Mouse having a button-less panning and scrolling switch
A method of switching between operational modes of a computer mouse during operation of the computer mouse is disclosed. In the described embodiments, the mouse includes a housing that is gripped by a user during manipulation of the mouse. The method generally comprises first sensing in which hand position the mouse is being held, each hand position indicating a corresponding mode of operation of the mouse. In another aspect, the method entails producing position signals that relate mouse movements relative to the surface upon which it is supported to operations on a display screen according to the corresponding mode of operation of the mouse.
Latest Apple Patents:
- Control resource set information in physical broadcast channel
- Multimedia broadcast and multicast service (MBMS) transmission and reception in connected state during wireless communications
- Methods and apparatus for inter-UE coordinated resource allocation in wireless communication
- Control resource set selection for channel state information reference signal-based radio link monitoring
- Physical downlink control channel (PDCCH) blind decoding in fifth generation (5G) new radio (NR) systems
This application is a continuation of U.S. patent application Ser. No. 10/157,343, filed on May 28, 2002, which is incorporated herein by reference.
BACKGROUND OF THE INVENTION1. Field of the Invention
The present invention relates generally to a mouse. More particularly, the present invention relates to mice having a button-less switch.
2. Description of the Related Art
Most computer systems, as for example general purpose computers such as portable computers and desktop computers, receive input from a user via an input device such as a mouse. As is generally well known, the mouse allows a user to move an input pointer (e.g., cursor) and to make selections with respect to a graphical user interface (GUI). The mouse generally includes a trackball, which is located on the underside of the mouse and which rolls when the mouse moves thus translating the motion of the users hand into signals that the computer system can use. The movement of the trackball generally corresponds to the movement of the input pointer. That is, by positioning the mouse on a desktop and moving it thereon, the user can move the input pointer in similar directions with respect to the GUI. An optical sensor may alternatively be used to track the movement of the mouse. The mouse also conventionally includes one or more buttons, which are located on the top side of the mouse housing. These one or more buttons, when selected, can initiate a GUI action such as menu or object selections. The one or more buttons are typically provided by on or more button caps that move relative to the mouse housing.
Recently, a scroll wheel has been added to the mouse to give the user scrolling functionality. The scroll wheel saves time and steps, and allows a user to move through documents by simply rolling the wheel forward or backward-instead of clicking on the scroll bar displayed on the GUI. In the past, scrolling was implemented by selecting the scroll bar displayed on the GUI with the mouse, and moving the scroll bar on the GUI by moving the mouse up or down. In some circumstances, a button, in combination with software has been used to switch the mouse motion from tracking to scrolling or panning. Both the scroll wheel and button are located outside the mouse, i.e., break the surface of the mouse.
Although mice designs such as these work well, there are continuing efforts to improve their form, feel and functionality.
SUMMARY OF THE INVENTIONThe invention relates, in one embodiment, to a method of switching between operational modes of a computer mouse during operation of the computer mouse. In the described embodiments, the mouse includes a housing that is gripped by a user during manipulation of the mouse.
The method generally comprises first sensing in which hand position the mouse is being held, each hand position indicating a corresponding mode of operation of the mouse. More particularly, in the described embodiment, the sensor unit determines in which one of two hand positions the mouse is being held. If the mouse is being held in a first hand position, the mouse performs according to a first mode of operation, whereas if the mouse is being held in a second hand position, the mouse performs according to a second mode of operation.
In another aspect, the method entails producing position signals that relate mouse movements relative to the surface upon which it is supported to operations on a display screen. As described below, the position signals control first operations on the display screen when the mouse is in a first mode of operation and second operations on the display screen when the mouse is in a second mode of operation.
In one embodiment, the first mode of operation of the mouse may be a cursor control mode and the first operations on the display screen may be cursor movements on the display screen. Additionally, the second mode of operation of the mouse may be a pan and/or scroll control mode and the second operations on the display screen may be scrolling and/or panning movements on the display screen.
BRIEF DESCRIPTION OF THE DRAWINGSThe invention will be readily understood by the following detailed description in conjunction with the accompanying drawings, wherein like reference numerals designate like structural elements, and in which:
The invention generally pertains to a mouse having a button-less switch for implementing a function such as tracking, scrolling, panning and or the like. By buttonless it is meant that the function is implemented without adding buttons, wheels or other mechanical actuators that break the outer surface of the mouse (e.g., scroll wheel, scroll button). In one particular case, the button-less switch allows a user to switch between tracking (e.g., moving a cursor with a mouse) and scrolling/panning (e.g., moving the contents of a window up/down or side to side). For example, when a user wants to scroll or pan, the user can switch the mode of the mouse such that further movement of the mouse results in scrolling or panning rather than tracking.
Embodiments of the invention are discussed below with reference to
The mouse 20 is configured to provide positional information, which corresponds to the movement of the mouse 20 along a surface, to a host system. The positional information may be used to control the movement of a cursor/pointer on a graphical user interface (GUI) of a display screen or to scroll or pan through a graphical user interface (GUI) of a display screen. The positional information is generally provided by the trackball or optical assembly mentioned above. The mouse is also configured to provide command information, which informs the host system as to which of the GUI movements (e.g., cursor or scroll/pan) to implement when the mouse is moved along the surface. The command information is generally provided by a switch arrangement that is actuated by the user during manipulation of the mouse, i.e., the user may switch between cursor movements and scroll/pan movements.
In one embodiment, the switch arrangement provides one or more modal areas 24 that represent regions of the mouse housing 20 that may be actuated by a user so as to switch between the GUI movements (cursor/pointer or scroll/pan). The switch arrangement is generally configured to activate the different GUI movements when the hand is positioned proximate or away from the modal areas 24. For example, the switch arrangement may activate the cursor movements when the hand is positioned proximate the modal areas 24 and it may activate the scroll/pan movements when the hand is positioned away from the modal areas 24 (or vice versa). In this manner, different hand positions may be used to initiate the different GUI movements.
The position of the modal areas 24 relative to the mouse housing 22 may be widely varied. For example, the modal areas 24 may be positioned almost anywhere (e.g., top, side, front, or back) on the mouse housing so long as they are accessible to a user during manipulation of the mouse 40. In the illustrated embodiment, the modal area 24 is positioned in the region of the mouse housing 22 that is typically used to grip the mouse (e.g., sides). As should be appreciated, the sides are generally gripped by the thumb and ring/pinky fingers. The number of modal areas 24 may also be widely varied. That is, although only one modal area 24 is shown in
In one implementation, each of the modal areas 24 are provided by a sensor of the switch arrangement, i.e., the modal areas 24 represent the working area of the sensor. The sensors are configured to detect the presence of the hand proximate the modal areas 24. The sensors are also configured to produce a first signal when the presence of a hand is detected and a second signal when the presence of a hand is not detected. These signals provide the mouse 20 (or host device) with the command information that may be used to switch between the GUI movements. The sensors may be widely varied. For example, optical sensors, capacitance sensors, and the like may be used.
In one particular embodiment, optical sensors are used. In this embodiment, the optical sensors are located within the mouse housing, and the mouse housing has light passing portions close to the optical sensors that allow the optical sensors to work through the housing. The light passing portions may be formed from a translucent or semi-translucent material or from a material that is filtered so as to allow only certain spectrums of light (e.g., infrared) therethrough. Furthermore, the light passing portions may cover the entire housing or only a small portion as for example a portion in front of the sensors (e.g., modal areas).
The mouse 20 may also include one or more buttons that provide a clicking action for performing actions on the display screen. By way of example, the actions may include selecting an item on the screen, opening a file or document, executing instructions, starting a program, viewing a menu, and/or the like. The buttons may be widely varied. For example, the buttons may be mechanical buttons that are disposed in the housing or a unified button/housing that incorporates the functionality of a button (or buttons) directly into the mouse housing 22. The buttons of the mouse 20 may also be a combination of the above (e.g., mechanical buttons and unified button housing). In the illustrated embodiment, the clicking action is provided by a unified button housing and thus there are no separate mechanical buttons.
FIGS. 2A-C show the mouse in a cursor control mode, in accordance with one embodiment of the invention.
Referring first to
Referring to
It should be noted that the hand position shown in
FIGS. 3A-C show the mouse 20 in a scroll/pan control mode, in accordance with one embodiment of the invention.
Referring first to
Scrolling may be implemented vertically (up or down) or horizontally (left or right). For example, the mouse may be arranged to move the GUI or portions thereof vertically up when moved forward, and vertically down when moved backwards. In addition, the mouse may be arranged to move the GUI or portions thereof horizontally when moved from side to side. Panning, on the other hand, may be implemented vertically, horizontally and diagonally in a manner similar to the cursor. For example, the mouse may be arranged to move the GUI or portions thereof vertically up when moved forward, and vertically down when moved backwards. In addition, the mouse may be arranged to move the GUI or portions thereof horizontally when moved from side to side. Moreover, the mouse may be arranged to move the GUI or portions thereof diagonally when moved both horizontally and side to side at the same time.
In the case of vertical scrolling/panning, when a user scrolls (or pans) down, each new set of data appears at the bottom of the viewing area and all other sets of data move up one position. If the viewing area is full, the top set of data moves out of the viewing area. Similarly, when a user scrolls (or pans) up, each new set of data appears at the top of the viewing area and all other sets of data move down one position. If the viewing area is full, the bottom set of data moves out of the viewing area. The same can be said for vertical scrolling/panning and diagonal panning (e.g., generally involves both X and Y). By way of example, the scrolling/panning feature may be used to help perform internet browsing, spreadsheet manipulation, viewing code, computer aided design, and the like.
Referring to
To elaborate, the concept described in
It should be noted that the hand position shown in
The proximity sensors 54 may be widely varied. For example, the proximity sensors may be optical, capacitance or any other type of proximity sensor. In the illustrated embodiment, the proximity sensors 54 are optical sensors based on infrared light that is invisible to the human eye. The optical sensors 54 include a light emitter (e.g., I-R emitter diode) 58 and a light detector 60 (e.g., I-R detector). The light emitter 58 is configured to shine a light beam 62 out the side of the mouse housing 52. When the fingers 51 (or other object) are present (as shown in
The mouse also includes a positional movement detecting mechanism 66 for detecting movement of the mouse 50 along a surface. The positional movement detecting mechanism 66 produces positional signals that relate mouse movements to cursor or scrolling/panning movements on the display screen. The detecting mechanism may be a mechanical mechanism such as a trackball or an optical mechanism such as an optical sensor, both of which track the position of the mouse 50.
With regards to the track ball mechanism, a portion of the trackball generally protrudes from the underside of the housing while the remaining portion is housed within the mouse housing. As should be appreciated, the protruding portion of the trackball touches a flat surface on which the mouse 50 sits, thus causing the trackball to roll when the mouse 50 is moved along the surface. As the ball moves, it engages two rollers housed within the mouse 50. One of the rollers is oriented so that it detects motion in a first direction (e.g., X direction), and the other roller is oriented so that it detects motion in a second direction (e.g., Y direction), which is typically at a 90 degree angle relative to the first direction. By way of example, the first direction may relate to back and forth movements of the mouse, and the second direction may relate to side to side movements of the mouse. In most cases, the back and forth movements correspond to vertical movements in the GUI while side to side movements correspond to horizontal movements in the GUI. Each of the rollers is coupled to an encoder through a shaft so that when the rollers turn they spin the shaft and thus the encoders. The encoders may be mechanical encoders or optical encoders. The encoder is configured to generate signals based on the speed, distance and direction of the mouse as it is moved.
With regards to the optical mechanism, a light source (e.g., a light emitting diode (LED)) bounces light off the surface (over which the mouse moves) onto a camera type device (e.g., complimentary metal oxide semiconductor (CMOS)) that captures multiple images every second of the surface. The images are used to generate signals based on the speed, distance and direction of the mouse as it is moved. Both trackball and optical tracking mechanisms are well known in the art and for the sake of brevity will not be discussed in greater detail.
The mouse 50 also includes a processor 70 for processing the signals sent by the sensors 54 and position movement detecting mechanism 66. The processor 70 is typically configured to turn these signals into data, which can be used by a host system (e.g., computer system). By way of example, and referring to
It should be noted, however, that the function diagram of
The mouse housing 102 may be widely varied. In the illustrated embodiment, the mouse housing 102 includes a base 104 and a button body 106. The base 104 is configured to moveably support the mouse 100 during use thereof, i.e., the base 104 makes moving contact with a surface such as a desktop or mouse pad.
The button body 106, on the other hand, is configured to move relative to the base 104 so as to provide a clicking action that implements the button functionality of the mouse 100. The entire surface of the body 106 above the base 104 acts as a single or multiple button. The clicking action (e.g., the movement of the body 54 relative to the base 104) may be provided through one or more degrees of freedom (DOF). The degrees of freedom may be implemented through one or more rotations, pivots, translations, flexes (and/or the like) relative to the base 104. In the illustrated embodiment, the button body 106 is pivotally coupled to the base 104.
As shown, the body 106 pivots about an axis 108. In this example, the body 106 is capable of moving between a first position (shown by a solid line) and a second position (shown by a dotted line) when a force F is applied to the body 106. The force F may be any downward force on the mouse 100, whether from a finger, palm or hand that results in a clicking action. In one implementation, the button body 106 may be spring biased so as to place the button body 106 in an unactuated position such as for example the first position shown by the solid lines. In most cases, a switch is located underneath the housing 102. The switch is configured to provide a signal when the body 106 is moved form the first to the second position. In one embodiment, the button functions of the housing 102 are implemented via switches or sensors located inside the mouse housing 102. The switches and sensors are generally configured to provide pulsed or binary data such as activate (on) or deactivate (off). For example, an underside portion of the body 106 may be configured to contact or engage (and thus activate) a switch when the user presses on the body 106.
By way of example, a representative unibody mouse is described in U.S. patent application Ser. No. 09/482,152, titled “CURSOR CONTROL DEVICE HAVING AN INTEGRAL TOP MEMBER”, filed Jan. 12, 2000, which is incorporated herein by reference.
More specifically, the body 154 includes an inner shell 162 and an outer shell 164. The outer shell 164 is structurally coupled to the inner shell 162. The means for coupling the outer shell 164 to the inner shell 162 is not shown herein, however, any suitable coupling means may be used. By way of example, the outer shell 164 may be coupled to the inner shell 162 via fasteners such as snaps, screws, glues and the like. Alternatively, the inner and outer shell 162, 164 may be integrally formed from a single piece of material.
The inner and outer shells 162, 164, as well as the base 152, are generally formed from a suitable material such as plastic. In one implementation, the outer shell 164 is formed from a translucent material so that the inner shell 162 may be visible to a user. As shown, the inner shell 162 is disposed between the base 152 and the outer shell 164. As such, the inner shell includes a top surface 166, which substantially faces the inner surface of the outer shell 164 and a bottom surface 168 that substantially faces the base 152.
The inner shell 162 is pivotally coupled to the base 152 via a pivot 170 located towards the rear of the mouse 150. By way of example, the pivot 170 may include a pivot support attached to the base 152, and the inner shell 162 may include an internal pivot pin for mating with an opening in the pivot support. The pivot 170 allows the body 154 to swing between an unclicked position, placing the body 154 away from the base 152, and a clicked position, placing the body 154 towards the base 152. In the clicked position (e.g., when a downward force is applied to the body 154), the inner shell 162 is configured to engage a switch 174 located opposite the pivot 170. That is, during the clicking action, a bottom portion 168 of the inner shell 162 is pushed against an actuator 178 of the switch 174 thereby activating the switch 174, i.e., the actuator 178 is configured to move between a deactivate position (e.g., upright) and an activate position (e.g., depressed). The switch is configured to produce a command signal such as a data selection or execution command signal when the switch is activated.
The inner shell 162 is also configured to carry a sensor 180. The sensor 180 may be disposed inside the inner shell 162 (if translucent) or outside the inner shell 162 (if opaque). In the illustrated embodiment, the sensor 180 is positioned on the outside of the inner shell 162. The sensor 180 is adapted to detect the presence of an object such as a user's hand when the object is located within the working area of the sensor 180. The sensor 180 allows a user to select the type of GUI movement by readjusting the position of the hand on the body 154. For example, the user may select a cursor control mode by placing their hand in a first position or the user may select a scroll/pan mode by placing a their hand in a second position. As shown, the sensor 180 includes a light emitter 182 and a light detector 184. The light emitter 182 is configured to direct light out of the side of the translucent outer shell 164 so that it may be reflected back to the detector 184 when an object is placed in its line of path. The sensor 180 is configured to produce a first command signal when the detector 184 detects the reflected light, and a second command signal when the detector 184 does not detect the light.
As shown, the inner shell 162 and base 152 form a space therebetween that is used to enclose various internal components. For example, a printed circuit board 188 is typically disposed therebetween. A majority of the internal electronics of the mouse 150 are connected to the printed circuit board 188. For example, the printed circuit board 188 may carry the switch 174, a position detection device 190 (e.g., trackball, optical sensor), a processor 192 and the like. The sensor 180, position detection device 190 and switch 124 are typically operatively coupled to the processor 192, i.e., the processor receives and processes the signals from the devices. Although not shown, the mouse 150 generally includes a cable for connecting the internal electronics to a host system (e.g., computer system). One end of the cable is permanently connected to the internal electronics such as the processor 192, and the other end includes a connector for removably coupling the mouse to the host system. By way of example, the connector may be a PS/2 connector, a serial connector, a USB connector and the like. Alternatively, the mouse may include a radio frequency (RF) link or optical infrared (IR) link to eliminate the need for a cable.
The mouse processing 200 generally begins at block 202 where inputs from a switch arrangement are monitored. Here, one or more states associated with the switch arrangement can be monitored. By way of example, the states being monitored can include cursor control mode, scroll/pan mode or other modes. After block 202, the process proceeds to block 204 where status information associated with the states are obtained from the monitoring. By way of example, the status information may correspond to which of the states are activated (e.g., on or off).
After block 204, the process proceeds to block 206 where functions of the states are determined. The functions of the states are generally based on the status information and predetermined configuration information. In one embodiment, the predetermined configuration information identifies a type and nature of function that is to be provided for a specific status information. By way of example, a cursor control action may be identified when the switch arrangement is activated. In addition, a scroll/pan action may be identified when the switch arrangement is deactivated. Moreover, an on screen action such as selecting an item on the screen may be identified when the switch arrangement is activated or deactivated.
In one embodiment, the predetermined configuration information is stored in memory. Thus, the computer consults the information held in memory in order to determine the on-screen action for a specific clicking action. The predetermined configuration information stored in the memory may be accessed by a user through a mouse control menu, which may be viewed on a display screen as part of a GUI interface. The mouse control menu may include control settings pertaining to one or more on screen actions. In fact, the mouse control menu may serve as a control panel for reviewing and/or customizing the mouse control settings, i.e., the user may quickly and conveniently review the mouse control settings and make changes thereto. Once the user saves the changes, the modified mouse control settings will be employed (e.g., as predetermined configuration information) to handle future events transmitted and/or received through the computer.
After the functions have been determined, the process proceeds to block 210 where the actions are performed. For example, the cursor control action may allow a cursor to be moved on the screen, the scroll/pan action may allow a user to scroll/pan through the display screen. Additionally, on screen actions may select an item on the screen, open a file or document, execute instructions, start a program, view a list of commands (or system properties), or the like. Thereafter, the process can proceed back to block 202 where switch arrangement inputs are monitored.
The mode switching method 300 generally begins at block 302 where a first data associated with a first hand position are received. By way of example, the first data may be produced by the sensors and received by the processor described in
After block 302, the process proceeds to block 304 where the first mode of the mouse is implemented based on the first data. The first mode may be implemented by the processor of the mouse shown in
After block 304, the process proceeds to block 306 where a second data associated with a second hand position is received. By way of example, the second data may be produced by the sensors and received by the processor described in
After block 306, the process proceeds to block 308 where the second mode of the mouse is implemented based on the second data. The second mode may be implemented by the processor of the mouse shown in
The advantages of the invention are numerous. Different embodiments or implementations may have one or more of the following advantages. One advantage of the invention is that the mouse requires no obvious button to actuate the mode change. Buttons break the surface of the mouse and are therefore less aesthetically pleasing. Another advantage of the invention is that the user changes modes by a simple and natural posture change of the hand and is not required to hold down a button to maintain the desired mode. In this regard, the mouse appears almost modeless. Another advantage of the invention is that the mode mechanism is not obvious to the user and therefore the device works in a magical manner.
While this invention has been described in terms of several preferred embodiments, there are alterations, permutations, and equivalents, which fall within the scope of this invention. It should also be noted that there are many alternative ways of implementing the methods and apparatuses of the present invention. It is therefore intended that the following appended claims be interpreted as including all such alterations, permutations, and equivalents as fall within the true spirit and scope of the present invention.
Claims
1. A method of switching between modes during operation of a computer mouse that is manipulated by the hand of a user, the method comprising:
- sensing whether the mouse is being held by a user in a first hand position that indicates a first mode of operation of the mouse, or whether the mouse is being held by a user in a second hand position that indicates a second mode of operation of the mouse, wherein the modes cannot be implemented simultaneously; and
- producing position signals that relate mouse movements relative to the surface upon which it is supported to first or second operations on a display screen, wherein the position signals control the first operations on the display screen when the mouse is in the first mode of operation and wherein the position signals control the second operations on the display screen when the mouse is in the second mode of operation.
2. The method as recited in claim 1, wherein the first mode of operation of the mouse is a cursor control mode and wherein the first operations on the display screen are cursor movements on the display screen.
3. The method as recited in claim 1, wherein the second mode of operation of the mouse is a pan/scroll control mode and wherein the second operations on the display screen are scrolling/panning movements on the display screen.
4. The method as recited in claim 1 further comprising producing a signal based on the user's hand position that causes the mouse to perform in either the first mode of operation or the second mode of operation.
5. The method as recited in claim 4, wherein the sensing of the hand position is performed by a sensor unit that is configured to detect the presence of one or more portions of a user's hand proximate to predetermined areas of the mouse when the user's hand is used to hold the mouse during manipulation thereof, and wherein the sensor unit produces the mode control signal based on the user's hand position.
6. The method as recited in claim 5 wherein the sensor unit includes an optical sensor that is disposed inside a translucent housing of the mouse, the optical sensor being configured to work through the translucent housing, the translucent housing providing a structure for gripping the mouse for movement thereof.
7. The method as recited in claim 6, wherein the optical sensor emits infrared light and detects infrared light that reflects off the one or more portions of the user's hand.
8. The method as recited in claim 7, wherein the mode control signal is based on the measured light intensity sensed by the sensor unit.
9. The method as recited in claim 5, wherein the sensor unit includes a capacitance sensor.
10. The method as recited in claim 5, wherein the first mode of operation is implemented when the user grips the side of the mouse.
11. The method as recited in claim 5, further comprising implementing a button function of the mouse when the sensor unit is tapped.
Type: Application
Filed: Dec 6, 2006
Publication Date: Apr 12, 2007
Applicant: Apple Computer, Inc. (Cupertino, CA)
Inventor: Brian Huppi (San Carlos, CA)
Application Number: 11/635,760
International Classification: G09G 5/08 (20060101);