Cervimetry control apparatus
The present invention provides a medical device for measuring cervical dilation including an elongate body defining a proximal end and a distal end, as well as an expandable element coupled to the distal end of the elongate body. An array of movable elements may be disposed circumferentially about the elongate body, where the array of movable elements is movably coupled to the distal end of the elongate body by a plurality of wires. The medical device may further include a measurement mechanism able to determine a radial spacing of the array of movable elements, as well as a dilation indicator in communication with the measurement mechanism. One or more pressure sensors may be coupled to the array of movable elements, whereby a control element is in communication with the pressure sensors. In addition, an inflation source may be included in fluid communication with the expandable element.
Latest Patents:
This application is a continuation-in-part of and claims priority to both pending Utility patent application Ser. No. 11/401,623, filed Apr. 10, 2006, entitled METHOD FOR CERVICAL DILATION AND/OR MEASUREMENT, and pending Utility patent application Ser. No. 11/401,749, filed Apr. 11, 2006, entitled CERVICAL DILATION MEASUREMENT APPARATUS, each of which is a continuation-in-part of and claims priority to pending Utility patent application Ser. No. 11/321,061, filed Dec. 29, 2005, entitled CERVIMETER, the entirety of each of which is incorporated herein by reference.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENTn/a
FIELD OF THE INVENTIONThe present invention relates to obstetric devices and more particularly, to a method and apparatus for monitoring and controlling cervical dilation.
BACKGROUND OF THE INVENTIONDuring the later stages of pregnancy, the cervix typically undergoes numerous physical changes which provide increased safety and ease with which the fetus can be delivered. Particularly, the cervical canal tissue softens and increases in pliability, and subsequently, the diameter of the cervical canal begins to increase. Eventually, the dilation of the cervix is completed, allowing for the unobstructed passage of the fetus.
Cervical diameter is monitored throughout labor and is instrumental in diagnosing such conditions as dysfunctional or arrested labor, to determine whether labor augmentation or a cesarean section should be performed, as well as to establish whether or when various pharmaceutical agents should be administered. Physical examination of the cervical diameter is generally performed by inserting two fingers into the vagina and up to the cervix. Upon reaching the cervix, the fingers are spread apart to determine the approximate dilated diameter. While an obstetrician may be fairly experienced in performing a manual cervical diameter measurement, the accuracy of such a measurement can be highly subjective and can further vary depending on the particular experience, judgment, and even finger size of the attending physician. Considering the importance of the cervical dilation measurement in assessing labor progression, it is crucial to provide dilation information that is precise as well as reproducible among different healthcare providers or physicians.
Given the subjectivity and probability of inaccurate or imprecise dilation measurements, it would be desirable to provide for the precise and accurate attainment of cervical dilation measurements on a repeat basis during the course of labor. In addition, it would be desirable to provide for ease of monitoring and control of cervical dilation to assist a physician throughout labor management.
SUMMARY OF THE INVENTIONThe present invention advantageously provides a method and system for the accurate and precise measuring of cervical dilation during labor, as well as a method and system for performing cervical dilation. The medical device of the present invention may include an elongate body defining a proximal end and a distal end, with the elongate body further including an inflation lumen. An expandable element may be coupled to the elongate body in fluid communication with the inflation lumen, and an array of movable elements may be circumferentially disposed about the elongate body, with the array of movable elements being movably coupled to the elongate body by a plurality of wires. The medical device may also include a measurement mechanism able to determine a radial spacing of the array of movable elements, where the measurement mechanism can include a tension ring coupled to the plurality of wires. In addition, a dilation indicator can be provided in communication with the measurement mechanism, while at least one pressure sensor may be coupled to at least one of the array of movable elements. Moreover, a distal pressure sensor can be coupled to the distal end of the elongate body, with the medical device also providing a control element in communication with the at least one pressure sensor and the distal pressure sensor. The medical device can also include an inflation source in fluid communication with the expandable element, as well as an exhaust valve in fluid communication with the expandable element. Furthermore, the medical device may include a camera as well as a lighting element coupled to the distal end of the elongate body, thereby providing visual feedback to aid in the positioning of the device.
The control element of the present invention may further provide for monitoring and controlling the operation of the medical device. The control element may be in communication with the one or more sensors disposed on the medical device, as well as being in communication for control and/or monitoring of the additional components of the medical device, such the camera, lighting source, inflation source, or the like. The control element may provide a display or other indication elements for conveying information, such as pressure, size, etc. to a physician during a particular procedure. Moreover, the control element may provide for additional patient safety by having an automatic alarm and/or shut down process in response to measurements and/or conditions that differ from a pre-determined set of parameters.
In an alternative embodiment, the present invention also provides a cervical dilation sensor to aid in the manual, two-finger approach commonly employed. The cervical dilation sensor may include a first rod, a second rod, and a sensor housing. The first and second rods may be rotatably and pivotably coupled to the sensor housing, as to freely move about the housing in at least two planes of motion. The sensor housing may include one or more sensors coupled to the first and second rods as to measure the relative movement of the two rods, while the cervical dilation sensor may also include a control monitor in communication with the one or more sensors in the sensor housing for displaying and monitoring information provided by the sensors.
A more complete understanding of the present invention, and the attendant advantages and features thereof, will be more readily understood by reference to the following detailed description when considered in conjunction with the accompanying drawings wherein:
As shown in
Now referring to
While the array of movable elements 24 may be extended and retracted by manipulating the plurality of wires 36, an actuating mechanism may be provided to facilitate movement of the array of movable elements 24 from a retracted position to an extended position, and vice versa. The actuating mechanism may include a spring mechanism, a telescoping element, or, alternatively, the medical device 10 may include an expandable element 38, such as a balloon. Now referring to
The medical device 10 of the present invention may include additional features providing safety, ease of use, and the like. For example, the medical device 10 may include a protective sheath 42 encasing at least a portion of the distal end 16 of the elongate body 12. The sheath 42 may include one or more layers of various materials to provide a water-tight seal around the medical device, as well as adding to patient comfort by having additional padding and/or a lubricious coating to ease positioning of the device. For example, a first layer may completely enclose the medical device to ensure the device is not exposed to external fluids or objects. A second layer may be placed over the first layer as a protective layer which is removable by a physician or operator after each use, thereby providing a sterile layer and the possibility for re-use of the medical device. A third layer may be provided over the second layer and include a lubricious property allowing for smooth insertion, operation, and removal of the device.
Furthermore, a distal pad 44 may be coupled to the elongate body 12 at or near the distal end 16, where the distal pad 44 may be contoured or shaped to conform to the curvature of the head of a baby. In addition, a distal pressure sensor 46 may be coupled to the distal pad 44 to aid in monitoring the positioning of the medical device 10 and for determining contact with the cervix or with the baby. The distal pad 44 and distal pressure sensor 46 may provide feedback to a physician and aid in the axial positioning of the medical device 10 upon insertion into a patient. Furthermore, a camera 45 and a lighting element 47 may also be coupled to the distal portion of the medical device. The camera 45 may be a miniaturized instrument or pin-hole camera as commonly employed in endoscopic surgical procedures, while the lighting element 47 may include a diode, fiber optic, or other illumination mechanism as is known in the art. The camera 45 and lighting element 47 may provide visual feedback to a physician to further aid in maneuvering and positioning the medical device when in use.
As shown in
The medical device 10 of the present invention may further include a measurement mechanism for monitoring and/or quantifying the movement of the array of movable elements 24 when the medical device 10 is in use. For example, as shown in the
Again referring to
The control element 20 may include a display, such as an LCD screen or the like, as well as other visual, audio, or tactile indicators to convey information regarding the various operating characteristics and conditions of the medical device 10 to an operator or physician, including dilation measurements, dilation pressure exerted by the medical device, inflation pressure, etc. The control element 20 may further include one or more control actuators, such as push-buttons, switches, a touch-screen, or the like, to enable a physician to provide input to the control element in order to manipulate and/or control a particular component or function of the medical device 10.
In addition, the control element 20 may include a processor component and an electronic storage medium (not shown) for storing patient information, measurements and/or procedural information obtained during use of the medical device. The control element 20 may provide calculations and graphical illustrations including, but not limited to, a display of air pressure versus time, air pressure versus diameter, upper and lower limits of expansion pressure, etc. The control element 20 may further contain date/time information for measurements, the physician or nurse performing the procedure, and the like. Moreover, the control element 20 may be able to communicate such recorded information to other devices and/or systems in the hospital environment through the use of portable media and/or wireless technologies as is known in the art.
In an exemplary embodiment, as shown in
The inflation source 22 of the medical device may be coupled to the inflation lumen 40 at the proximal end 14 of the elongate body 12, where the inflation source 22 is able to provide a fluid or gas into the inflation lumen 40 for subsequent delivery to the expandable element 38. Examples of a suitable inflation source 22 may include manual pumps, powered pumps, or the like. The inflation source may be either separate from the control element, as shown in
Referring now to
The inflation source 22 may continue to inflate the expandable element 38 until the movable elements 24 of the medical device 10 come into contact with the dilated or undilated cervix 54. Such contact can be indicated and monitored through information provided by the pressure sensors 32 coupled to the movable elements 24, which, again, may be relayed to a physician or operator through the control element. In particular, the control element may provide a visual indicator of the pressure being exerted on the cervical tissue by the expansion of the medical device as well as the overall dilation measurements of the cervix. Furthermore, the control element 20 may include an algorithm or computational ability to determine if the pressure sensor feedback indicates a substantially uniform circular state. That is to say, that the pressure measurements from each of the pressure sensors 32 disposed about the movable elements 24 are approximately the same. When the desired inflation level or diameter has been attained as indicated by pressure sensor measurements or from the dilation indicator, the inflation source 22 may be deactivated, or, alternatively, the exhaust valve 60 may be triggered to prevent additional fluid from entering the expandable element 38. Each of these events may be triggered and/or controlled by actuator elements included on the housing of the control element.
Once appropriately inflated, the measuring mechanism and the dilation indicator 18 can provide the dilation measurement as indicated by the distance the plurality of wires 36, and thus the tension ring 50, traveled in reaching the expanded state. As previously stated, the dilation indicator 18 can directly correlate the distance traveled by the wires 36, and thus, the measured expansion of the movable elements 24, to an accurate and precise dilation measurement.
Upon completion of the desired measurement, the movable elements 24 are retracted towards the elongate body 12, i.e., by deflating the expandable element 38 by opening the exhaust valve 60, upon which the movable elements 24 will retract to a closed position for the removal of the medical device 10 from the patient. Both the tension ring 50 and the plurality of wires 36 may be biased towards a closed, retracted position, such that when the expandable element 38 is not under positive inflation pressure, the medical device 10 retains a closed, retracted state. Furthermore, as described above, the medical device 10 may include an outer sheath 42 which, if used, may be removed and replaced for subsequent uses of the medical device 10, thereby providing a re-usable device while maintaining the sterility of the medical environment.
Referring to
Upon initiating the desired contact, the array of movable elements 24 may then be extended further, for example, through a controlled inflation of the expandable element 38, in order to provide a desired rate of expansion, and thus, dilation. Alternatively, the array of movable elements may be actuated to extend outward through pressure or force applied through the plurality of wires 36, or by other actuating mechanisms as known in the art. At any point during the dilation procedure, information may be provided regarding the amount of force being applied to the cervical tissue via the one or more pressure sensors 32 coupled to the array of movable elements 24, as well as the radial spacing of the array of movable elements. As such, through the monitoring of sensor feedback information, the dilating force applied to the array of movable elements either through the plurality of wires 36 or by the expandable element 38 may be appropriately adjusted in order to achieve the desired dilation without unnecessarily damaging the cervical tissue. Additionally, the spacing of the array may be monitored to achieve a desired dilated state. Through the monitoring and manipulation of the operating characteristics of the medical device, including the rate of extension of the array, the pressure between the medical device and the tissue, and/or the distance traveled and thus the radial spacing of the array, a precise and accurate dilation may be induced.
The above-described dilation may be performed for obstetrical uses, for example, in cervical “ripening” to assist in the induction of labor in cases of poorly dilated or effaced cervices. In addition, pre-operative dilation may be performed using the medical device of the present invention in cases of uterine curettage for failed pregnancy, miscarriage, or retained products of conception. Moreover, the medical device may be used for gynecological purposes of cervical dilation in cases of curettage of the endocervix or endometrium, elective termination of pregnancy, diagnostic and operative hysteroscopy, thermal endometrial ablation techniques, as well as treatment of cervical stenosis.
While it has been discussed that the control element may provide a variety of information from the numerous sensors and other components to a physician or operator during the above-mentioned procedures, the control element may further provide for enhanced safety during use by including pre-determined circumstances and/or threshold values for safe operation, irrespective of whether the aim is to take measurements or to cause dilation. Now referring to
Now referring to
Now referring to
The measurement device 100 of the present invention may also include one or more finger-tip pressure sensors 110,110′ positionable about the tips of the first and second fingers used in the manual cervical dilation measurement technique. The finger-tip pressure sensors 110,110′ may indicate pressure feedback information via the control element 20 upon contact with the head of the baby. In addition to providing feedback information to prevent excess pressure on the head of the baby, upon recognition that the finger tips are indeed contacting the head of the baby, a marker or other measurement indicator may be used to gauge the position and descent of the baby, as described below.
Historically, practitioners have used the ischial spine as the index point (0 station) for a determination of fetal descent, and assigned an arbitrary number in centimeters above and below the ischial spine. More specifically, “station” refers to the level of the presenting fetal part in the birth canal as described in relationship to the ischial spines, which are halfway between the pelvic inlet and the pelvic outlet. When the lowermost portion of the fetal presenting part is at the level of the ischial spine, it is designated as being at zero (0) station. In the past, the long axis of the birth canal has been arbitrarily divided into segments for a determination of the position of the baby. Thus, as the presenting fetal part descends from the inlet toward the pelvic outlet, the typical designation is −5, −4, −3, −2, −1, 0 station, +1, +2, +3, +4, +5. Using this method, the degree of accuracy (in centimeters) is difficult to achieve clinically. In practice, physicians may generally make an educated guess about the station of the presenting part of the baby, since after the “0” point (0 station), the baby's head covers the ischial spine point and eliminates the ability to measure and reproduce distance caudal to this point. Contrary to the typical method employed, where accuracy and precision may be difficult to maintain, the feedback from the finger-tip sensors may provide an indication of contact with the head of the baby. Upon such indication, a marking or other descent indicator 112 on the portion of the hand of the physician external to the genitalia may be used to provide an accurate and precise measurement of the location and descent of the baby. Measurements over the course of labor indicate rates of progression which are practical, relatively easier to standardize and explainable to the patient or other practitioners. This approach of measurement is termed “Advancement”.
In an exemplary use, the measurement device 100 is coupled to the hand of a physician, with the first extension element 102 being paired to a first finger, the second extension element 104 being paired to a second finger, and the base element 106 being positioned in between the first and second fingers. Moreover, where the lateral sensors 108,108′ or finger-tip sensors 110,110′ are included, the sensors will be positioned about the sides and tips of the fingers, respectively, as described above. The coupling may be achieved through the integration of the measurement device 100 with a glove 114, or through direct adhesion of the various components to the fingers themselves. Additionally, the cervical dilation measurement device 100 may include two cap elements 116,116′ positionable about the finger tips, with the first and second extension elements 102,104 extending from the cap elements 116,116′ and towards the base element 106, and with the lateral and finger-tip sensors coupled to the cap elements in the appropriate positions. Any wires or other communicative elements connecting the sensors to the control element 20 may be routed through the glove or positioned down the back of the hand as needed to provide connectivity while preventing interference with the use of the device. Alternatively, the various sensors may communicate with the control element 20 wirelessly as known in the art.
Subsequently, the physician may position the first and second fingers and the cervical dilation measurement device 100 in proximity to the cervix. Upon reaching the desired location, the two fingers can be spread either into a “V” shape or an “L” shape, and the relative movement of the first and second extension elements 102,104 may be measured by the one or more sensors in the base element 106, with the lateral sensors 108,108′ preventing cervical distension as previously described. As a result, the physician will not be required to make a subjective observation as to the actual cervical dilation, as the actual width between the spread fingers can be accurately assessed by the cervical dilation measurement device 100 and provided to the physician through the control element 20. In addition, upon contacting the head of the baby with the finger-tip sensors, the descent indicator 112 may be referenced to determine the location of the baby.
While the method of measurement as described above may provide an accurate and precise measurement of cervical dilation, it is realized that different physicians may have variations in both finger length and thickness which may affect the accuracy of the measured dilation. Now referring to
As discussed above, the control element 20 may be coupled to the measurement device 100 similarly to that of the medical device 10 in order to provide a variety of information from the numerous sensors and other components of the measurement device 100 to a physician or operator during the above-mentioned procedures. Once again, the control element 20 may further provide for enhanced safety during use by including pre-determined circumstances and/or threshold values for safe operation, irrespective of whether the aim is to take measurements or to cause dilation. Now referring to
It will be appreciated by persons skilled in the art that the present invention is not limited to what has been particularly shown and described herein above. In addition, unless mention was made above to the contrary, it should be noted that all of the accompanying drawings are not to scale. A variety of modifications and variations are possible in light of the above teachings without departing from the scope and spirit of the invention, which is limited only by the following claims.
Claims
1. A cervimetry device for measuring cervical dilation, comprising:
- an expandable element;
- an inflation source in communication with the expandable element; and
- a control element for controlling the inflation source and indicating a cervical dilation measurement.
2. The cervimetry device according to claim 1, further comprising an array of movable elements disposed circumferentially about the expandable element.
3. The cervimetry device according to claim 2, further comprising at least one pressure sensor coupled to at least one of the movable elements, the pressure sensor being in communication with the control element.
4. The cervimetry device according to claim 1, further comprising an exhaust valve in fluid communication with the expandable element, wherein the exhaust valve is also in communication with the control element.
5. The cervimetry device according to claim 1, wherein the control element includes a display.
6. The cervimetry device according to claim 1, wherein the control element includes a control actuator for receiving input from a user.
7. The cervimetry device according to claim 1, wherein the control element includes an electronic storage medium.
8. The cervimetry device according to claim 1, further comprising an elongate body defining a proximal end and a distal end, wherein the expandable element is movably coupled to the distal end of the elongate body, and the control element is coupled to the proximal end of the elongate body.
9. The cervimetry device according to claim 8, further comprising a distal pad coupled to the distal end of the elongate body.
10. The cervimetry device according to claim 9, further comprising a distal pressure sensor coupled to the distal pad, wherein the distal pressure sensor is in communication with the control element.
11. The cervimetry device according to claim 8, further comprising a camera coupled to the distal end of the elongate body, wherein the camera is in communication with the control element.
12. The cervimetry device according to claim 8, further comprising a lighting element coupled to the distal end of the elongate body, wherein the lighting element is in communication with the control element.
13. A cervimetry device for measuring cervical dilation, comprising:
- an expandable element;
- an array of movable elements disposed about the expandable element;
- an inflation source in communication with the expandable element;
- at least one pressure sensor coupled to at least one of the array of movable elements; and
- a control element for controlling the inflation source and indicating a cervical dilation measurement, wherein the control element is in communication with the at least one pressure sensor.
14. A method for performing a cervical procedure, comprising the steps of:
- providing a cervimetry device including an expandable element, an inflation source in communication with the expandable element, and a control element for controlling the inflation source and indicating a cervical dilation measurement;
- positioning the cervimetry device proximate to a cervical tissue region;
- operating the inflation source to expand the expandable element and contact the cervical tissue region;
- measuring a contact pressure between at least a portion of the cervimetry device and the cervical tissue region; and
- terminating operation of the inflation source in response to the measured pressure level.
15. The method according to claim 14, wherein the cervimetry device further includes an exhaust vale in fluid communication with the expandable element, and further comprising the step of actuating the exhaust valve in response to the measured pressure level.
16. The method according to claim 14, wherein the cervimetry device further includes an array of movable elements disposed about the expandable element.
17. A method for performing a cervical procedure, comprising the steps of:
- providing a cervimetry device including an expandable element, an inflation source in communication with the expandable element, and a control element for controlling the inflation source and indicating a cervical dilation measurement;
- positioning the cervimetry device proximate to a cervical tissue region;
- operating the inflation source to expand the expandable element;
- measuring a dimension of the expandable element; and
- terminating operation of the inflation source in response to the measured dimension.
18. The method according to claim 17, wherein the cervimetry device further includes an exhaust vale in fluid communication with the expandable element, and further comprising the step of actuating the exhaust valve in response to the measured pressure level.
Type: Application
Filed: Oct 6, 2006
Publication Date: Jul 5, 2007
Applicant:
Inventors: Dharmesh Dubey (Jacksonville, FL), Tim Baird (Ponte Verda Beach, FL)
Application Number: 11/544,261
International Classification: A61B 5/103 (20060101); A61B 5/117 (20060101);