units, wherein entries are aligned and interleaved by having each phoneme unit at a predetermined location relative to the corresponding character unit;
- the first electronic device comprises means for finding a matching entry for said text string input from the pre-processed pronunciation dictionary using said first set of units of the entry;
- the first electronic device comprises means for transmitting said matching entry to the second electronic device;
- the second electronic device comprises means for receiving said matching entry from the first electronic device;
- the second electronic device comprises means for selecting from said matching entry units of said second set of units and concatenating them into a sequence of phoneme units; and
- the second electronic device comprises means for removing empty spaces from said sequence of phoneme units.
13. The system of claim 12, wherein the second electronic device is configured to map each phoneme unit from a first phonemic representation method to a second phonemic representation method.
14. A method for converting a text string input into a sequence of phoneme units, the method comprising:
- accessing a pre-processed pronunciation dictionary including a first set of units having character units and a second set of units having phoneme units, the units of the first set and the units of the second set being aligned and interleaved by having each phoneme unit at a predetermined location relative to the corresponding character unit;
- finding a matching entry from the pre-processed pronunciation dictionary for a text string input using said first set of units of the entry from the predetermined locations and ignoring empty spaces;
- selecting from said matching entry phoneme units of said second set of units from the predetermined locations; and
- concatenating the selected phoneme units into a sequence of phoneme units.
15. The method of claim 14, further comprising:
- removing empty spaces from said sequence of phoneme units.
16. The method of claim 14, further comprising:
- retrieving a pronunciation model for each phoneme unit in said sequence of phoneme units; and
- concatenating the pronunciation models.
17. The method of claim 14, further comprising:
- mapping each phoneme unit from a first phonemic representation method to a second phonemic representation method.
18. A method for converting a speech information input into a sequence of character units, the method comprising:
- accessing a pre-processed pronunciation dictionary including a first set of units having character units and a second set of units having phoneme units, the units of the first set and the units of the second set being aligned and interleaved by having each phoneme unit at a predetermined location relative to the corresponding character unit,
- obtaining pronunciation models of each entry's phonemic representation;
- finding a matching entry for a speech information input by comparing said speech information input to said pronunciation models and selecting the most corresponding entry;
- selecting from said matching entry character units of said first set of units from the predetermined locations; and
- concatenating the selected character units into a sequence of character units.
19. The method of claim 18, further comprising:
- removing empty spaces from said sequence of character units.
20. The method of claim 18, wherein the step of obtaining the pronunciation models comprises:
- finding a matching entry for a text string input from the pre-processed pronunciation dictionary using said first set of units of the entry from the predetermined locations;
- selecting from said matching entry phoneme units of said second set of units from predetermined locations and concatenate them into a sequence of phoneme units;
- removing empty spaces from said sequence of phoneme units;
- retrieving from the memory a pronunciation model for each phoneme unit in said sequence of phoneme units, and
- concatenating the pronunciation models.
21. A computer readable medium storing a computer program product comprising code which is executable in an electronic device for causing the electronic device to:
- access a pre-processed pronunciation dictionary including a first set of units having character units and a second set of units having phoneme units, the first set of units and the second set of units being aligned and interleaved by having each phoneme unit at a predetermined location relative to the corresponding character unit;
- find a matching entry from the pre-processed pronunciation dictionary for a text string input using said first set of units of the entry from the predetermined locations and ignoring empty spaces; and
- select from said matching entry phoneme units of said second set of units from the predetermined locations and concatenate them into a sequence of phoneme units.
22. The computer readable medium of claim 21, further comprising code for mapping each phoneme unit from a first phonemic representation method to a second phonemic representation method.
23. A computer readable medium storing a computer program product comprising code which is executable in an electronic device for causing the electronic device to:
- access a pre-processed pronunciation dictionary including a first set of units having character units and a second set of units having phoneme units, the first set of units and the second set of units being aligned and interleaved by having each phoneme unit at a predetermined location relative to the corresponding character unit;
- store or create pronunciation models of each entry's phonemic representation;
- find a matching entry for a speech information input by comparing said speech information input to said pronunciation models and selecting the most corresponding entry;
- select from said matching entry character units of said first set of units from the predetermined locations and concatenate them into a sequence of character units.
24. The computer readable medium of claim 23, further comprising code for removing empty spaces from said sequence of character units.
Type: Application
Filed: Nov 29, 2006
Publication Date: Mar 29, 2007
Applicant:
Inventor: Jilei Tian (Tampere)
Application Number: 11/605,655
International Classification: G10L 15/04 (20060101);