ANGLED IMPLANT TO IMPROVE HIGH CURRENT OPERATION OF BIPOLAR TRANSISTORS
Method and apparatus for improving the high current operation of bipolar transistors while minimizing adverse affects on high frequency response are disclosed. A local implant to increase the doping of the collector at the collector to base interface is achieved by the use of an angled ion implant of collector impurities through the emitter opening. The resulting area of increased collector doping is larger than the emitter opening, which minimizes carrier injection from the emitter to the collector, but is smaller than the area of the base.
Latest Patents:
This application is a continuation of U.S. patent application Ser. No. 09/921,948, filed Aug. 3, 2001, which is a division of U.S. patent application Ser. No. 09/436,306, filed on Nov. 8, 1999, now U.S. Pat. No. 6,440,812, which is a division of U.S. patent application Ser. No. 09/024,287, filed Feb. 17, 1998, now U.S. Pat. No. 5,982,022, which is a division of U.S. patent application Ser. No. 08/519,817, filed Aug. 25, 1995, now U.S. Pat. No. 5,719,082, the specifications of which are incorporated herein by reference.
FIELD OF THE INVENTIONThe present invention relates to semiconductor circuitry and in particular to improving the high current operation of a semiconductor circuit by implanting impurities at an angle to create a local implant with increased area.
BACKGROUND OF THE INVENTION Semiconductor junctions are often limited in their high current region of operation by leakage currents. In the case of bipolar transistors, as the collector current increases, election and hole injection increases the base depth into the lightly doped collector region, thus reducing the gain of the transistor. Similar effects are observed in metal oxide semiconductor transistors. One method for improving the high current operation of bipolar transistors include increasing the collector doping concentration throughout its junction with the base via a perpendicular implant of appropriate doping through the base opening as shown in prior art
A second method shown in prior art
In the following detailed description of the preferred embodiment, reference is made to the accompanying drawings which form a part hereof, and in which is shown by way of illustration specific preferred embodiments in which the invention may be practiced. These embodiments are described in sufficient detail to enable those skilled in the art to practice the invention, and it is to be understood that other embodiments may be utilized and that structural, logical and electrical changes may be made without departing from the spirit and scope of the present invention. The following detailed description is, therefore, not to be taken in a limiting sense, and the scope of the present inventions is defined only by the appended claims.
Numbering in the Figures is usually done with the hundreds and thousands digits corresponding to the figure number, with the exception that the same components may appear in multiple figures. Signals and connections may be referred to by the same number or label, and the actual meaning should be clear from the context of use.
In
In
In
As opposed to a standard perpendicular implantation, the beam of ions is angled as shown at 1018, with an implantation angle from an imaginary line which is perpendicular to the surface of the substrate. The impurities are accelerated from the ion source, and a mass spectrometer is used to separate undesired impurities. A high energy, fairly narrow ion beam is focussed and raster scanned across the emitter opening at an implantation angle of about 20 to 30 degrees at the edges of the emitter, resulting in a wider implant 1020, which injected carriers have a harder time circumventing. The energy level of the beam will be dependent on the depth required to form the implant at the collector-base junction, and is easily determined by one skilled in the art. It is typically in the 50 to 150 keV range for most common processes. For a pnp transistor, a p-source of impurities is used, such as boron.
The angling of the beam is accomplished by use of wafer tilting features which are common on many ion implantation devices. The beam itself is usually rastered across the surface of a wafer containing at least one, and likely many thousands of transistors being formed. The wafer is continuously tilted and then turned in one embodiment to form the implant. In a further embodiment, the angle is varied to produce reduced doping levels at the edges of the implant to obtain optimal transistor high current operation. The implantation angle is in the range of 20 to 30 degrees from the perpendicular. In other embodiments, actual angles will depend on the desired size and depth of the implant and may vary from greater than zero, to angles that produce implants approaching the size of the base opening. Implantation horizontal surface areas greater than that normally available through the emitter opening using vertical implantation starts to provide the benefits of maintaining appropriate gains at high merits. Once the surface area of the implant approaches the surface area of the base opening, capacitive effects become too great, limiting the high frequency response of the transistor being formed. Shadows caused by opposite sides of the emitter opening may limit the angle that can be used, especially for deep collector-base junction implants. This is another case where the angle may be changed during the implant to obtain the total desired area of implantation.
Since the collector tap is also exposed to the ion beam, a second collector implant is formed at 1022 at about the same level of penetration as the increased collector doping under the emitter opening 1014.
To finish the transistor and form contacts to the active areas, a thick n+ polysilicon layer is applied at 1112 in
In an embodiment, a local collector implant of impurities is created in a bipolar transistor by angling the implant through an emitter opening. The localized implant covers an area larger than the emitter opening, thereby minimizing carrier injection around the perimeter of the implant at high currents. In addition to improved high current operation, high frequency operation is also improved over previous methods of increasing the entire collector doping concentration where it contacts the base or performing a conventional local collector implant through the emitter opening. Only one additional implant is required over normal bipolar transistor formation processes, and no additional masking is required.
In an embodiment, a standard ion beam source using phosphorus as the impurity for a npn transistor is used to perform the angled implant. For a pnp transistor, a p source of impurities is used, such as boron. The impurities are accelerated from the ion source, and a mass spectrometer is used to separate undesired impurities. A high energy, fairly narrow ion beam is focussed and scanned across the emitter opening at an angle to a line perpendicular to the surface of the emitter, resulting in a wider implant at the collector-base junction, which injected carriers have a harder time circumventing. The angling of the beam is accomplished by tilting the silicon wafer on which the transistor is being formed with respect to the source of ions.
It is to be understood that the above description is intended to be illustrative, and not restrictive. In many cases, the doping of semiconductor structures may be reversed on a wholesale basis to obtain similar functions. Many other embodiments will be apparent to those of skill in the art upon reviewing the above description. The scope of the invention should, therefore, be determined with reference to the appended claims, along with the full scope of equivalents to which such claims are entitled.
Claims
1. A transistor formed in a semiconductor substrate, the substrate having a first impurity level of a first conductivity type and a surface, the transistor comprising:
- a collector region having a first impurity therein which promotes one of either holes or electrons as a majority carrier, the collector region extending downward from the surface of the substrate, wherein the first conductivity type of the substrate promotes the other majority carrier;
- a base region having a second impurity level of the first conductivity type having a base surface area and extending downward from the surface of the substrate into contact with a portion of the collector region;
- an emitter on top of the base region and having an emitter surface area smaller than the base surface area; and
- an implant area of the collector region vertically adjacent to the base region having an increased collector doping of an implanted impurity, the implant area having an effective surface area greater than the surface area of the emitter and less than the surface area of the base region.
2. The transistor of claim 1, wherein the base region having at least a first, second and third region with the first and third base regions comprising base contact regions having a larger impurity level of the other type of carrier than the impurity level of the other type of carrier of the second base region disposed therebetween.
3. The transistor of claim 2, wherein the emitter is in contact with the second base region.
4. The transistor of claim 2, wherein the implant area of the collector is vertically adjacent to substantially the entirety of the second base region.
5. The transistor of claim 2, wherein the implant area of the collector is contained between a first edge and a second opposite edge of an oxide isolation region surrounding the transistor.
6. The transistor of claim 2, wherein the implant area of the collector is displaced a predetermined distance away from the first and third base regions.
7. The transistor of claim 1, wherein the transistor is an NPN transistor and the implant impurity in the implant area of the collector region is phosphorous.
8. The transistor of claim 1, wherein the transistor is a PNP transistor and the implant impurity in the implant area of the collector is boron.
9. The transistor of claim 2, wherein the emitter is disposed vertically to be surrounded on all lateral sides by both the base area and the implant area of the collector region, and the first and third base regions are disposed vertically to not overlap the implant area of the collector.
10. A transistor formed in a semiconductor substrate, the substrate having a first conductivity type and a surface, the transistor comprising:
- a collector region having an impurity therein which promotes one of either holes or electrons as a majority carrier, the collector region extending downward from the surface of the substrate, wherein the first conductivity type of the substrate promotes the other of either holes or electrons as a majority carrier;
- a base region having an impurity therein which promotes the other type of carrier, the base region having a surface area and extending downward from the surface of the substrate into contact with a portion of the collector region, the base region having at least a first, second and third region with the first and third base regions comprising base contact regions having a larger impurity level of the other type of carrier than the impurity level of the other type of carrier of the second base region disposed therebetween;
- an emitter on top of the second base region and having a surface area, which is in contact with the second base region, smaller than the surface area of the base region; and
- an implant area of the collector region vertically adjacent to the second base region having an increased collector doping of an implanted impurity, the implant area having an effective surface area, which is in contact with the second base region, greater than the surface area of the emitter and less than the surface area of the base region between a first edge and a second opposite edge of an oxide isolation region surrounding the transistor, and displaced from the first and third base regions.
11. The transistor of claim 10, wherein the transistor is an NPN transistor and the implant impurity in the implant area of the collector region is phosphorous.
12. The transistor of claim 10, wherein the transistor is a PNP transistor and the implant impurity in the implant area of the collector is boron.
13. A transistor formed in a semiconductor substrate, the substrate including a surface and a region doped with an impurity which promotes one of either holes or electrons as a first majority carrier, the transistor comprising:
- a collector region having an impurity therein which promotes the other of holes or electrons as a second majority carrier, the collector region extending from the surface of the substrate;
- a base region having an impurity therein which promotes the first majority carrier, the base region extending from the surface of the substrate into contact with a portion of the collector region;
- an emitter region on the intrinsic base region, the emitter region having a surface area that is in contact with the base region and is smaller than a surface area of the base region; and
- an implant region interposed between the collector region and the base region, the implant region having an increased doping of an implant impurity and having an effective surface area greater than the surface area of the emitter region and less than the area of the base region contiguous to the collector region.
14. The transistor of claim 13, wherein the transistor is an NPN transistor and the implant impurity in the implant region is phosphorous.
15. The transistor of claim 13, wherein the transistor is a PNP transistor and the implant impurity in the implant region is boron.
16. The transistor of claim 13, wherein the effective surface area of the implant region minimizes carrier injection from the emitter region to the collector region outside of the implant region at high current operation of the transistor.
17. The transistor of claim 13, wherein the base region is divided into at least one intrinsic base region and at least one extrinsic base region.
18. The transistor of claim 17, wherein the emitter is only in contact with the intrinsic base region.
19. The transistor of claim 17, wherein the wherein the effective surface area is in contact with the intrinsic base region, and spaced apart from the extrinsic base region.
20. A transistor, comprising:
- an emitter having an emitter surface area;
- a base having a base surface area;
- a collector in contact with the base; and
- an implant region intermediate the base and the collector and having a surface area, the implant surface area being greater than the emitter surface area and less than the base surface area.
21. The transistor of claim 20, wherein the base is separated into an intrinsic base and an extrinsic base.
22. The transistor of claim 20, wherein the emitter surface area is in contact with the intrinsic base, and spaced from the extrinsic base.
23. The transistor of claim 22, further the implant region having an implant surface area in contact with the intrinsic base and not in contact with the extrinsic base.
24. The transistor of claim 22, wherein the implant area is less than an area of the base between the surface edges of the extrinsic base surrounding the intrinsic base.
25. The transistor of claim 20 wherein the collector has a collector surface area, and the implant region surface area is less than the collector surface area.
26. The transistor of claim 25, wherein the base surface area is less than the collector surface area.
27. The transistor of claim 25, wherein the base surface area and the implant region surface area where both contact the collector have a combined area greater than the emitter surface area.
28. The transistor of claim 25, wherein the base directly contacts both the collector and the implant region.
29. The transistor of claim 21, wherein the emitter is spaced apart from the extrinsic base, and the implant region is horizontally spaced apart from the extrinsic base.
30. A transistor device formed in a semiconductor substrate comprising:
- a diffused n well collector region having an impurity of a first conductivity type, the collector region extending downwardly from a surface of the substrate, the substrate being generally doped with an impurity of a second conductivity type;
- a base region having an impurity of the second conductivity type doped at a generally constant doping level across a surface thereof, the base region extending downwardly from the surface of the substrate into contact with a portion of the collector region;
- an emitter having an impurity of the first conductivity type on top of the base region and having a surface area smaller than a surface area of the base region; and
- a top area of the collector region vertically adjacent the base region having an increased collector doping of the first conductivity type, the top area of the collector region having an effective surface area in contact with the base region that is greater than the surface area of the emitter.
31. The transistor device of claim 30, wherein the impurity of the first conductivity device is phosphorous.
32. The transistor device according to claim 30, wherein the effective top area surface area of the collector region is less than less than a non-increased doped area of the portion of the collector region in contact with the base region.
33. A transistor formed in a substrate, the substrate having a first conductivity type and a surface, the transistor comprising:
- a collector region having a first impurity means for promoting one of either holes or electrons as a majority carrier, the collector region extending downward from the surface of the substrate, wherein the first conductivity type of the substrate promotes the other of either holes or electrons as a majority carrier;
- a base region having a second impurity means for promoting the other type of carrier with a first portion of the base region having a first impurity level and a second portion of the base region having a second higher impurity level, the base region having a surface area and extending downward from the surface of the substrate into contact with a portion of the collector region;
- an emitter region on top of the first portion of the base region and having a surface area smaller than the surface area of the first portion of the base region; and
- an implant area of the collector region vertically adjacent to the first portion of the base region having an increased collector doping of an implanted impurity, the implant area having an effective surface area that is in contact with the base region, greater than the surface area of the emitter region and less than the surface area of the first portion of the base region.
34. A transistor, comprising:
- an emitter having a periphery;
- a base in contact with the emitter;
- a collector in contact with the base; and
- means for minimizing carrier injection from the periphery of the emitter region to the collector region at high current operation of the transistor;
- wherein means for minimizing carrier injection includes an implant region intermediate the base and the collector, the implant region having an implant surface area greater than a surface area of the emitter and less than a surface area of the base.
35. A transistor, comprising:
- an emitter;
- a base in contact with the emitter;
- a collector in contact with the base; and
- means for minimizing base-collector capacitance and maximizing high current operation;
- wherein means for minimizing base-collector capacitance and maximizing high current operation includes an implant region intermediate the base and the collector, the implant region having an implant surface area greater than a surface area of the emitter and less than a surface area of the base.
Type: Application
Filed: Feb 19, 2007
Publication Date: Jun 21, 2007
Applicant:
Inventor: Michael Violette (Boise, ID)
Application Number: 11/676,450
International Classification: H01L 31/11 (20060101); H01L 27/082 (20060101); H01L 27/102 (20060101); H01L 29/70 (20060101);