SYSTEM FOR LINING A WELLBORE CASING

A system for lining a wellbore casing.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
CROSS REFERENCE TO RELATED APPLICATIONS

The present application is a continuation-in-part of U.S utility patent application Ser. No. 10/488,664. attorney docket number 25791.67.06, filed on Mar. 4, 2004, which was the National Stage filing for PCT patent application Ser. No. PCT/US02/25727, attorney docket number 25791.67.03, filed on Aug. 14, 2002, which claimed the benefit of the filing dates of U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. No. 60/318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, the disclosures of which are incorporated herein by reference.

The present application is also a continuation-in-part of U.S. utility patent application Ser. No. 10/030,593, attorney docket number 25791.25.08, filed on Jan. 8, 2002, which was the National Stage filing for PCT patent application Ser. No. PCT/US00/18635, attorney docket no. 25791.25.02, filed on Jul. 9, 2000, which claimed the benefit of the filing dates of U.S. provisional patent application Ser. No. 60/146,203, attorney docket no. 25791.25, filed on Jul. 29, 1999, and U.S. provisional patent application Ser. No. 60/143,039, attorney docket no. 25791.26, filed on Jul. 9, 1999, the disclosures of which are incorporated herein by reference.

The present application is related to the following: (1) U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, which claims priority from provisional application No. 60/121,702, filed on Feb. 25, 1999, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, which claims priority from provisional application No. 60/119,611, filed on Feb. 11, 1999, (4) U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application No. 60/108,558, filed on Nov. 16, 1998, (5) U.S. patent application Ser. No. 10/169,434, attorney docket no. 25791.10.04, filed on Jul. 1, 2002, which claims priority from provisional application No. 60/183,546, filed on Feb. 18, 2000, (6) U.S. Pat. No. 6,640,903 which was filed as U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (7) U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (8) U.S. Pat. No. 6,575,240, which was filed as patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,907, filed on Feb. 26, 1999, (9) U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (10) U.S. patent application Ser. No. 09/981,916, attorney docket no. 25791.18, filed on Oct. 18, 2001 as a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application No. 60/108,558, filed on Nov. 16, 1998, (11) U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, which claims priority from provisional application No. 60/131,106, filed on Apr. 26, 1999, (12) U.S. patent application Ser. No. 10/030,593, attorney docket no. 25791.25.08, filed on Jan. 8, 2002, which claims priority from provisional application No. 60/146,203, filed on Jul. 29, 1999, (13) U.S. provisional patent application Ser. No. 60/143,039, attorney docket no. 25791.26, filed on Jul. 9, 1999, (14) U.S. patent application Ser. No. 10/111,982, attorney docket no. 25791.27.08, filed on Apr. 30, 2002, which claims priority from provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (15) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (16) U.S. provisional patent application Ser. No. 60/438,828, attorney docket no. 25791.31, filed on Jan. 9, 2003, (17) U.S. Pat. No. 6,564,875, which was filed as application Ser. No. 09/679,907, attorney docket no. 25791.34.02, on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (18) U.S. patent application Ser. No. 10/089,419, filed on Mar. 27, 2002, attorney docket no. 25791.36.03, which claims priority from provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (19) U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, attorney docket no. 25791.37.02, which claims priority from provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (20) U.S. patent application Ser. No. 10/303,992, filed on Nov. 22, 2002, attorney docket no. 25791.38.07, which claims priority from provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (21) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (22) U.S. provisional patent application Ser. No. 60/455,051, attorney docket no. 25791.40, filed on Mar. 14, 2003, (23) PCT application US02/2477, filed on Jun. 26, 2002, attorney docket no. 25791.44.02, which claims priority from U.S. provisional patent application Ser. No. 60/303,711, attorney docket no. 25791.44, filed on Jul. 6, 2001, (24) U.S. patent application Ser. No. 10/311,412, filed on Dec. 12, 2002, attorney docket no. 25791.45.07, which claims priority from provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (25) U.S. patent application Ser. No. 10/, filed on Dec. 18, 2002, attorney docket no. 25791.46.07, which claims priority from provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (26) U.S. patent application Ser. No. 10/322,947, filed on Jan. 22, 2003, attorney docket no. 25791.47.03, which claims priority from provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (27) U.S. patent application Ser. No. 10/406,648, filed on Mar. 31, 2003, attorney docket no. 25791.48.06, which claims priority from provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (28) PCT application US02/04353, filed on Feb. 14, 2002, attorney docket no. 25791.50.02, which claims priority from U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (29) U.S. patent application Ser. No. 10/465,835, filed on Jun. 13, 2003, attorney docket no. 25791.51.06, which claims priority from provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (30) U.S. patent application Ser. No. 10/465,831, filed on Jun. 13, 2003, attorney docket no. 25791.52.06, which claims priority from U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (31) U.S. provisional patent application Ser. No. 60/452,303, filed on Mar. 5, 2003, attorney docket no. 25791.53, (32) U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, attorney docket no. 25791.55, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (33) U.S. Pat. No. 6,561,227, which was filed as patent application Ser. No. 09/852,026, filed on May 9, 2001, attorney docket no. 25791.56, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (34) U.S. patent application Ser. No. 09/852,027, filed on May 9, 2001, attorney docket no. 25791.57, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. Patent Application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (35) PCT Application US02/25608, attorney docket no. 25791.58.02, filed on Aug. 13, 2002, which claims priority from provisional application No. 60/318,021, filed on Sep. 7, 2001, attorney docket no. 25791.58, (36) PCT Application US02/24399, attorney docket no. 25791.59.02, filed on Aug. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (37) PCT Application US02/29856, attorney docket no. 25791.60.02, filed on Sep. 19, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/326,886, attorney docket no. 25791.60, filed on Oct. 3, 2001, (38) PCT Application US02/20256, attorney docket no. 25791.61.02, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (39) U.S. patent application Ser. No. 09/962,469, filed on Sep. 25, 2001, attorney docket no. 25791.62, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (40) U.S. patent application Ser. No. 09/962,470, filed on Sep. 25, 2001, attorney docket no. 25791.63, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (41) U.S. patent application Ser. No. 09/962,471, filed on Sep. 25, 2001, attorney docket no. 25791.64, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (42) U.S. patent application Ser. No. 09/962,467, filed on Sep. 25, 2001, attorney docket no. 25791.65, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Patent No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (43) U.S. patent application Ser. No. 09/962,468, filed on Sep. 25, 2001, attorney docket no. 25791.66, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Patent No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (44) PCT application US 02/25727, filed on Aug. 14, 2002, attorney docket no. 25791.67.03, which claims priority from U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. No. 60/318,386, attorney docket No. 25791.67.02, filed on Sep. 10, 2001, (45) PCT application US 02/39425, filed on Dec. 10, 2002, attorney docket no. 25791.68.02, which claims priority from U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001, (46) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (now U.S. Patent No. 6,634,431 which issued 10/21/2003), which is a continuation-in-part application of U.S. patent No. 6,328,113, which was filed as U.S. Patent Application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application No. 60/108,558, filed on Nov. 16, 1998, (47) U.S. utility patent application Ser. No. 10/516,467, attorney docket no. 25791.70, filed on Dec. 10, 2001, which is a continuation application of U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (now U.S. Patent No. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application No. 60/108,558, filed on Nov. 16, 1998, (48) PCT application US 03/00609, filed on Jan. 9, 2003, attorney docket no. 25791.71.02, which claims priority from U.S. provisional patent application Ser. No. 60/357,372, attorney docket no. 25791.71, filed on Feb. 15, 2002, (49) U.S. patent application Ser. No. 10/074,703, attorney docket no. 25791.74, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (50) U.S. patent application Ser. No. 10/074,244, attorney docket no. 25791.75, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (51) U.S. patent application Ser. No. 10/076,660, attorney docket no. 25791.76, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (52) U.S. patent application Ser. No. 10/076,661, attorney docket no. 25791.77, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (53) U.S. patent application Ser. No. 10/076,659, attorney docket no. 25791.78, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (54) U.S. patent application Ser. No. 10/078,928, attorney docket no. 25791.79, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (55) U.S. patent application Ser. No. 10/078,922, attorney docket no. 25791.80, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (56) U.S. patent application Ser. No. 10/078,921, attorney docket no. 25791.81, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (57) U.S. patent application Ser. No. 10/261,928, attorney docket no. 25791.82, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (58) U.S. patent application Ser. No. 10/079,276 , attorney docket no. 25791.83, filed on Feb. 20, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (59) U.S. patent application Ser. No. 10/262,009, attorney docket no. 25791.84, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (60) U.S. patent application Ser. No. 10/092,481, attorney docket no. 25791.85, filed on Mar. 7, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (61) U.S. patent application Ser. No. 10/261,926, attorney docket no. 25791.86, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (62) PCT application US 02/36157, filed on Nov. 12, 2002, attorney docket no. 25791.87.02, which claims priority from U.S. provisional patent application Ser. No. 60/338,996, attorney docket no. 25791.87, filed on Nov. 12, 2001, (63) PCT application US 02/36267, filed on Nov. 12, 2002, attorney docket no. 25791.88.02, which claims priority from U.S. provisional patent application Ser. No. 60/339,013, attorney docket no. 25791.88, filed on Nov. 12, 2001, (64) PCT application US 03/11765, filed on Apr. 16, 2003, attorney docket no. 25791.89.02, which claims priority from U.S. provisional patent application Ser. No. 60/383,917, attorney docket no. 25791.89, filed on May 29, 2002, (65) PCT application US 03/15020, filed on May 12, 2003, attorney docket no. 25791.90.02, which claims priority from U.S. provisional patent application Ser. No. 60/391,703, attorney docket no. 25791.90, filed on Jun. 26, 2002, (66) PCT application US 02/39418, filed on Dec. 10, 2002, attorney docket no. 25791.92.02, which claims priority from U.S. provisional patent application Ser. No. 60/346,309, attorney docket no. 25791.92, filed on Jan. 7, 2002, (67) PCT application US 03/06544, filed on Mar. 4, 2003, attorney docket no. 25791.93.02, which claims priority from U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002, (68) U.S. patent application Ser. No. 10/331,718, attorney docket no. 25791.94, filed on Dec. 30, 2002, which is a divisional U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, attorney docket no. 25791.37.02, which claims priority from provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (69) PCT application US 03/04837, filed on Feb. 29, 2003, attorney docket no. 25791.95.02, which claims priority from U.S. provisional patent application Ser. No. 60/363,829, attorney docket no. 25791.95, filed on Mar. 13, 2002, (70) U.S. patent application Ser. No. 10/261,927, attorney docket no. 25791.97, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (71) U.S. patent application Ser. No. 10/262,008, attorney docket no. 25791.98, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (72) U.S. patent application Ser. No. 10/261,925, attorney docket no. 25791.99, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (73) U.S. patent application Ser. No. 10/199,524, attorney docket no. 25791.100, filed on Jul. 19, 2002, which is a continuation of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (74) PCT application US 03/10144, filed on Mar. 28, 2003, attorney docket no. 25791.101.02, which claims priority from U.S. provisional patent application Ser. No. 60/372,632, attorney docket no. 25791.101, filed on Apr. 15, 2002, (75) U.S. provisional patent application Ser. No. 60/412,542, attorney docket no. 25791.102, filed on Sep. 20, 2002, (76) PCT application US 03/14153, filed on May 6, 2003, attorney docket no. 25791.104.02, which claims priority from U.S. provisional patent application Ser. No. 60/380,147, attorney docket no. 25791.104, filed on May 6, 2002, (77) PCT application US 03/19993, filed on Jun. 24, 2003, attorney docket no. 25791.106.02, which claims priority from U.S. provisional patent application Ser. No. 60/397,284, attorney docket no. 25791.106, filed on Jul. 19, 2002, (78) PCT application US 03/13787, filed on May 5, 2003, attorney docket no. 25791.107.02, which claims priority from U.S. provisional patent application Ser. No. 60/387,486, attorney docket no. 25791.107, filed on Jun. 10, 2002, (79) PCT application US 03/18530, filed on Jun. 11, 2003, attorney docket no. 25791.108.02, which claims priority from U.S. provisional patent application Ser. No. 60/387,961, attorney docket no. 25791.108, filed on Jun. 12, 2002, (80) PCT application US 03/20694, filed on Jul. 1, 2003, attorney docket no. 25791.110.02, which claims priority from U.S. provisional patent application Ser. No. 60/398,061, attorney docket no. 25791.110, filed on Jul. 24, 2002, (81) PCT application US 03/20870, filed on Jul. 2, 2003, attorney docket no. 25791.111.02, which claims priority from U.S. provisional patent application Ser. No. 60/399,240, attorney docket no. 25791.111, filed on Jul. 29, 2002, (82) U.S. provisional patent application Ser. No. 60/412,487, attorney docket no. 25791.112, filed on Sep. 20, 2002, (83) U.S. provisional patent application Ser. No. 60/412,488, attorney docket no. 25791.114, filed on Sep. 20, 2002, (84) U.S. patent application Ser. No. 10/280,356, attorney docket no. 25791.115, filed on Oct. 25, 2002, which is a continuation of U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, attorney docket no. 25791.55, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (85) U.S. provisional patent application Ser. No. 60/412,177, attorney docket no. 25791.117, filed on Sep. 20, 2002, (86) U.S. provisional patent application Ser. No. 60/412,653, attorney docket no. 25791.118, filed on Sep. 20, 2002, (87) U.S. provisional patent application Ser. No. 60/405,610, attorney docket no. 25791.119, filed on Aug. 23, 2002, (88) U.S. provisional patent application Ser. No. 60/405,394, attorney docket no. 25791.120, filed on Aug. 23, 2002, (89) U.S. provisional patent application Ser. No. 60/412,544, attorney docket no. 25791.121, filed on Sep. 20, 2002, (90) PCT application PCT/US03/24779, filed on Aug. 8, 2003, attorney docket no. 25791.125.02, which claims priority from U.S. provisional patent application Ser. No. 60/407,442, attorney docket no. 25791.125, filed on Aug. 30, 2002, (91) U.S. provisional patent application Ser. No. 60/423,363, attorney docket no. 25791.126, filed on Dec. 10, 2002, (92) U.S. provisional patent application Ser. No. 60/412,196, attorney docket no. 25791.127, filed on Sep. 20, 2002, (93) U.S. provisional patent application Ser. No. 60/412,187, attorney docket no. 25791.128, filed on Sep. 20, 2002, (94) U.S. provisional patent application Ser. No. 60/412,371, attorney docket no. 25791.129, filed on Sep. 20, 2002, (95) U.S. patent application Ser. No. 10/382,325, attorney docket no. 25791.145, filed on Mar. 5, 2003, which is a continuation of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (96) U.S. patent application Ser. No. 10/624,842, attorney docket no. 25791.151, filed on Jul. 22, 2003, which is a divisional of U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, which claims priority from provisional application No. 60/119,611, filed on Feb. 11, 1999, (97) U.S. provisional patent application Ser. No. 60/431,184, attorney docket no. 25791.157, filed on Dec. 5, 2002, (98) U.S. provisional patent application Ser. No. 60/448,526, attorney docket no. 25791.185, filed on Feb. 18, 2003, (99) U.S. provisional patent application Ser. No. 60/461,539, attorney docket no. 25791.186, filed on Apr. 9, 2003, (100) U.S. provisional patent application Ser. No. 60/462,750, attorney docket no. 25791.193, filed on Apr. 14, 2003, (101) U.S. provisional patent application Ser. No. 60/436,106, attorney docket no. 25791.200, filed on Dec. 23, 2002, (102) U.S. provisional patent application Ser. No. 60/442,942, attorney docket no. 25791.213, filed on Jan. 27, 2003, (103) U.S. provisional patent application Ser. No. 60/442,938, attorney docket no. 25791.225, filed on Jan. 27, 2003, (104) U.S. provisional patent application Ser. No. 60/418,687, attorney docket no. 25791.228, filed on Apr. 18, 2003, (105) U.S. provisional patent application Ser. No. 60/454,896, attorney docket no. 25791.236, filed on Mar. 14, 2003, (106) U.S. provisional patent application Ser. No. 60/450,504, attorney docket no. 25791.238, filed on Feb. 26, 2003, (107) U.S. provisional patent application Ser. No. 60/451,152, attorney docket no. 25791.239, filed on Mar. 9, 2003, (108) U.S. provisional patent application Ser. No. 60/455,124, attorney docket no. 25791.241, filed on Mar. 17, 2003, (109) U.S. provisional patent application Ser. No. 60/453,678, attorney docket no. 25791.253, filed on Mar. 11, 2003, (110) U.S. patent application Ser. No. 10/421,682, attorney docket no. 25791.256, filed on Apr. 23, 2003, which is a continuation of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (111) U.S. provisional patent application Ser. No. 60/457,965, attorney docket no. 25791.260, filed on Mar. 27, 2003, (112) U.S. provisional patent application Ser. No. 60/455,718, attorney docket no. 25791.262, filed on Mar. 18, 2003, (113) U.S. Pat. No. 6,550,821, which was filed as patent application Ser. No. 09/811,734, filed on Mar. 19, 2001, (114) U.S. patent application Ser. No. 10/436,467, attorney docket no. 25791.268, filed on May 12, 2003, which is a continuation of U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, which claims priority from provisional application No. 60/131,106, filed on Apr. 26, 1999, (115) U.S. provisional patent application Ser. No. 60/459,776, attorney docket no. 25791.270, filed on Apr. 2, 2003, (116) U.S. provisional patent application Ser. No. 60/461,094, attorney docket no. 25791.272, filed on Apr. 8, 2003, (117) U.S. provisional patent application Ser. No. 60/461,038, attorney docket no. 25791.273, filed on Apr. 7, 2003, (118) U.S. provisional patent application Ser. No. 60/463,586, attorney docket no. 25791.277, filed on Apr. 17, 2003, (119) U.S. provisional patent application Ser. No. 60/472,240, attorney docket no. 25791.286, filed on May 20, 2003, (120) U.S. patent application Ser. No. 10/619,285, attorney docket no. 25791.292, filed on Jul. 14, 2003, which is a continuation-in-part of U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (now U.S. Patent No. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application No. 60/108,558, filed on Nov. 16, 1998, (121) U.S. utility patent application Ser. No. 10/418,688, attorney docket no. 25791.257, which was filed on Apr. 18, 2003, as a division of U.S. utility patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, and (122) U.S. utility patent application Ser. No. 10/784,679, attorney docket no. 25791.318, filed on Feb. 23, 2004, which was a continuation-in-part of U.S. utility patent application Ser. No. 10/089419, attorney docket no. 25791.36.03, filed on Sep. 19, 2002, which issued as U.S. Pat. No. 6,695,012, the disclosures of which are incorporated herein by reference.

This application is related to the following co-pending applications: (1) U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (2) U.S. patent application Ser. No. 09/510,913, attorney docket no. 25791.7.02, filed on Feb. 23, 2000, which claims priority from provisional application No. 60/121,702, filed on Feb. 25, 1999, (3) U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, now U.S. Patent 6,823,937 which issued Nov. 30, 2004, which claims priority from provisional application No. 60/119,611, filed on Feb. 11, 1999, (4) U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application No. 60/108,558, filed on Nov. 16, 1998, (5) U.S. patent application Ser. No.10/169,434, attorney docket no. 25791.10.04, filed on Jul. 1, 2002, which claims priority from provisional application No. 60/183,546, filed on Feb. 18, 2000, (6) U.S. Pat. No. 6,640,903 which was filed as U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (7) U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (8) U.S. Pat. No. 6,575,240, which was filed as patent application Ser. No. 09/511,941, attorney docket no. 25791.16.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,907, filed on Feb. 26, 1999, (9) U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (10) U.S. patent application Ser. No. 09/981,916, attorney docket no. 25791.18, filed on Oct. 18, 2001 as a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application No. 60/108,558, filed on Nov. 16, 1998, (11) U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, which claims priority from provisional application No. 60/131,106, filed on Apr. 26, 1999, (12) U.S. patent application Ser. No. 10/030,593, attorney docket no. 25791.25.08, filed on Jan. 8, 2002, which claims priority from provisional application No. 60/146,203, filed on Jul. 29, 1999, (13) U.S. provisional patent application Ser. No. 60/143,039, attorney docket no. 25791.26, filed on Jul. 9, 1999, (14) U.S. patent application Ser. No. 10/111,982, attorney docket no. 25791.27.08, filed on Apr. 30, 2002, which claims priority from provisional patent application Ser. No. 60/162,671, attorney docket no. 25791.27, filed on Nov. 1, 1999, (15) U.S. provisional patent application Ser. No. 60/154,047, attorney docket no. 25791.29, filed on Sep. 16, 1999, (16) U.S. provisional patent application Ser. No. 60/438,828, attorney docket no. 25791.31, filed on Jan. 9, 2003, (17) U.S. Pat. No. 6,564,875, which was filed as application Ser. No. 09/679,907, attorney docket no. 25791.34.02, on Oct. 5, 2000, which claims priority from provisional patent application Ser. No. 60/159,082, attorney docket no. 25791.34, filed on Oct. 12, 1999, (18) U.S. patent application Ser. No. 10/089,419, filed on Mar. 27, 2002, now U.S. Pat. No. 6,695,012 which issued Feb. 24, 2004, attorney docket no. 25791.36.03, which claims priority from provisional patent application Ser. No. 60/159,039, attorney docket no. 25791.36, filed on Oct. 12, 1999, (19) U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, attorney docket no. 25791.37.02, which claims priority from provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (20) U.S. patent application Ser. No. 10/303,992, filed on Nov. 22, 2002, attorney docket no. 25791.38.07, which claims priority from provisional patent application Ser. No. 60/212,359, attorney docket no. 25791.38, filed on Jun. 19, 2000, (21) U.S. provisional patent application Ser. No. 60/165,228, attorney docket no. 25791.39, filed on Nov. 12, 1999, (22) U.S. provisional patent application Ser. No. 60/455,051, attorney docket no. 25791.40, filed on Mar. 14, 2003, (23) PCT application US02/2477, filed on Jun. 26, 2002, attorney docket no. 25791.44.02, which claims priority from U.S. provisional patent application Ser. No. 60/303,711, attorney docket no. 25791.44, filed on Jul. 6, 2001, (24) U.S. patent application Ser. No. 10/311,412, filed on Dec. 12, 2002, attorney docket no. 25791.45.07, which claims priority from provisional patent application Ser. No. 60/221,443, attorney docket no. 25791.45, filed on Jul. 28, 2000, (25) U.S. patent application Ser. No. 10/322947, filed on Dec. 18, 2002, attorney docket no. 25791.46.07, which claims priority from provisional patent application Ser. No. 60/221,645, attorney docket no. 25791.46, filed on Jul. 28, 2000, (26) U.S. patent application Ser. No. 10/322,947, filed on Jan. 22, 2003, now U.S. Pat. No. 6,976,541 which issued Dec. 20, 2005, attorney docket No. 25791.47.07, which claims priority from provisional patent application Ser. No. 60/233,638, attorney docket no. 25791.47, filed on Sep. 18, 2000, (27) U.S. patent application Ser. No. 10/406,648, filed on Mar. 31, 2003, attorney docket no. 25791.48.06, which claims priority from provisional patent application Ser. No. 60/237,334, attorney docket no. 25791.48, filed on Oct. 2, 2000, (28) PCT application US02/04353, filed on Feb. 14, 2002, attorney docket no. 25791.50.02, which claims priority from U.S. provisional patent application Ser. No. 60/270,007, attorney docket no. 25791.50, filed on Feb. 20, 2001, (29) U.S. patent application Ser. No. 10/465,835, filed on Jun. 13, 2003, attorney docket no. 25791.51.06, which claims priority from provisional patent application Ser. No. 60/262,434, attorney docket no. 25791.51, filed on Jan. 17, 2001, (30) U.S. patent application Ser. No. 10/465,831, filed on Jun. 13, 2003, attorney docket no. 25791.52.06, which claims priority from U.S. provisional patent application Ser. No. 60/259,486, attorney docket no. 25791.52, filed on Jan. 3, 2001, (31) U.S. provisional patent application Ser. No. 60/452,303, filed on Mar. 5, 2003, attorney docket no. 25791.53, (32) U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, attorney docket no. 25791.55, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. Patent Application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (33) U.S. Pat. No. 6,561,227, which was filed as patent application Ser. No. 09/852,026, filed on May 9, 2001, attorney docket no. 25791.56, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. Patent Application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (34) U.S. patent application Ser. No. 09/852,027, filed on May 9, 2001, attorney docket no. 25791.57, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (35) PCT Application US02/25608, attorney docket no. 25791.58.02, filed on Aug. 13, 2002, which claims priority from provisional application No. 60/318,021, filed on Sep. 7, 2001, attorney docket no. 25791.58, (36) PCT Application US02/24399, attorney docket no. 25791.59.02, filed on Aug. 1, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/313,453, attorney docket no. 25791.59, filed on Aug. 20, 2001, (37) PCT Application US02/29856, attorney docket no. 25791.60.02, filed on Sep. 19, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/326,886, attorney docket no. 25791.60, filed on Oct. 3, 2001, (38) PCT Application US02/20256, attorney docket no. 25791.61.02, filed on Jun. 26, 2002, which claims priority from U.S. provisional patent application Ser. No. 60/303,740, attorney docket no. 25791.61, filed on Jul. 6, 2001, (39) U.S. patent application Ser. No. 09/962,469, filed on Sep. 25, 2001, now U.S. Pat. No. 6,892,819 which issued May 17, 2005, attorney docket no. 25791.62, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (40) U.S. patent application Ser. No. 09/962,470, filed on Sep. 25, 2001, attorney docket no. 25791.63, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (41) U.S. patent application Ser. No. 09/962,471, filed on Sep. 25, 2001, now U.S. Pat. No. 6,739,392 which issued May 25, 2004, attorney docket no. 25791.64, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (42) U.S. patent application Ser. No. 09/962,467, filed on Sep. 25, 2001, now U.S. Pat. No. 6,725,919 which issued Apr. 27, 2004, attorney docket no. 25791.65, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (43) U.S. patent application Ser. No. 09/962,468, filed on Sep. 25, 2001, now U.S. Pat. No. 6,758,278 which issued Jul. 6, 2004, attorney docket no. 25791.66, which is a divisional of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (44) PCT application US 02/25727, filed on Aug. 14, 2002, attorney docket no. 25791.67.03, which claims priority from U.S. provisional patent application Ser. No. 60/317,985, attorney docket no. 25791.67, filed on Sep. 6, 2001, and U.S. provisional patent application Ser. No. 60/318,386, attorney docket no. 25791.67.02, filed on Sep. 10, 2001, (45) PCT application US 02/39425, filed on Dec. 10, 2002, attorney docket no. 25791.68.02, which claims priority from U.S. provisional patent application Ser. No. 60/343,674, attorney docket no. 25791.68, filed on Dec. 27, 2001, (46) U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (now U.S. Pat. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application No. 60/108,558, filed on Nov. 16, 1998, (47) U.S. utility patent application Ser. No. 10/516,467, now U.S. Pat. No. 6745845 which issued Jun. 8, 2004, attorney docket no. 25791.70, filed on Dec. 10, 2001, which is a continuation application of U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (now U.S. Pat. No. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application No. 60/108,558, filed on Nov. 16, 1998, (48) PCT application US 03/00609, filed on Jan. 9, 2003, attorney docket no. 25791.71.02, which claims priority from U.S. provisional patent application Ser. No. 60/357,372, attorney docket no. 25791.71, filed on Feb. 15, 2002, (49) U.S. patent application Ser. No. 10/074,703, now U.S. Pat. No. 6,705,395 which issued Mar. 16, 2004, attorney docket no. 25791.74, filed on Feb. 12, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (50) U.S. patent application Ser. No. 10/074,244, attorney docket no. 25791.75, filed on Feb. 12, 2002, now U.S. Pat. No. 6,631,759 which issued Oct. 14, 2003, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (51) U.S. patent application Ser. No. 10/076,660, attorney docket no. 25791.76, filed on Feb. 15, 2002, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (52) U.S. patent application Ser. No. 10/076,661, attorney docket no. 25791.77, filed on Feb. 15, 2002, now U.S. Pat. No. 6,631,769 which issued Oct. 14, 2003, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (53) U.S. patent application Ser. No. 10/076,659, attorney docket no. 25791.78, filed on Feb. 15, 2002, now U.S. Pat. No. 7,063,142 which issued Jun. 20, 2006, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (54) U.S. patent application Ser. No. 10/078,928, attorney docket no. 25791.79, filed on Feb. 20, 2002, now U.S. Pat. No. 6,684,947 which issued Feb. 3, 2004, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (55) U.S. patent application Ser. No. 10/078,922, attorney docket no. 25791.80, filed on Feb. 20, 2002, now U.S. Pat. No. 6,966,370 which issued Nov. 22, 2005, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application 60/121,841, filed on Feb. 26, 1999, (56) U.S. patent application Ser. No. 10/078,921, attorney docket no. 25791.81, filed on Feb. 20, 2002, now U.S. Pat. No. 7,044,221 which issued May 16, 2006, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (57) U.S. patent application Ser. No. 10/261,928, attorney docket no. 25791.82, filed on Oct. 1, 2002, now U.S. Pat. No. 7,011,161 which issued Mar. 14, 2006, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (58) U.S. patent application Ser. No. 10/079,276, attorney docket no. 25791.83, filed on Feb. 20, 2002, now U.S. Pat. No. 7,040,396 which issued May 9, 2006, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (59) U.S. patent application Ser. No. 10/262,009, attorney docket no. 25791.84, filed on Oct. 1, 2002, now U.S. Pat. No. 7,048,062 which issued May 23, 2006, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (60) U.S. patent application Ser. No. 10/092,481, attorney docket no. 25791.85, filed on Mar. 7, 2002, now U.S. Pat. No. 6,857,473 which issued Feb. 22, 2005, which is a divisional of U.S. Pat. No. 6,568,471, which was filed as patent application Ser. No. 09/512,895, attorney docket no. 25791.12.02, filed on Feb. 24, 2000, which claims priority from provisional application No. 60/121,841, filed on Feb. 26, 1999, (61) U.S. patent application Ser. No. 10/261,926, attorney docket no. 25791.86, filed on Oct. 1, 2002, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (62) PCT application US 02/36157, filed on Nov. 12, 2002, attorney docket no. 25791.87.02, which claims priority from U.S. provisional patent application Ser. No. 60/338,996, attorney docket no. 25791.87, filed on Nov. 12, 2001, (63) PCT application US 02/36267, filed on Nov. 12, 2002, attorney docket no. 25791.88.02, which claims priority from U.S. provisional patent application Ser. No. 60/339,013, attorney docket no. 25791.88, filed on Nov. 12, 2001, (64) PCT application US 03/11765, filed on Apr. 16, 2003, attorney docket no. 25791.89.02, which claims priority from U.S. provisional patent application Ser. No. 60/383,917, attorney docket no. 25791.89, filed on May 29, 2002, (65) PCT application US 03/15020, filed on May 12, 2003, attorney docket no. 25791.90.02, which claims priority from U.S. provisional patent application Ser. No. 60/391,703, attorney docket no. 25791.90, filed on Jun. 26, 2002, (66) PCT application US 02/39418, filed on Dec. 10, 2002, attorney docket no. 25791.92.02, which claims priority from U.S. provisional patent application Ser. No. 60/346,309, attorney docket no. 25791.92, filed on Jan. 7, 2002, (67) PCT application US 03/06544, filed on Mar. 4, 2003, attorney docket No. 25791.93.02, which claims priority from U.S. provisional patent application Ser. No. 60/372,048, attorney docket no. 25791.93, filed on Apr. 12, 2002, (68) U.S. patent application Ser. No. 10/331,718, attorney docket no. 25791.94, filed on Dec. 30, 2002, which is a divisional U.S. patent application Ser. No. 09/679,906, filed on Oct. 5, 2000, attorney docket no. 25791.37.02, which claims priority from provisional patent application Ser. No. 60/159,033, attorney docket no. 25791.37, filed on Oct. 12, 1999, (69) PCT application US 03/04837, filed on Feb. 29, 2003, attorney docket no. 25791.95.02, which claims priority from U.S. provisional patent application Ser. No. 60/363,829, attorney docket no. 25791.95, filed on Mar. 13, 2002, (70) U.S. patent application Ser. No. 10/261,927, attorney docket no. 25791.97, filed on Oct. 1, 2002, now U.S. Pat. No. 7,077,213 which issued Jul. 18, 2006, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (71) U.S. patent application Ser. No. 10/262,008, attorney docket no. 25791.98, filed on Oct. 1, 2002, now U.S. Pat. No. 7,036,582 which issued 5/2/2006, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (72) U.S. patent application Ser. No. 10/261,925, attorney docket no. 25791.99, filed on Oct. 1, 2002, now U.S. Pat. No. 7,044,218 which issued May 16, 2006, which is a divisional of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (73) U.S. patent application Ser. No. 10/199,524, attorney docket no. 25791.100, filed on Jul. 19, 2002, which is a continuation of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (74) PCT application US 03/10144, filed on Mar. 28, 2003, attorney docket no. 25791.101.02, which claims priority from U.S. provisional patent application Ser. No. 60/372,632, attorney docket no. 25791.101, filed on Apr. 15, 2002, (75) U.S. provisional patent application Ser. No. 60/412,542, attorney docket no. 25791.102, filed on Sep. 20, 2002, (76) PCT application US 03/14153, filed on May 6, 2003, attorney docket no. 25791.104.02, which claims priority from U.S. provisional patent application Ser. No. 60/380,147, attorney docket no. 25791.104, filed on May 6, 2002, (77) PCT application US 03/19993, filed on Jun. 24, 2003, attorney docket no. 25791.106.02, which claims priority from U.S. provisional patent application Ser. No. 60/397,284, attorney docket no. 25791.106, filed on Jul. 19, 2002, (78) PCT application US 03/13787, filed on May 5, 2003, attorney docket no. 25791.107.02, which claims priority from U.S. provisional patent application Ser. No. 60/387,486, attorney docket no. 25791.107, filed on Jun. 10, 2002, (79) PCT application US 03/18530, filed on Jun. 11, 2003, attorney docket no. 25791.108.02, which claims priority from U.S. provisional patent application Ser. No. 60/387,961, attorney docket no. 25791.108, filed on Jun. 12, 2002, (80) PCT application US 03/20694, filed on Jul. 1, 2003, attorney docket no. 25791.110.02, which claims priority from U.S. provisional patent application Ser. No. 60/398,061, attorney docket no. 25791.110, filed on Jul. 24, 2002, (81) PCT application US 03/20870, filed on Jul. 2, 2003, attorney docket no. 25791.111.02, which claims priority from U.S. provisional patent application Ser. No. 60/399,240, attorney docket no. 25791.111, filed on Jul. 29, 2002, (82) U.S. provisional patent application Ser. No. 60/412,487, attorney docket no. 25791.112, filed on Sep. 20, 2002, (83) U.S. provisional patent application Ser. No. 60/412,488, attorney docket no. 25791.114, filed on Sep. 20, 2002, (84) U.S. patent application Ser. No. 10/280,356, attorney docket no. 25791.115, filed on Oct. 25, 2002, which is a continuation of U.S. Pat. No. 6,470,966, which was filed as patent application Ser. No. 09/850,093, filed on May 7, 2001, attorney docket no. 25791.55, as a divisional application of U.S. Pat. No. 6,497,289, which was filed as U.S. patent application Ser. No. 09/454,139, attorney docket no. 25791.03.02, filed on Dec. 3, 1999, which claims priority from provisional application No. 60/111,293, filed on Dec. 7, 1998, (85) U.S. provisional patent application Ser. No. 60/412,177, attorney docket no. 25791.117, filed on Sep. 20, 2002, (86) U.S. provisional patent application Ser. No. 60/412,653, attorney docket no. 25791.118, filed on Sep. 20, 2002, (87) U.S. provisional patent application Ser. No. 60/405,610, attorney docket no. 25791.119, filed on Aug. 23, 2002, (88) U.S. provisional patent application Ser. No. 60/405,394, attorney docket no. 25791.120, filed on Aug. 23, 2002, (89) U.S. provisional patent application Ser. No. 60/412,544, attorney docket no. 25791.121, filed on Sep. 20, 2002, (90) PCT application US 03/24779, filed on Aug. 8, 2003, attorney docket no. 25791.125.02, which claims priority from U.S. provisional patent application Ser. No. 60/407,442, attorney docket no. 25791.125, filed on Aug. 30, 2002, (91) U.S. provisional patent application Ser. No. 60/423,363, attorney docket no. 25791.126, filed on Dec. 10, 2002, (92) U.S. provisional patent application Ser. No. 60/412,196, attorney docket no. 25791.127, filed on Sep. 20, 2002, (93) U.S. provisional patent application Ser. No. 60/412,187, attorney docket no. 25791.128, filed on Sep. 20, 2002, (94) U.S. provisional patent application Ser. No. 60/412,371, attorney docket no. 25791.129, filed on Sep. 20, 2002, (95) U.S. patent application Ser. No. 10/382,325, attorney docket no. 25791.145, filed on Mar. 5, 2003, which is a continuation of U.S. Pat. No. 6,557,640, which was filed as patent application Ser. No. 09/588,946, attorney docket no. 25791.17.02, filed on Jun. 7, 2000, which claims priority from provisional application No. 60/137,998, filed on Jun. 7, 1999, (96) U.S. patent application Ser. No. 10/624,842, attorney docket no. 25791.151, filed on Jul. 22, 2003, which is a divisional of U.S. patent application Ser. No. 09/502,350, attorney docket no. 25791.8.02, filed on Feb. 10, 2000, now U.S. Pat. No. 6,823,937 which issued 11/30/2004, which claims priority from provisional application No. 60/119,611, filed on Feb. 11, 1999, (97) U.S. provisional patent application Ser. No. 60/431,184, attorney docket no. 25791.157, filed on Dec. 5, 2002, (98) U.S. provisional patent application Ser. No. 60/448,526, attorney docket no. 25791.185, filed on Feb. 18, 2003, (99) U.S. provisional patent application Ser. No. 60/461,539, attorney docket no. 25791.186, filed on Apr. 9, 2003, (100) U.S. provisional patent application Ser. No. 60/462,750, attorney docket no. 25791.193, filed on Apr. 14, 2003, (101) U.S. provisional patent application Ser. No. 60/436,106, attorney docket no. 25791.200, filed on Dec. 23, 2002, (102) U.S. provisional patent application Ser. No. 60/442,942, attorney docket no. 25791.213, filed on Jan. 27, 2003, (103) U.S. provisional patent application Ser. No. 60/442,938, attorney docket no. 25791.225, filed on Jan. 27, 2003, (104) U.S. patent application Ser. No. 10/418,687, attorney docket no. 25791.228, filed on Apr. 18, 2003, now U.S. Pat. No. 7,021,390 which issued Apr. 4, 2006, (105) U.S. provisional patent application Ser. No. 60/454,896, attorney docket no. 25791.236, filed on Mar. 14, 2003, (106) U.S. provisional patent application Ser. No. 60/450,504, attorney docket no. 25791.238, filed on Feb. 26, 2003, (107) U.S. provisional patent application Ser. No. 60/451,152, attorney docket no. 25791.239, filed on Mar. 9, 2003, (108) U.S. provisional patent application Ser. No. 60/455,124, attorney docket no. 25791.241, filed on Mar. 17, 2003, (109) U.S. provisional patent application Ser. No. 60/453,678, attorney docket no. 25791.253, filed on Mar. 11, 2003, (110) U.S. patent application Ser. No. 10/421,682, attorney docket no. 25791.256, filed on Apr. 23, 2003, which is a continuation of U.S. patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999, (111) U.S. provisional patent application Ser. No. 60/457,965, attorney docket no. 25791.260, filed on Mar. 27, 2003, (112) U.S. provisional patent application Ser. No. 60/455,718, attorney docket no. 25791.262, filed on Mar. 18, 2003, (113) U.S. Pat. No. 6,550,821, which was filed as patent application Ser. No. 09/811,734, filed on Mar. 19, 2001, (114) U.S. patent application Ser. No. 10/436,467, attorney docket no. 25791.268, filed on May 12, 2003, now U.S. Pat. No. 6,968,618 which issued Nov. 29, 2005, which is a continuation of U.S. Pat. No. 6,604,763, which was filed as application Ser. No. 09/559,122, attorney docket no. 25791.23.02, filed on Apr. 26, 2000, which claims priority from provisional application No. 60/131,106, filed on Apr. 26, 1999, (115) U.S. provisional patent application Ser. No. 60/459,776, attorney docket no. 25791.270, filed on Apr. 2, 2003, (116) U.S. provisional patent application Ser. No. 60/461,094, attorney docket no. 25791.272, filed on Apr. 8, 2003, (117) U.S. provisional patent application Ser. No. 60/461,038, attorney docket no. 25791.273, filed on Apr. 7, 2003, (118) U.S. provisional patent application Ser. No. 60/463,586, attorney docket no. 25791.277, filed on Apr. 17, 2003, (119) U.S. provisional patent application Ser. No. 60/472,240, attorney docket no. 25791.286, filed on May 20, 2003, (120) U.S. patent application Ser. No.10/619,285, attorney docket no. 25791.292, filed on Jul. 14, 2003, which is a continuation-in-part of U.S. utility patent application Ser. No. 09/969,922, attorney docket no. 25791.69, filed on Oct. 3, 2001, (now U.S. Pat. No. 6,634,431 which issued Oct. 21, 2003), which is a continuation-in-part application of U.S. Pat. No. 6,328,113, which was filed as U.S. patent application Ser. No. 09/440,338, attorney docket number 25791.9.02, filed on Nov. 15, 1999, which claims priority from provisional application No. 60/108,558, filed on Nov. 16, 1998, (121) U.S. utility patent application Ser. No.10/418,688, attorney docket no. 25791.257, now U.S. Pat. No. 7,055,608 which issued Jun. 6, 2006, which was filed on Apr. 18, 2003, as a division of U.S. utility patent application Ser. No. 09/523,468, attorney docket no. 25791.11.02, filed on Mar. 10, 2000, (now U.S. Pat. No. 6,640,903 which issued Nov. 4, 2003), which claims priority from provisional application No. 60/124,042, filed on Mar. 11, 1999; (122) PCT patent application Ser. No. PCT/US2004/06246, attorney docket no. 25791.238.02, filed on Feb. 26, 2004; (123) PCT patent application Ser. No. PCT/US2004/08170, attorney docket number 25791.40.02, filed on Mar. 15, 2004; (124) PCT patent application Ser. No. PCT/US2004/08171, attorney docket number 25791.236.02, filed on Mar. 15, 2004; (125) PCT patent application Ser. No. PCT/US2004/08073, attorney docket number 25791.262.02, filed on Mar. 18, 2004; (126) PCT patent application Ser. No. PCT/US2004/07711, attorney docket number 25791.253.02, filed on Mar. 11, 2004; (127) PCT patent application Ser. No. PCT/US2004/029025, attorney docket number 25791.260.02, filed on Mar. 26, 2004; (128) PCT patent application Ser. No. PCT/US2004/010317, attorney docket number 25791.270.02, filed on Apr. 2, 2004; (129) PCT patent application Ser. No. PCT/US2004/010712, attorney docket number 25791.272.02, filed on Apr. 6, 2004; (130) PCT patent application Ser. No. PCT/US2004/010762, attorney docket number 25791.273.02, filed on Apr. 6, 2004; (131) PCT patent application Ser. No. PCT/US2004/011973, attorney docket number 25791.277.02, filed on Apr. 15, 2004; (132) U.S. provisional patent application Ser. No. 60/495056, attorney docket number 25791.301, filed on Aug. 14, 2003; (133) U.S. provisional patent application Ser. No. 60/600679, attorney docket number 25791.194, filed on Aug. 11, 2004; (134) PCT patent application Ser. No. PCT/US2005/027318, attorney docket number 25791.329.02, filed on Jul. 29, 2005; (135) PCT patent application Ser. No. PCT/US2005/028936, attorney docket number 25791.338.02, filed on Aug. 12, 2005; (136) PCT patent application Ser. No. PCT/US2005/028669, attorney docket number 25791.194.02, filed on Aug. 11, 2005; (137) PCT patent application Ser. No. PCT/US2005/028453, attorney docket number 25791.371, filed on Aug. 11, 2005; (138) PCT patent application Ser. No. PCT/US2005/028641, attorney docket number 25791.372, filed on Aug. 11, 2005; (139) PCT patent application Ser. No. PCT/US2005/028819, attorney docket number 25791.373, filed on Aug. 11, 2005; (140) PCT patent application Ser. No. PCT/US2005/028446, attorney docket number 25791.374, filed on Aug. 11, 2005; (141) PCT patent application Ser. No. PCT/US2005/028642, attorney docket number 25791.375, filed on Aug. 11, 2005; (142) PCT patent application Ser. No. PCT/US2005/028451, attorney docket number 25791.376, filed on Aug. 11, 2005, and (143). PCT patent application Ser. No. PCT/US2005/028473, attorney docket number 25791.377, filed on Aug. 11, 2005, (144) U.S. utility patent application Ser. No. 10/546082, attorney docket number 25791.378, filed on Aug. 16, 2005, (145) U.S. utility patent application Ser. No. 10/546076, attorney docket number 25791.379, filed on Aug. 16, 2005, (1 46) U.S. utility patent application Ser. No. 10/545936, attorney docket number 25791.380, filed on Aug. 16, 2005, (147) U.S. utility patent application Ser. No. 10/546079, attorney docket number 25791.381, filed on Aug. 16, 2005 (148) U.S. utility patent application Ser. No. 10/545941, attorney docket number 25791.382, filed on Aug. 16, 2005, (149) U.S. utility patent application Ser. No. 546078, attorney docket number 25791.383, filed on Aug. 16, 2005, filed on Aug. 11, 2005, (150) U.S. utility patent application Ser. No. 10/545941, attorney docket number 25791.185.05, filed on Aug. 16, 2005, (151) U.S. utility patent application Ser. No. 11/249967, attorney docket number 25791.384, filed on Oct. 13, 2005, (152) U.S. provisional patent application Ser. No. 60/734302, attorney docket number 25791.24, filed on Nov. 7, 2005, (153) U.S. provisional patent application Ser. No. 60/725181, attorney docket number 25791.184, filed on Oct. 11, 2005, (154) PCT patent application Ser. No. PCT/US2005/023391, attorney docket number 25791.299.02 filed Jun. 29, 2005 which claims priority from U.S. provisional patent application Ser. No. 60/585370, attorney docket number 25791.299, filed on Jul. 2, 2004, (155) U.S. provisional patent application Ser. No. 60/721579, attorney docket number 25791.327, filed on Sep. 28, 2005, (156) U.S. provisional patent application Ser. No. 60/717391, attorney docket number 25791.214, filed on Sep. 15, 2005, (157) U.S. provisional patent application Ser. number 60/702935, attorney docket number 25791.133, filed on Jul. 27, 2005, (158) U.S. provisional patent application Ser. No. 60/663913, attorney docket number 25791.32, filed on Mar. 21, 2005, (159) U.S. provisional patent application Ser. No. 60/652564, attorney docket number 25791.348, filed on Feb. 14, 2005, (160) U.S. provisional patent application Ser. No. 60/645840, attorney docket number 25791.324, filed on Jan. 21, 2005, (161) PCT patent application Ser. No. PCT/US2005/043122, attorney docket number 25791.326.02, filed on Nov. 29, 2005 which claims priority from U.S. provisional patent application Ser. No. 60/631703, attorney docket number 25791.326, filed on Nov. 30, 2004, (162) U.S. provisional patent application Ser. No. 60/752787, attorney docket number 25791.339, filed on Dec. 22, 2005, (163) U.S. National Stage application Ser. No.10/548934, attorney docket no. 25791.253.05, filed on Sep. 12, 2005; (164) U.S. National Stage application Ser. No. 10/549410, attorney docket no. 25791.262.05, filed on Sep. 13, 2005; (165) U.S. Provisional Patent Application No. 60/17391, attorney docket no. 25791.214 filed on Sep. 15, 2005; (166) U.S. National Stage application Ser. No. 10/550906, attorney docket no. 25791.260.06, filed on Sep. 27, 2005; (167) U.S. National Stage application Ser. No. 10/551880, attorney docket no. 25791.270.06, filed on Sep. 30, 2005; (168) U.S. National Stage application Ser. No. 10/552253, attorney docket no. 25791.273.06, filed on Oct. 4, 2005; (169) U.S. National Stage application Ser. No.10/552790, attorney docket no. 25791.272.06, filed on Oct. 11, 2005; (170) U.S. Provisional Patent Application No. 60/725181, attorney docket no. 25791.184 filed on Oct. 11, 2005; (171) U.S. National Stage application Ser. No. 10/553094, attorney docket no. 25791.193.03, filed on Oct. 13, 2005; (172) U.S. National Stage application Ser. No. 10/553566, attorney docket no. 25791.277.06, filed on Oct. 17, 2005; (173) PCT Patent Application No. PCT/US2006/002449, attorney docket no. 25791.324.02 filed on Jan. 20, 2006, (174) PCT Patent Application No. PCT/US2006/004809, attorney docket no. 25791.348.02 filed on Feb. 9, 2006; (175) U.S. Utility Patent application Ser. No. 11/356899, attorney docket no. 25791.386, filed on Feb. 17, 2006, (176) U.S. National Stage application Ser. No. 10/568200, attorney docket no. 25791.301.06, filed on Feb. 13, 2006, (177) U.S. National Stage application Ser. No. 10/568719, attorney docket no. 25791.137.04, filed on Feb. 16, 2006, (178) U.S. National Stage application Ser. No. 10/569323, attorney docket no. 25791.215.06, filed on Feb. 17, 2006, (179) U.S. National State patent application Ser. No. 10/571041, attorney docket no. 25791.305.05, filed on Mar. 3, 2006; (180) U.S. National State patent application Ser. No. 10/571017, attorney docket no. 25791.306.04, filed on Mar. 3, 2006; (181) U.S. National State patent application Ser. No. 10/571086, attorney docket no. 25791.307.04, filed on Mar. 6, 2006; and (182) U.S. National State patent application Ser. No. 10/571085, attorney docket no. 25791.308.07, filed on Mar. 6, 2006, (183) U.S. utility patent application Ser. number 10/938788, attorney docket number 25791.330, filed on Sep. 10, 2004, (184) U.S. utility patent application Ser. No. 10/938225, attorney docket number 25791.331, filed on Sep. 10, 2004, (185) U.S. utility patent application Ser. No. 10/952288, attorney docket number 25791.332, filed on Sep. 28, 2004, (186) U.S. utility patent application Ser. No. 10/952416, attorney docket number 25791.333, filed on 9/28/04, (187) U.S. utility patent application Ser. No. 10/950749, attorney docket number 25791.334, filed on Sep. 27, 2004, (188)U.S. utility patent application Ser. No. 10/950869, attorney docket number 25791.335, filed on Sep. 27, 2004; (189) U.S. provisional patent application Ser. No. 60/761324, attorney docket number 25791.340, filed on Jan. 23, 2006, (190) U.S. provisional patent application Ser. number 60/754556, attorney docket number 25791.342, filed on Dec. 28, 2005, (191) U.S. utility patent application Ser. No. 11/380051, attorney docket number 25791.388, filed on Apr. 25, 2006, (192) U.S. utility patent application Ser. No. 11/380055, attorney docket number 25791.389, filed on Apr. 25, 2006, (193) U.S. utility patent application Ser. No. 10/522039, attorney docket number 25791.106.05, filed on Mar. 10, 2006; (194) U.S. provisional patent application Ser. No. 60/746,813, attorney docket number 25791.259, filed on May 9, 2006; (195) U.S. utility patent application Ser. No. 11/456584, attorney docket number 25791.403, filed on Jul. 11, 2006; and (196) U.S. utility patent application Ser. No. 11/456587, attorney docket number 25791.404, filed on Jul. 11, 2006; (197) PCT Patent Application No. PCT/US2006/009886, attorney docket no. 25791.32.02 filed on Mar. 21, 2006; (198) PCT Patent Application No. PCT/US2006/010674, attorney docket no. 25791.337.02 filed on Mar. 21, 2006; (199) U.S. Pat. No. 6,409,175 which issued Jun. 25, 2002, attorney docket no. 25791.159; (200) U.S. Pat. No. 6,550,821 which issued Apr. 22, 2003, attorney docket no. 25791.263; (201) U.S. patent application No. 10/767,953, filed Jan. 29, 2004, attorney docket no. 25791.309, now U.S. Pat. No. 7,077,211 which issued Jul. 18, 2006; (202) U.S. patent application No. 10/769,726, filed Jan. 30, 2004, attorney docket no. 25791.310; (203) U.S. patent application No. 10/770363 filed Feb. 2, 2004, attorney docket no. 25791.311; (204) U.S. utility patent application Ser. No. 11/068,595, attorney docket no. 25791.349, filed on Feb. 28, 2005; (205) U.S. utility patent application Ser. No. 11/070,147, attorney docket no. 25791.351, filed on Mar. 12, 2005; (206) U.S. utility patent application Ser. No. 11/071,409, attorney docket no. 25791.352, filed on Mar. 12, 2005; (207) U.S. utility patent application Ser. No. 11/071,557, attorney docket no. 25791.353, filed on Mar. 3, 2005; (208) U.S. utility patent application Ser. No. 11/072,578, attorney docket no. 25791.354, filed on Mar. 4, 2005; (209) U.S. utility patent application Ser. No. 11/072,893, attorney docket no. 25791.355, filed on Mar. 4, 2005; (210) U.S. utility patent application Ser. No. 11/072,594, attorney docket no. 25791.356, filed on Mar. 4, 2005; (211) U.S. utility patent application Ser. No. 11/074,366, attorney docket no. 25791.357, filed on Mar. 17, 2005; (212) U.S. utility patent application Ser. No. 11/074,266, attorney docket No. 25791.358, filed on Mar. 7, 2005, (213) U.S. provisional patent application Ser. No. 60/832909, attorney docket no. 25791.407, filed on Jul. 24, 2006, (214) U.S. utility patent application Ser. No. 11/536,302, attorney docket no. 25791.412, filed Sep. 28, 2006, (215) U.S. utility patent application Ser. No. 11/538228, attorney docket no. 25791.156, filed Oct. 3, 2006, (216) U.S. utility patent application Ser. No. 11/552,703, filed on Oct. 25, 2006, attorney docket no. 25791.401, (217) U.S. utility application Ser. No. 11/553240, attorney docket no. 25791.422, filed on Oct. 26, 2006, (218) U.S. utility application Ser. No. 11/554288, attorney docket no. 25791.24.02, filed on Oct. 30, 2006, (219) U.S. utility application Ser. No. 11/560154, attorney docket no. 25791.407.02, filed on Nov. 15, 2006, (220) U.S. provisional application Ser. No. 60/866536, attorney docket no. 25791.237, filed on Nov. 20, 2006, and (221) U.S. provisional application Ser. No. 60/866543, attorney docket no. 25791.251, filed on Nov. 20, 2006.

BACKGROUND

This invention relates generally to wellbore casings, and in particular to wellbore casings that are formed using expandable tubing.

Conventionally, when a wellbore is created, a number of casings are installed in the borehole to prevent collapse of the borehole wall and to prevent undesired outflow of drilling fluid into the formation or inflow of fluid from the formation into the borehole. The borehole is drilled in intervals whereby a casing which is to be installed in a lower borehole interval is lowered through a previously installed casing of an upper borehole interval. As a consequence of this procedure the casing of the lower interval is of smaller diameter than the casing of the upper interval. Thus, the casings are in a nested arrangement with casing diameters decreasing in downward direction. Cement annuli are provided between the outer surfaces of the casings and the borehole wall to seal the casings from the borehole wall. As a consequence of this nested arrangement a relatively large borehole diameter is required at the upper part of the wellbore. Such a large borehole diameter involves increased costs due to heavy casing handling equipment, large drill bits and increased volumes of drilling fluid and drill cuttings. Moreover, increased drilling rig time is involved due to required cement pumping, cement hardening, required equipment changes due to large variations in hole diameters drilled in the course of the well, and the large volume of cuttings drilled and removed.

The present invention is directed to overcoming one or more of the limitations of the existing procedures for forming wellbore casings.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1a is a cross sectional illustration of the placement of an illustrative embodiment of a system for lining a wellbore casing within a borehole having a preexisting wellbore casing.

FIG. 1b is a cross sectional illustration of the system of FIG. 1a during the injection of a fluidic material into the tubular support member.

FIG. 1c is a cross sectional illustration of the system of FIG. 1b during the pressurization of the interior portion of the shoe after sealing off the valveable fluid passage of the shoe.

FIG. 1d is a cross sectional illustration of the system of FIG. 1c during the continued injection of the fluidic material into the tubular support member.

FIG. 1e is a cross sectional illustration of the system of FIG. 1d after the completion of the radial expansion and plastic deformation of the expandable tubular members.

FIG. 1f is a cross sectional illustration of the system of FIG. 1e after machining the bottom central portion of the shoe.

FIG. 2 is a cross sectional illustration of an illustrative embodiment of the expandable tubular members of the system of FIG. 1a.

FIG. 3 is a flow chart illustration of an illustrative embodiment of a method for manufacturing the expandable tubular member of FIG. 2.

FIG. 4a is a cross sectional illustration of an illustrative embodiment of the upsetting of the ends of a tubular member.

FIG. 4b is a cross sectional illustration of the expandable tubular member of FIG. 4a after radially expanding and plastically deforming the ends of the expandable tubular member.

FIG. 4c is a cross sectional illustration of the expandable tubular member of FIG. 4b after forming threaded connections on the ends of the expandable tubular member.

FIG. 4d is a cross sectional illustration of the expandable tubular member of FIG. 4c after coupling sealing members to the exterior surface of the intermediate unexpanded portion of the expandable tubular member.

FIG. 5 is a cross-sectional illustration of an exemplary embodiment of a tubular expansion cone.

FIG. 6 is a cross-sectional illustration of an exemplary embodiment of a tubular expansion cone.

FIG. 7a is a cross sectional illustration of the placement of an illustrative embodiment of a system for lining a wellbore casing within a borehole having a preexisting wellbore casing.

FIG. 7b is a cross sectional illustration of the system of FIG. 7a during the injection of a fluidic material into the tubular support member.

FIG. 7c is a cross sectional illustration of the system of FIG. 7b during the pressurization of the interior portion of the shoe after sealing off the valveable fluid passage of the shoe.

FIG. 7d is a cross sectional illustration of the system of FIG. 7c during the continued injection of the fluidic material into the tubular support member.

FIG. 7e is a cross sectional illustration of the system of FIG. 7d after the completion of the radial expansion and plastic deformation of the expandable tubular members.

FIG. 7f is a cross sectional illustration of the system of FIG. 7e after machining the bottom central portion of the shoe.

DESCRIPTION OF THE ILLUSTRATIVE EMBODIMENTS

Referring initially to FIG. 1a, the reference numeral 10 refers, in general, to a system for lining a wellbore casing that includes a tubular support member 12 that defines a passage 12a. A tubular expansion cone 14 that defines a passage 14a is coupled to an end of the tubular support member 12. In an exemplary embodiment, the tubular expansion cone 14 includes a tapered outer surface 14b for reasons to be described. A pre-expanded end 16a of a first expandable tubular member 16 that defines a passage 16b is adapted to mate with and be supported by the tapered outer surface 14b of the tubular expansion cone 14. The first expandable tubular member 16 further includes an unexpanded intermediate portion 16c, another pre-expanded end 16d, and a sealing member 16e coupled to the exterior surface of the unexpanded intermediate portion. In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 16a and 16d, of the first expandable tubular member 16 are greater than the inside and outside diameters of the unexpanded intermediate portion 16c. An end 18a of a shoe 18 that defines a passage 18b and a valveable passage 18c is coupled to the pre-expanded end 16a of the first expandable tubular member 16 by a conventional threaded connection.

An end 20a of a tubular member 20 that defines a passage 20b is coupled to the other pre-expanded end 16d of the first expandable tubular member 16 by a conventional threaded connection. Another end 20c of the tubular member 20 is coupled to an end 22a of a tubular member 22 that defines a passage 22b by a conventional threaded connection. A pre-expanded end 24a of a second expandable tubular member 24 that defines a passage 24b is coupled to the other end 22c of the tubular member 22. The second expandable tubular member 24 further includes an unexpanded intermediate portion 24c, another pre-expanded end 24d, and a sealing member 24e coupled to the exterior surface of the unexpanded intermediate portion. In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 24a and 24d, of the second expandable tubular member 24 are greater than the inside and outside diameters of the unexpanded intermediate portion 24c.

An end 26a of a tubular member 26 that defines a passage 26b is coupled to the other pre-expanded end 24d of the second expandable tubular member 24 by a conventional threaded connection. Another end 26c of the tubular member 26 is coupled to an end 28a of a tubular member 28 that defines a passage 28b by a conventional threaded connection. A pre-expanded end 30a of a third expandable tubular member 30 that defines a passage 30b is coupled to the other end 28c of the tubular member 28. The third expandable tubular member 30 further includes an unexpanded intermediate portion 30c, another pre-expanded end 30d, and a sealing member 30e coupled to the exterior surface of the unexpanded intermediate portion. In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 30a and 30d, of the third expandable tubular member 30 are greater than the inside and outside diameters of the unexpanded intermediate portion 30c.

In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 16a, 16d, 24a, 24d, 30a and 30d, of the expandable tubular members, 16, 24, and 30, and the tubular members 20, 22, 26, and 28, are substantially equal. In several exemplary embodiments, the sealing members, 16e, 24e, and 30e, of the expandable tubular members, 16, 24, and 30, respectively, further include anchoring elements for engaging the wellbore casing 104. In several exemplary embodiments, the tubular members, 20, 22, 26, and 28, are conventional tubular members having threaded end connections suitable for use in an oil or gas well, an underground pipeline, or as a structural support.

In an exemplary embodiment, as illustrated in FIG. 1a, the system 10 is initially positioned in a borehole 100 formed in a subterranean formation 102 that includes a pre-existing wellbore casing 104. The borehole 100 may be positioned in any orientation from vertical to horizontal. Furthermore, the wellbore casing 104 may be, for example, a wellbore casing for an oil or gas well, an underground pipeline, or a structural support. In an exemplary embodiment, the upper end of the tubular support member 12 may be supported in a conventional manner using, for example, a slip joint, or equivalent device in order to permit upward movement of the tubular support member and tubular expansion cone 14 relative to one or more of the expandable tubular members, 16, 24, and 30, and tubular members, 20, 22, 26, and 28.

In an exemplary embodiment, as illustrated in FIG. 1b, a fluidic material 106 is then injected into the system 10, through the passages, 12a and 14a, of the tubular support member 12 and tubular expansion cone 14, respectively. The fluidic material 106 then passes into the passages, 18b and 18c, of the shoe 18 into the borehole 100.

In an exemplary embodiment, as illustrated in FIG. 1c, a ball 108, plug or other equivalent device is then introduced into the injected fluidic material 106. The ball 108 will then pass through the passages, 12a, 14a, and 18b, of the tubular support member 12, the tubular expansion cone 14, and the shoe 18, respectively, and will then be positioned within the valveable passage 18c of the shoe. In this manner, the valveable passage 18c of the shoe 18 is closed thereby permitting the passage 18b of the shoe below the tubular expansion cone 14 to be pressurized by the continued injection of the fluidic material 106.

In an exemplary embodiment, as illustrated in FIG. 1d, the continued injection of the fluidic material 106 through the passages, 12a and 14a, of the tubular support member 12 and the tubular expansion cone 14, respectively, pressurizes the passage 18b of the shoe 18 below the tubular expansion cone thereby radially expanding and plastically deforming the expandable tubular member 16 off of the tapered external surface 14b of the tubular expansion cone 14. In particular, the intermediate non pre-expanded portion 16c of the expandable tubular member 16 is radially expanded and plastically deformed off of the tapered external surface 14b of the tubular expansion cone 14. As a result, the sealing member 16e engages the interior surface of the wellbore casing 104. Consequently, the radially expanded intermediate portion 16c of the expandable tubular member 16 is thereby coupled to the wellbore casing 104. In an exemplary embodiment, the radially expanded intermediate portion 16c of the expandable tubular member 16 is also thereby anchored to the wellbore casing 104.

The continued injection of the fluidic material 106 through the passages, 1 2a and 14a, of the tubular support member 12 and the tubular expansion cone 14, respectively, will then displace the tubular expansion cone 14 upwardly into engagement with the pre-expanded end 24a of the second expandable tubular member 24.

In an exemplary embodiment, as illustrated in FIG. 1e, the continued injection of the fluidic material 106 through the passages, 12a and 14a, of the tubular support member 12 and tubular expansion cone 14, respectively, will then pressurize the passages 18b, 16b, 20b and 22b below the tubular expansion cone thereby radially expanding and plastically deforming the second expandable tubular member 24 off of the tapered external surface 14b of the tubular expansion cone 14. In particular, the intermediate non pre-expanded portion 24c of the second expandable tubular member 24 is radially expanded and plastically deformed off of the tapered external surface 14b of the tubular expansion cone 14. As a result, the sealing member 24e engages the interior surface of the wellbore casing 104. Consequently, the radially expanded intermediate portion 24c of the second expandable tubular member 24 is thereby coupled to the wellbore casing 104. In an exemplary embodiment, the radially expanded intermediate portion 24c of the second expandable tubular member 24 is also thereby anchored to the wellbore casing 104.

The continued injection of the fluidic material 106 through the passages, 12a and 14a, of the tubular support member 12 and the tubular expansion cone 14, respectively, will then displace the tubular expansion cone 14 upwardly into engagement with the pre-expanded end 30a of the third expandable tubular member 30.

The continued injection of the fluidic material 106 through the passages, 12a and 14a, of the tubular support member 12 and tubular expansion cone 14, respectively, will then pressurize the passages 18b, 16b, 20b, 22b, 24b, 26b, and 28b below the tubular expansion cone thereby radially expanding and plastically deforming the third expandable tubular member 30 off of the tapered external surface 14b of the tubular expansion cone 14. In particular, the intermediate non pre-expanded portion 30c of the third expandable tubular member 30 is radially expanded and plastically deformed off of the tapered external surface 14b of the tubular expansion cone 14. As a result, the sealing member 30e engages the interior surface of the well bore casing 104. Consequently, the radially expanded intermediate portion 30c of the third expandable tubular member 30 is thereby coupled to the wellbore casing 104. In an exemplary embodiment, the radially expanded intermediate portion 30c of the third expandable tubular member 30 is also thereby anchored to the wellbore casing 104.

In an exemplary embodiment, during the injection of the fluidic material 106 through the passages, 12a and 14a, of the tubular support member 12 and the tubular expansion cone 14, respectively, the tubular support member 12 and tubular expansion cone 14 are displaced upwardly relative to the expandable tubular members, 16, 24, and 30, and the tubular members, 20, 22, 26, and 28, by applying an upward axial force to the upper end of the tubular support member.

After completing the radial expansion and plastic deformation of the third expandable tubular member 30, the tubular support member 12 and the tubular expansion cone 14 are removed from the wellbore 100.

In an exemplary embodiment, as illustrated in FIG. 1f, the lower central portion of the shoe 18 is then removed using a conventional milling device.

Thus, during the operation of the system 10, the intermediate non pre-expanded portions, 16c, 24c, and 30c, of the expandable tubular members, 16, 24, and 30, respectively, are radially expanded and plastically deformed by the pressurization of the interior passages, 18a, 16b, 20b, 22b, 24b, 26b, 28b, and 30b, of the shoe 18, the expandable tubular member 16, the tubular members, 20 and 22, the expandable tubular member 24, the tubular members, 26 and 28, and the expandable tubular member 30, respectively, below the tubular expansion cone 14. As a result, the sealing members, 16e, 24e, and 30e, are displaced in the radial direction into engagement with the wellbore casing 104 thereby coupling the shoe 18, the expandable tubular member 16, the tubular members, 20 and 22, the expandable tubular member 24, the tubular members, 26 and 28, and the expandable tubular member 30 to the wellbore casing. Furthermore, as a result, the expandable connections between the expandable tubular members, 16, 24, and 30, the shoe 18, and the tubular members, 20, 22, 26, and 28, do not have to be expandable connections thereby providing significant cost savings. Furthermore, in the system 10, the tubular members 20, 22, 26, and 28 are interleaved among the expandable tubular members, 16, 24, and 30. As a result, because only the intermediate non pre-expanded portions, 16c, 24c, and 30c, of the expandable tubular members, 16, 24, and 30, respectively, are radially expanded and plastically deformed, the tubular members, 20, 22, 26, and 28 can be conventional tubular members thereby significantly reducing the cost and complexity of the system 10. Moreover, because only the intermediate non pre-expanded portions, 16c, 24c, and 30c, of the expandable tubular members, 16, 24, and 30, respectively, are radially expanded and plastically deformed, the number and length of the interleaved tubular members, 20, 22, 26, and 28 can be much greater than the number and length of the expandable tubular members. In an exemplary embodiment, the total length of the intermediate non pre-expanded portions, 16c, 24c, and 30c, of the expandable tubular members, 16, 24, and 30, is approximately 200 feet, and the total length of the tubular members, 20, 22, 26, and 28, is approximately 3800 feet. Consequently, in an exemplary embodiment, a liner having a total length of approximately 4000 feet is coupled to a wellbore casing by radially expanding and plastically deforming a total length of only approximately 200 feet.

Furthermore, the sealing members 16e, 24e, and 30e, of the expandable tubular members, 16, 24, and 30, respectively, are used to couple the expandable tubular members and the tubular members, 20, 22, 26, and 28 to the wellbore casing 104, the radial gap between the tubular members, the expandable tubular members, and the wellbore casing 104 may be large enough to effectively eliminate the possibility of damage to the expandable tubular members and tubular members during the placement of the system 10 within the wellbore casing.

In an exemplary embodiment, after the sealing member 16e of the expandable tubular member 16 has been radially expanded into engagement with the wellbore casing 104, the expandable tubular members, 24 and 30, are radially expanded and plastically deformed by injecting the fluidic material 106 and applying an upward axial force to the tubular support member 12 and tubular expansion cone 14. In this manner, radial expansion and plastic deformation of the expandable tubular members, 24 and 30, may be enhanced.

In an exemplary embodiment, after the sealing member 16e of the expandable tubular member 16 has been radially expanded into engagement with the wellbore casing 104, the expandable tubular members, 24 and 30, are radially expanded and plastically deformed by only applying an upward axial force to the tubular support member 12 and tubular expansion cone 14. In this manner, radial expansion and plastic deformation of the expandable tubular members, 24 and 30, may be provided without the further continued injection of the fluidic material 106.

In an exemplary embodiment, the pre-expanded ends, 16a, 16d, 24a, 24d, 30a, and 30d, of the expandable tubular members, 16, 24, and 30, respectively, and the tubular members, 20, 22, 26, and 28, have outside diameters and wall thicknesses of 8.375 inches and 0.350 inches, respectively; prior to the radial expansion, the intermediate non pre-expanded portions, 16c, 24c, and 30c, of the expandable tubular members, 16, 24, and 30, respectively, have outside diameters of 7.625 inches; the tubular members, 20, 22, 26, and 28, have inside diameters of 7.675 inches; after the radial expansion, the inside diameters of the intermediate portions, 16c, 24c, and 30c, of the expandable tubular members, 16, 24, and 30, are equal to 7.675 inches; and the wellbore casing 104 has an inside diameter of 8.755 inches.

In an exemplary embodiment, the pre-expanded ends, 16a, 16d, 24a, 24d, 30a, and 30d, of the expandable tubular members, 16, 24, and 30, respectively, and the tubular members, 20, 22, 26, and 28, have outside diameters and wall thicknesses of 4.500 inches and 0.250 inches, respectively; prior to the radial expansion, the intermediate non pre-expanded portions, 16c, 24c, and 30c, of the expandable tubular members, 16, 24, and 30, respectively, have outside diameters of 4.000 inches; the tubular members, 20, 22, 26, and 28, have inside diameters of 4.000 inches; after the radial expansion, the inside diameters of the intermediate portions, 16c, 24c, and 30c, of the expandable tubular members, 16, 24, and 30, are equal to 4.000 inches; and the wellbore casing 104 has an inside diameter of 4.892 inches.

In an exemplary embodiment, the system 10 is used to form or repair a wellbore casing, a pipeline, or a structural support.

Referring now to FIG. 2, an exemplary embodiment of an expandable tubular member 200 will now be described. The tubular member 200 defines an interior region 200a and includes a first end 200b including a first threaded connection 200ba, a first tapered portion 200c, an intermediate portion 200d, a second tapered portion 200e, and a second end 200f including a second threaded connection 200fa. The tubular member 200 further preferably includes an intermediate sealing member 200g that is coupled to the exterior surface of the intermediate portion 200d.

In an exemplary embodiment, the tubular member 200 has a substantially annular cross section. The tubular member 200 may be fabricated from any number of conventional commercially available materials such as, for example, Oilfield Country Tubular Goods (OCTG), 13 chromium steel tubing/casing, or L83, J55, or P110 API casing.

In an exemplary embodiment, the interior 200a of the tubular member 200 has a substantially circular cross section. Furthermore, in an exemplary embodiment, the interior region 200a of the tubular member includes a first inside diameter D1, an intermediate inside diameter DINT, and a second inside diameter D2. In an exemplary embodiment, the first and second inside diameters, D1 and D2, are substantially equal. In an exemplary embodiment, the first and second inside diameters, D1 and D2, are greater than the intermediate inside diameter DINT.

The first end 200b of the tubular member 200 is coupled to the intermediate portion 200d by the first tapered portion 200c, and the second end 200f of the tubular member is coupled to the intermediate portion by the second tapered portion 200e. In an exemplary embodiment, the outside diameters of the first and second ends, 200b and 200f, of the tubular member 200 is greater than the outside diameter of the intermediate portion 200d of the tubular member. The first and second ends, 200b and 200f, of the tubular member 200 include wall thicknesses, t1 and t2, respectively. In an exemplary embodiment, the outside diameter of the intermediate portion 200d of the tubular member 200 ranges from about 75% to 98% of the outside diameters of the first and second ends, 200a and 200f. The intermediate portion 200d of the tubular member 200 includes a wall thickness tINT.

In an exemplary embodiment, the wall thicknesses t1 and t2 are substantially equal in order to provide substantially equal burst strength for the first and second ends, 200a and 200f, of the tubular member 200. In an exemplary embodiment, the wall thicknesses, t1 and t2, are both greater than the wall thickness tINT in order to optimally match the burst strength of the first and second ends, 200a and 200f, of the tubular member 200 with the intermediate portion 200d of the tubular member 200.

In an exemplary embodiment, the first and second tapered portions, 200c and 200e, are inclined at an angle, α, relative to the longitudinal direction ranging from about 0 to 30 degrees in order to optimally facilitate the radial expansion of the tubular member 200. In an exemplary embodiment, the first and second tapered portions, 200c and 200e, provide a smooth transition between the first and second ends, 200a and 200f, and the intermediate portion 200d, of the tubular member 200 in order to minimize stress concentrations.

The intermediate sealing member 200g is coupled to the outer surface of the intermediate portion 200d of the tubular member 200. In an exemplary embodiment, the intermediate sealing member 200g seals the interface between the intermediate portion 200d of the tubular member 200 and the interior surface of a wellbore casing 205 after the radial expansion and plastic deformation of the intermediate portion 200d of the tubular member 200. In an exemplary embodiment, the intermediate sealing member 200g has a substantially annular cross section. In an exemplary embodiment, the outside diameter of the intermediate sealing member 200g is selected to be less than the outside diameters of the first and second ends, 200a and 200f, of the tubular member 200 in order to optimally protect the intermediate sealing member 200g during placement of the tubular member 200 within the wellbore casings 205. The intermediate sealing member 200g may be fabricated from any number of conventional commercially available materials such as, for example, thermoset or thermoplastic polymers. In an exemplary embodiment, the intermediate sealing member 200g is fabricated from thermoset polymers in order to optimally seal the radially expanded intermediate portion 200d of the tubular member 200 with the wellbore casing 205. In several alternative embodiments, the sealing member 200g includes one or more rigid anchors for engaging the wellbore casing 205 to thereby anchor the radially expanded and plastically deformed intermediate portion 200d of the tubular member 200 to the wellbore casing.

Referring to FIGS. 3, and 4a to 4d, in an exemplary embodiment, the tubular member 200 is formed by a process 300 that includes the steps of: (1) upsetting both ends of a tubular member in step 305; (2) expanding both upset ends of the tubular member in step 310; (3) stress relieving both expanded upset ends of the tubular member in step 315; (4) forming threaded connections in both expanded upset ends of the tubular member in step 320; and (5) putting a sealing material on the outside diameter of the non-expanded intermediate portion of the tubular member in step 325.

As illustrated in FIG. 4a, in step 305, both ends, 400a and 400b, of a tubular member 400 are upset using conventional upsetting methods. The upset ends, 400a and 400b, of the tubular member 400 include the wall thicknesses t1 and t2. The intermediate portion 400c of the tubular member 400 includes the wall thickness tINT and the interior diameter DINT. In an exemplary embodiment, the wall thicknesses t1 and t2 are substantially equal in order to provide burst strength that is substantially equal along the entire length of the tubular member 400. In an exemplary embodiment, the wall thicknesses t1 and t2 are both greater than the wall thickness tINT in order to provide burst strength that is substantially equal along the entire length of the tubular member 400, and also to optimally facilitate the formation of threaded connections in the first and second ends, 400a and 400b.

As illustrated in FIG. 4b, in steps 310 and 315, both ends, 400a and 400b, of the tubular member 400 are radially expanded using conventional radial expansion methods, and then both ends, 400a and 400b, of the tubular member are stress relieved. The radially expanded ends, 400a and 400b, of the tubular member 400 include the interior diameters D1 and D2. In an exemplary embodiment, the interior diameters D1 and D2 are substantially equal in order to provide a burst strength that is substantially equal. In an exemplary embodiment, the ratio of the interior diameters D1 and D2 to the interior diameter DINT ranges from about 100% to 120% in order to faciliate the subsequent radial expansion of the tubular member 400.

In a preferred embodiment, the relationship between the wall thicknesses t1, t2, and tINT of the tubular member 400; the inside diameters D1, D2 and DINT of the tubular member 400; the inside diameter Dwellbore of the wellbore casing that the tubular member 400 will be inserted into; and the outside diameter Dcone of the expansion cone that will be used to radially expand the tubular member 400 within the wellbore casing is given by the following expression: Dwellbore - 2 * t 1 D 1 1 t 1 [ ( t 1 - t INT ) * D cone + t INT * D INT ] ( 1 )
where t1=t2; and
D1=D2.

By satisfying the relationship given in equation (1), the expansion forces placed upon the tubular member 400 during the subsequent radial expansion process are substantially equalized. More generally, the relationship given in equation (1) may be used to calculate the optimal geometry for the tubular member 400 for subsequent radial expansion and plastic deformation of the tubular member 400 for fabricating and/or repairing a wellbore casing, a pipeline, or a structural support.

As illustrated in FIG. 4c, in step 320, conventional threaded connections, 400d and 400e, are formed in both expanded ends, 400a and 400b, of the tubular member 400. In an exemplary embodiment, the threaded connections, 400d and 400e, are provided using conventional processes for forming pin and box type threaded connections available from Atlas-Bradford.

As illustrated in FIG. 4d, in step 325, a sealing member 400f is then applied onto the outside diameter of the non-expanded intermediate portion 400c of the tubular member 400. The sealing member 400f may be applied to the outside diameter of the non-expanded intermediate portion 400c of the tubular member 400 using any number of conventional commercially available methods. In a preferred embodiment, the sealing member 400f is applied to the outside diameter of the intermediate portion 400c of the tubular member 400 using commercially available chemical and temperature resistant adhesive bonding.

In an exemplary embodiment, the expandable tubular members, 16, 24, and 30, of the system 10 are substantially identical to, and/or incorporate one or more of the teachings of, the tubular members 200 and 400.

Referring to FIG. 5, an exemplary embodiment of tubular expansion cone 500 for radially expanding the tubular members 16, 24, 30, 200 and 400 will now be described. The expansion cone 500 defines a passage 500a and includes a front end 505, a rear end 510, and a radial expansion section 515.

In an exemplary embodiment, the radial expansion section 515 includes a first conical outer surface 520 and a second conical outer surface 525. The first conical outer surface 520 includes an angle of attack α1 and the second conical outer surface 525 includes an angle of attack α2. In an exemplary embodiment, the angle of attack α1 is greater than the angle of attack α2. In this manner, the first conical outer surface 520 radially overexpands the intermediate portions, 16c, 24c, 30c, 200d, and 400c, of the tubular members, 16, 24, 30, 200, and 400, and the second conical outer surface 525 radially overexpands the pre-expanded first and second ends, 16a and 16d, 24a and 24d, 30a and 30d, 200b and 200f, and 400a and 400b, of the tubular members, 16, 24, 30, 200 and 400. In an exemplary embodiment, the first conical outer surface 520 includes an angle of attack α1 ranging from about 8 to 20 degrees, and the second conical outer surface 525 includes an angle of attack α2 ranging from about 4 to 15 degrees in order to optimally radially expand and plastically deform the tubular members, 16, 24, 30, 200 and 400. More generally, the expansion cone 500 may include 3 or more adjacent conical outer surfaces having angles of attack that decrease from the front end 505 of the expansion cone 500 to the rear end 510 of the expansion cone 500.

Referring to FIG. 6, another exemplary embodiment of a tubular expansion cone 600 defines a passage 600a and includes a front end 605, a rear end 610, and a radial expansion section 615. In an exemplary embodiment, the radial expansion section 615 includes an outer surface having a substantially parabolic outer profile thereby providing a paraboloid shape. In this manner, the outer surface of the radial expansion section 615 provides an angle of attack that constantly decreases from a maximum at the front end 605 of the expansion cone 600 to a minimum at the rear end 610 of the expansion cone. The parabolic outer profile of the outer surface of the radial expansion section 615 may be formed using a plurality of adjacent discrete conical sections and/or using a continuous curved surface. In this manner, the region of the outer surface of the radial expansion section 615 adjacent to the front end 605 of the expansion cone 600 may optimally radially overexpand the intermediate portions, 16c, 24c, 30c, 200d, and 400c, of the tubular members, 16, 24, 30, 200, and 400, while the region of the outer surface of the radial expansion section 615 adjacent to the rear end 610 of the expansion cone 600 may optimally radially overexpand the pre-expanded first and second ends, 16a and 16d, 24a and 24d, 30a and 30d, 200b and 200f, and 400a and 400b, of the tubular members, 16, 24, 30, 200 and 400. In an exemplary embodiment, the parabolic profile of the outer surface of the radial expansion section 615 is selected to provide an angle of attack that ranges from about 8 to 20 degrees in the vicinity of the front end 605 of the expansion cone 6800 and an angle of attack in the vicinity of the rear end 610 of the expansion cone 600 from about 4 to 15 degrees.

Referring to FIG. 7a, the reference numeral 710 refers, in general, to a system for lining a wellbore casing that includes a tubular support member 712 that defines a passage 712a. A tubular expansion cone 714 that defines a passage 714a is coupled to an end of the tubular support member 712. In an exemplary embodiment, the tubular expansion cone 714 includes a tapered outer surface 714b for reasons to be described. A pre-expanded end 716a of a first expandable tubular member 716 that defines a passage 716b is adapted to mate with and be supported by the tapered outer surface 714b of the tubular expansion cone 714. The first expandable tubular member 716 further includes an unexpanded intermediate portion 716c, another pre-expanded end 716d, and a sealing member 716e coupled to the exterior surface of the unexpanded intermediate portion. In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 716a and 716d, of the first expandable tubular member 716 are greater than the inside and outside diameters of the unexpanded intermediate portion 716c.

An end 718a of a shoe 718 that defines a passage 718b and a valveable passage 718c is coupled to the pre-expanded end 716a of the first expandable tubular member 716 by a conventional threaded connection 718d. An end 720a of a tubular member 720 that defines a passage 720b is coupled to the other pre-expanded end 716d of the first expandable tubular member 716 by a conventional threaded connection 720d. Another end 720c of the tubular member 720 is coupled to an end 722a of a tubular member 722 that defines a passage 722b by a conventional threaded connection 722d. A pre-expanded end 724a of a second expandable tubular member 724 that defines a passage 724b is coupled to the other end 722c of the tubular member 722 by a conventional threaded connection 724f. The second expandable tubular member 724 further includes an unexpanded intermediate portion 724c, another pre-expanded end 724d, and a sealing member 724e coupled to the exterior surface of the unexpanded intermediate portion. In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 724a and 724d, of the second expandable tubular member 724 are greater than the inside and outside diameters of the unexpanded intermediate portion 724c.

An end 726a of a tubular member 726 that defines a passage 726b is coupled to the other pre-expanded end 724d of the second expandable tubular member 724 by a conventional threaded connection 726d. Another end 726c of the tubular member 726 is coupled to an end 728a of a tubular member 728 that defines a passage 728b by a conventional threaded connection 728d. A pre-expanded end 730a of a third expandable tubular member 730 that defines a passage 730b is coupled to the other end 728c of the tubular member 728 by a conventional threaded connection 730f. The third expandable tubular member 730 further includes an unexpanded intermediate portion 730c, another pre-expanded end 730d, and a sealing member 730e coupled to the exterior surface of the unexpanded intermediate portion. In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 730a and 730d, of the third expandable tubular member 730 are greater than the inside and outside diameters of the unexpanded intermediate portion 730c.

In an exemplary embodiment, the inside and outside diameters of the pre-expanded ends, 716d, 724a, 724d, 730a and 730d, of the expandable tubular members, 716, 724, and 730, and the tubular members 720, 722, 726, and 728, are substantially equal. The outside diameter of the pre-expanded end 716a of the first expandable tubular member 716 is greater than the outside diameter of the pre-expanded end 716d, and the inside diameter of the pre-expanded end 716a of the first expandable tubular member 716 is greater than the inside diameter of the pre-expanded end 716d. In an exemplary embodiment, the outside diameter of the end 716a is about 5% greater than the outside diameter of the end 716d, and the inside diameter of the end 716a is about 5% greater than the inside diameter of the end 716d. In several exemplary embodiments, the sealing members, 716e, 724e, and 730e, of the expandable tubular members, 716, 724, and 730, respectively, further include anchoring elements for engaging the wellbore casing 704. In several exemplary embodiments, the tubular members, 720, 722, 726, and 728, are conventional tubular members coupled by conventional threaded end connections 720d, 722d, 724f, 726d, 728d and 730f that are suitable for use in an oil or gas well, an underground pipeline, or as a structural support.

In an exemplary embodiment, as illustrated in FIG. 7a, the system 710 is initially positioned in a borehole 700 formed in a subterranean formation 702 that includes a pre-existing wellbore casing 704. The borehole 700 may be positioned in any orientation from vertical to horizontal. Furthermore, the wellbore casing 704 may be, for example, a wellbore casing for an oil or gas well, an underground pipeline, or a structural support. In an exemplary embodiment, the upper end of the tubular support member 712 may be supported in a conventional manner using, for example, a slip joint, or equivalent device in order to permit upward movement of the tubular support member and tubular expansion cone 714 relative to one or more of the expandable tubular members, 716, 724, and 730, and tubular members, 720, 722, 726, and 728.

In an exemplary embodiment, as illustrated in FIG. 7b, a fluidic material 706 is then injected into the system 710, through the passages, 712a and 714a, of the tubular support member 712 and tubular expansion cone 714, respectively. The fluidic material 706 then passes into the passages, 718b and 718c, of the shoe 718 into the borehole 700.

In an exemplary embodiment, as illustrated in FIG. 7c, a ball 708, plug or other equivalent device is then introduced into the injected fluidic material 706. The ball 708 will then pass through the passages, 712a, 714a, and 718b, of the tubular support member 712, the tubular expansion cone 714, and the shoe 718, respectively, and will then be positioned within the valveable passage 718c of the shoe. In this manner, the valveable passage 718c of the shoe 718 is closed thereby permitting the passage 718b of the shoe below the tubular expansion cone 714 to be pressurized by the continued injection of the fluidic material 706.

In an exemplary embodiment, as illustrated in FIG. 7d, the continued injection of the fluidic material 706 through the passages, 712a and 714a, of the tubular support member 712 and the tubular expansion cone 714, respectively, pressurizes the passage 718b of the shoe 718 below the tubular expansion cone thereby radially expanding and plastically deforming the expandable tubular member 716 off of the tapered external surface 714b of the tubular expansion cone 714. In particular, the intermediate non pre-expanded portion 716c of the expandable tubular member 716 is radially expanded and plastically deformed off of the tapered external surface 714b of the tubular expansion cone 714. As a result, the sealing member 716e engages the interior surface of the wellbore casing 704. Consequently, the radially expanded intermediate portion 716c of the expandable tubular member 716 is thereby coupled to the wellbore casing 704. In an exemplary embodiment, the radially expanded intermediate portion 716c of the expandable tubular member 716 is also thereby anchored to the wellbore casing 704.

The continued injection of the fluidic material 706 through the passages, 712a and 714a, of the tubular support member 712 and the tubular expansion cone 714, respectively, pressurizes the passages 718b and 716b, of the shoe 718 and the expandable tubular member 716, respectively, thereby radially expanding and plastically deforming the tubular member 720 off of the tapered external surface 714b of the tubular expansion cone 714, including the conventional threaded connection 720d between the end 716d of the expandable tubular member 716 and the end 720a of the tubular member 720. The continued injection of the fluidic material 706 through the passages, 712a and 714a, of the tubular support member 712 and the tubular expansion cone 714, respectively, pressurizes the passages 718b, 716b and 720b, of the shoe 718, the expandable tubular member 716 and the tubular member 720, respectively, thereby radially expanding and plastically deforming the tubular member 722 off of the tapered external surface 714b of the tubular expansion cone 714, including the conventional threaded connection 722d between the end 720c of the tubular member 720 and the end 722a of the tubular member 722. The continued injection of the fluidic material 706 through the passages, 712a and 714a, of the tubular support member 712 and the tubular expansion cone 714, respectively, will then displace the tubular expansion cone 714 upwardly to radially expand and plastically deform the pre-expanded end 724a of the second expandable tubular member 724.

In an exemplary embodiment, as illustrated in FIG. 7e, the continued injection of the fluidic material 706 through the passages, 712a and 714a, of the tubular support member 712 and tubular expansion cone 714, respectively, will then pressurize the passages 718b, 716b, 720b and 722b below the tubular expansion cone thereby radially expanding and plastically deforming the second expandable tubular member 724 off of the tapered external surface 714b of the tubular expansion cone 714. In particular, the intermediate non pre-expanded portion 724c of the second expandable tubular member 724 is radially expanded and plastically deformed off of the tapered external surface 714b of the tubular expansion cone 714. As a result, the sealing member 724e engages the interior surface of the wellbore casing 704. Consequently, the radially expanded intermediate portion 724c of the second expandable tubular member 724 is thereby coupled to the wellbore casing 704. In an exemplary embodiment, the radially expanded intermediate portion 724c of the second expandable tubular member 724 is also thereby anchored to the wellbore casing 704.

The continued injection of the fluidic material 706 through the passages, 712a and 714a, of the tubular support member 712 and the tubular expansion cone 714, respectively, pressurizes the passages 718b, 716b, 720b, 722b and 724b of the shoe 718, the expandable tubular member 716, the tubular member 720, the tubular member 722 and the expandable tubular member 724, respectively, thereby radially expanding and plastically deforming the tubular member 726 off of the tapered external surface 714b of the tubular expansion cone 714, including the conventional threaded connection 726d between the end 724d of the expandable tubular member 724 and the end 726a of the tubular member 726. The continued injection of the fluidic material 706 through the passages, 712a and 714a, of the tubular support member 712 and the tubular expansion cone 714, respectively, pressurizes the passages 718b, 716b, 720b, 722b, 724b and 726b of the shoe 718, the expandable tubular member 716, the tubular member 720, the tubular member 722, the expandable tubular member 724 and the tubular member 726, respectively, thereby radially expanding and plastically deforming the tubular member 728 off of the tapered external surface 714b of the tubular expansion cone 714, including the conventional threaded connection 728d between the end 726c of the tubular member 726 and the end 728a of the tubular member 728. The continued injection of the fluidic material 706 through the passages, 712a and 714a, of the tubular support member 712 and the tubular expansion cone 714, respectively, will then displace the tubular expansion cone 714 upwardly to radially expand and plastically deform the pre-expanded end 730a of the third expandable tubular member 730.

The continued injection of the fluidic material 706 through the passages, 712a and 714a, of the tubular support member 712 and tubular expansion cone 714, respectively, will then pressurize the passages 718b, 716b, 720b, 722b, 724b, 726b, and 728b below the tubular expansion cone 714 thereby radially expanding and plastically deforming the third expandable tubular member 730 off of the tapered external surface 714b of the tubular expansion cone 714. In particular, the intermediate non pre-expanded portion 730c of the third expandable tubular member 730 is radially expanded and plastically deformed off of the tapered external surface 714b of the tubular expansion cone 714. As a result, the sealing member 730e engages the interior surface of the wellbore casing 704. Consequently, the radially expanded intermediate portion 730c of the third expandable tubular member 730 is thereby coupled to the wellbore casing 704. In an exemplary embodiment, the radially expanded intermediate portion 730c of the third expandable tubular member 730 is also thereby anchored to the wellbore casing 704.

In an exemplary embodiment, during the injection of the fluidic material 706 through the passages, 712a and 714a, of the tubular support member 712 and the tubular expansion cone 714, respectively, the tubular support member 712 and tubular expansion cone 714 are displaced upwardly relative to the expandable tubular members, 716, 724, and 730, and the tubular members, 720, 722, 726, and 728, by applying an upward axial force to the upper end of the tubular support member.

After completing the radial expansion and plastic deformation of the third expandable tubular member 730, the tubular support member 712 and the tubular expansion cone 714 are removed from the wellbore 700.

In an exemplary embodiment, as illustrated in FIG. 7f, the lower central portion of the shoe 718 is then removed using a conventional milling device.

In an exemplary embodiment, the pre-expanded end 716a of the expandable tubular member 716 has an outside diameter of about 8.750 inches and a wall thickness of about 0.350 inches; the pre-expanded ends 716d, 724a, 724d, 730a and 730d of the expandable tubular members 716, 724 and 730, respectively, and the tubular members 720, 722, 726 and 728 have outside diameters and wall thicknesses of about 8.375 inches and about 0.350 inches, respectively; prior to the radial expansion, the intermediate pre-expanded portions 716c, 724c and 730c of the expandable tubular members 716, 724 and 730, respectively, have outside diameters of about 7.625 inches; prior to the radial expansion, the tubular members 720, 722, 726 and 728 have inside diameters of about 7.675 inches; after the radial expansion, the inside diameters of the intermediate portions 716c, 724c and 730c of the expandable tubular members 716, 724 and 730 and the tubular members 720, 722, 726 and 728 are equal to about 8.050 inches; and the wellbore casing 704 has an inside diameter of about 8.755 inches.

In an exemplary embodiment, the pre-expanded end 716a of the expandable tubular member 716 has an outside diameter of about 4.725 inches and a wall thickness of about 0.250 inches; the pre-expanded ends 716d, 724a, 724d, 730a and 730d of the expandable tubular members 716, 724 and 730, respectively, and the tubular members 720, 722, 726 and 728 have outside diameters and wall thicknesses of about 4.500 inches and about 0.250 inches, respectively; prior to the radial expansion, the intermediate non pre-expanded portions 716c, 724c and 730c of the expandable tubular members 716, 724 and 730, respectively, have outside diameters of about 4.000 inches; prior to the radial expansion, the tubular members 720, 722, 726 and 728 have inside diameters of about 4.000 inches; after the radial expansion, the inside diameters of the intermediate portions 716c, 724c and 730c of the expandable tubular members 716, 724 and 730 and the tubular members 720, 722, 726 and 728 are equal to about 4.000 inches; and the wellbore casing 704 has an inside diameter of about 4.892 inches.

In an exemplary embodiment, one or more of the conventional threaded connections 718d, 720d, 722d, 724f, 726d, 728d and 730f may be or include, for example, a pin and box connection, including those having standard American Petroleum Institute (API) pin and box threads.

In an exemplary embodiment, the system 710 is used to form or repair a wellbore casing, a pipeline, or a structural support.

In an exemplary embodiment, the tubular expansion cone 714 of the system 710 is substantially identical to the expansion cones 14, 500 or 600, and/or incorporates one or more of the teachings of the expansion cones 14, 500 and/or 600. However, the outer diameter of the expansion cone 714 may be about 5% greater than the outside diameter of the expansion cone 14.

In several alternative embodiments, a conventional rotary expansion system such as, for example, those commercially available from Weatherford International may be substituted for, or used in combination with the expansion cones 14, 500, 600 and/or 714 above.

In several alternative embodiments, conventional expansion systems may be substituted for, or used in combination with the expansion cones 14, 500, 60 and/or 714 above.

Experimental testing has shown that the expansion performed with the system 10 and the system 710 can provide a fluid tight seal between the conventional threaded connections between the expandable tubular members and the conventional tubular members for radial expansion of up to about 5%. This was an unexpected result. Accordingly, radial expansion and plastic deformation can be achieved utilizing conventional tubular members and conventional threaded connections between the conventional tubular members and the expandable tubular members, while significantly reducing costs and complexity.

A system for lining a wellbore casing has been described that includes a tubular support member defining a first passage, a tubular expansion cone defining a second passage fluidicly coupled to the first passage coupled to an end of the tubular support member and comprising a tapered end, a tubular liner coupled to and supported by the tapered end of the tubular expansion cone, and a shoe defining a valveable passage coupled to an end of the tubular liner, wherein the tubular liner includes one or more expandable tubular members that each include a tubular body comprising an intermediate portion and first and second expanded end portions coupled to opposing ends of the intermediate portion, and a sealing member coupled to the exterior surface of the intermediate portion, and one or more other tubular members coupled to the expandable tubular members, wherein the inside diameters of the other tubular members are greater than or equal to the outside diameter of the tubular expansion cone. In an exemplary embodiment, the wall thicknesses of the first and second expanded end portions are greater than the wall thickness of the intermediate portion. In an exemplary embodiment, each expandable tubular member further includes a first tubular transitionary member coupled between the first expanded end portion and the intermediate portion, and a second tubular transitionary member coupled between the second expanded end portion and the intermediate portion, wherein the angles of inclination of the first and second tubular transitionary members relative to the intermediate portion ranges from about 0 to 30 degrees. In an exemplary embodiment, the outside diameter of the intermediate portion ranges from about 75 percent to about 98 percent of the outside diameters of the first and second expanded end portions. In an exemplary embodiment, the burst strength of the first and second expanded end portions is substantially equal to the burst strength of the intermediate tubular section. In an exemplary embodiment, the ratio of the inside diameters of the first and second expanded end portions to the interior diameter of the intermediate portion ranges from about 100 to 120 percent. In an exemplary embodiment, the relationship between the wall thicknesses t1, t2, and tINT of the first expanded end portion, the second expanded end portion, and the intermediate portion, respectively, of the expandable tubular members, the inside diameters D1, D2 and DINT of the first expanded end portion, the second expanded end portion, and the intermediate portion, respectively, of the expandable tubular members, and the inside diameter Dwellbore of the wellbore casing that the expandable tubular member will be inserted into, and the outside diameter Dcone of the expansion cone that will be used to radially expand the expandable tubular member within the wellbore casing is given by the following expression: Dwellbore - 2 * t 1 D 1 1 t 1 [ ( t 1 - t INT ) * D cone + t INT * D INT ] ;
wherein t1=t2; and wherein D1=D2. In an exemplary embodiment, the tapered end of the tubular expansion cone includes a plurality of adjacent discrete tapered sections. In an exemplary embodiment, the angle of attack of the adjacent discrete tapered sections increases in a continuous manner from one end of the tubular expansion cone to the opposite end of the tubular expansion cone. In an exemplary embodiment, the tapered end of the tubular expansion cone includes an paraboloid body. In an exemplary embodiment, the angle of attack of the outer surface of the paraboloid body increases in a continuous manner from one end of the paraboloid body to the opposite end of the paraboloid body. In an exemplary embodiment, the tubular liner includes a plurality of expandable tubular members, and the other tubular members are interleaved among the expandable tubular members.

A method of lining a wellbore casing has also been described that includes positioning a tubular liner within the wellbore casing, and radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing. In an exemplary embodiment, a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing. In an exemplary embodiment, the remaining portions of the tubular liner are not radially expanded. In an exemplary embodiment, the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner. In an exemplary embodiment, the tubular liner includes a plurality of tubular members; and wherein one or more of the tubular members are radially expanded into engagement with the wellbore casing and one or more of the tubular members are not radially expanded into engagement with the wellbore casing. In an exemplary embodiment, the tubular members that are radially expanded into engagement with the wellbore casing include a portion that is radially expanded into engagement with the wellbore casing and a portion that is not radially expanded into engagement with the wellbore casing. In an exemplary embodiment, the tubular liner includes one or more expandable tubular members that each include a tubular body comprising an intermediate portion and first and second expanded end portions coupled to opposing ends of the intermediate portion, and a sealing member coupled to the exterior surface of the intermediate portion, and one or more other tubular members coupled to the expandable tubular members, wherein the inside diameters of the other tubular members are greater than or equal to the maximum inside diameters of the expandable tubular members. In an exemplary embodiment, the tubular liner includes a plurality of expandable tubular members, and the other tubular members are interleaved among the expandable tubular members.

A system for lining a wellbore casing has also been described that includes means for positioning a tubular liner within the wellbore casing, and means for radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing. In an exemplary embodiment, a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing. In an exemplary embodiment, the remaining portions of the tubular liner are not radially expanded. In an exemplary embodiment, the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner. In an exemplary embodiment, the tubular liner includes a plurality of tubular members; and wherein one or more of the tubular members are radially expanded into engagement with the wellbore casing and one or more of the tubular members are not radially expanded into engagement with the wellbore casing. In an exemplary embodiment, the tubular members that are radially expanded into engagement with the well bore casing comprise a portion that is radially expanded into engagement with the wellbore casing and a portion that is not radially expanded into engagement with the wellbore casing.

An apparatus has also been described that includes a subterranean formation defining a borehole, a casing positioned in and coupled to the borehole, and a tubular liner positioned in and coupled to the casing at one or more discrete locations. In an exemplary embodiment, the tubular liner is coupled to the casing at a plurality of discrete locations. In an exemplary embodiment, the tubular liner is coupled to the casing by a process that includes positioning the tubular liner within the casing, and radially expanding one or more discrete portions of the tubular liner into engagement with the casing. In an exemplary embodiment, a plurality of discrete portions of the tubular liner are radially expanded into engagement with the casing. In an exemplary embodiment, the remaining portions of the tubular liner are not radially expanded. In an exemplary embodiment, the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner. In an exemplary embodiment, the tubular liner includes a plurality of tubular members; and wherein one or more of the tubular members are radially expanded into engagement with the casing and one or more of the tubular members are not radially expanded into engagement with the casing. In an exemplary embodiment, the tubular members that are radially expanded into engagement with the casing comprise a portion that is radially expanded into engagement with the casing and a portion that is not radially expanded into engagement with the casing. In an exemplary embodiment, the tubular liner includes one or more expandable tubular members that each include a tubular body comprising an intermediate portion and first and second expanded end portions coupled to opposing ends of the intermediate portion, and a sealing member coupled to the exterior surface of the intermediate portion, and one or more other tubular members coupled to the expandable tubular members, wherein the inside diameters of the other tubular members are greater than or equal to the maximum inside diameters of the expandable tubular members. In an exemplary embodiment, the tubular liner includes a plurality of expandable tubular members, and the other tubular members are interleaved among the expandable tubular members.

A system for lining a wellbore casing has been described that includes a tubular support member defining a first passage; a tubular expansion cone defining a second passage fluidicly coupled to the first passage coupled to an end of the tubular support member and comprising a tapered end; a tubular liner coupled to and supported by the tapered end of the tubular expansion cone; and a shoe defining a valveable passage coupled to an end of the tubular liner; wherein the tubular liner comprises an expandable tubular member that comprises: first and second tubular portions; an intermediate tubular portion coupled between the first and second tubular portions; and a sealing member coupled to the exterior surface of the intermediate tubular portion; wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion; and wherein the inside diameter of the first tubular portion is greater than the inside diameter of the second tubular portion. In an exemplary embodiment, the inside diameter of the first tubular portion is about 5% greater than the inside diameter of the second tubular portion. In an exemplary embodiment, the wall thicknesses of the first and second tubular portions are greater than the wall thickness of the intermediate tubular portion. In an exemplary embodiment, the expandable tubular member further comprises: a first tubular tapered transitionary portion coupled between the first tubular portion and the intermediate tubular portion; and a second tubular tapered transitionary portion coupled between the second tubular portion and the intermediate tubular portion; wherein the angles of inclination of the first and second tapered tubular transitionary portions relative to the intermediate tubular portion ranges from greater than 0 to about 30 degrees. In an exemplary embodiment, the outside diameter of the intermediate tubular portion ranges from about 75 percent to about 98 percent of the outside diameters of the second tubular portion. In an exemplary embodiment, the burst strength of the first and second tubular portions is substantially equal to the burst strength of the intermediate tubular portion. In an exemplary embodiment, the ratio of the inside diameter of the second tubular portion to the interior diameter of the intermediate tubular portion ranges from greater than 100 to about 120 percent. In an exemplary embodiment, the tapered end of the tubular expansion cone comprises a plurality of adjacent discrete tapered sections. In an exemplary embodiment, the angle of attack of the adjacent discrete tapered sections increases in a continuous manner from one end of the tubular expansion cone to the opposite end of the tubular expansion cone. In an exemplary embodiment, the tapered end of the tubular expansion cone comprises a paraboloid body. In an exemplary embodiment, the angle of attack of the outer surface of the paraboloid body increases in a continuous manner from one end of the paraboloid body to the opposite end of the paraboloid body. In an exemplary embodiment, the tubular liner comprises a plurality of expandable tubular members and a plurality of other tubular members, and the other tubular members are interleaved among the expandable tubular members.

A method of lining a wellbore casing has also been described that includes positioning a tubular liner within the wellbore casing; and radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing; wherein the tubular liner comprises an expandable tubular member that comprises: first and second tubular portions; an intermediate tubular portion coupled between the first and second tubular portions; and a sealing member coupled to the exterior surface of the intermediate tubular portion; wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion; and wherein the inside diameter of the first tubular portion is greater than an inside diameter of the second tubular portion. In an exemplary embodiment, the inside diameter of the first tubular portion is about 5% greater than an inside diameter of the second tubular portion. In an exemplary embodiment, a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing. In an exemplary embodiment, the remaining portions of the tubular liner are not radially expanded. In an exemplary embodiment, the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner. In an exemplary embodiment, the tubular liner comprises a plurality of expandable tubular members, wherein one or more of the expandable tubular members are radially expanded into engagement with the wellbore casing, and wherein a plurality of the expandable tubular members are not radially expanded into engagement with the well bore casing.

A system for lining a wellbore casing has also been described that comprises means for positioning a tubular liner within the wellbore casing; and means for radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing; wherein the tubular liner comprises an expandable tubular member that comprises: first and second tubular portions; an intermediate tubular portion coupled between the first and second tubular portions; and a sealing member coupled to the exterior surface of the intermediate tubular portion; wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion; and wherein the inside diameter of the first tubular portion is greater than the inside diameter of the second tubular portion. In an exemplary embodiment, the inside diameter of the first tubular portion is about 5% greater than the inside diameter of the second tubular portion. In an exemplary embodiment, a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing. In an exemplary embodiment, remaining portions of the tubular liner are not radially expanded. In an exemplary embodiment, the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner. In an exemplary embodiment, the tubular liner comprises a plurality of tubular members, wherein one or more of the tubular members are radially expanded into engagement with the wellbore casing, and wherein a plurality of the tubular members are not radially expanded into engagement with the well bore casing.

An apparatus has also been described that comprises a subterranean formation defining a borehole; a casing positioned in and coupled to the borehole; and a tubular liner positioned in and coupled to the casing at one or more discrete locations; wherein the tubular liner comprises a radially expanded and plastically deformed tubular member that comprises: first and second tubular portions; an intermediate tubular portion coupled between the first and second tubular portions; and a sealing member coupled to the exterior surface of the intermediate tubular portion that engages the interior surface of the casing; wherein the intermediate tubular portion is radially expanded and plastically deformed; wherein the first and second tubular portions are not radially expanded and plastically deformed; and wherein the first tubular portion is greater in diameter than the second tubular portion. In an exemplary embodiment, the inside diameter of the first tubular portion is about 5% greater than an inside diameter of the second tubular portion. In an exemplary embodiment, the tubular liner comprises a plurality of radially expanded and plastically deformed tubular members.

A system for lining a wellbore casing has also been described that comprises a support member; an expansion device coupled to an end of the support member; and a tubular liner coupled to the expansion device that comprises: a first expandable tubular member that comprises: first and second tubular portions; a first intermediate tubular portion coupled between the first and second tubular portions; and a first sealing member coupled to the exterior surface of the first intermediate tubular portion; wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion; and wherein the inside diameter of the first tubular portion is greater than an inside diameter of the second tubular portion; and one or more second expandable tubular members that each comprise: third and fourth tubular portions; a second intermediate tubular portion coupled between the third and fourth tubular portions; and a second sealing member coupled to the exterior surface of the second intermediate tubular portion; wherein the inside diameters of the first, second, third and fourth tubular portions are greater than the inside diameters of the first and second intermediate tubular portions. In an exemplary embodiment, the inside diameter of the first tubular portion is about 5% greater than an inside diameter of the second tubular portion. In an exemplary embodiment, the wall thicknesses of the first, second, third and fourth tubular portions are greater than the wall thicknesses of the first and second intermediate tubular portions. In an exemplary embodiment, the first expandable tubular member further comprises: a first tubular tapered transitionary portion coupled between the first tubular portion and the first intermediate tubular portion; and a second tubular tapered transitionary portion coupled between the second tubular portion and the first intermediate tubular portion; wherein the angles of inclination of the first and second tapered tubular transitionary portions relative to the first intermediate tubular portion ranges from greater than 0 to about 30 degrees. In an exemplary embodiment, each of the second expandable tubular members further comprise: a third tubular tapered transitionary portion coupled between the third tubular portion and the second intermediate tubular portion; and a fourth tubular tapered transitionary portion coupled between the fourth tubular portion and the second intermediate tubular portion; wherein the angles of inclination of the third and fourth tapered tubular transitionary portions relative to the second intermediate tubular portion ranges from greater than 0 to about 30 degrees. In an exemplary embodiment, the outside diameters of the first and second intermediate tubular portions each range from about 75 percent to about 98 percent of the outside diameters of the second, third and fourth tubular portions. In an exemplary embodiment, the burst strength of the first, second, third and fourth tubular portions is substantially equal to the burst strength of the first and second intermediate tubular portions. In an exemplary embodiment, the ratio of the inside diameters of the second, third and fourth tubular portions to the interior diameters of the first and second intermediate tubular portions ranges from greater than 100 to about 120 percent. In an exemplary embodiment, the expansion device comprises a plurality of adjacent discrete tapered sections. In an exemplary embodiment, the angle of attack of the adjacent discrete tapered sections increases in a continuous manner from one end of the expansion device to the opposite end of the expansion device. In an exemplary embodiment, the expansion device comprises an paraboloid body. In an exemplary embodiment, the angle of attack of the outer surface of the paraboloid body increases in a continuous manner from one end of the paraboloid body to the opposite end of the paraboloid body.

A liner for lining a wellbore casing has also been described that comprises a first tubular portion; a second tubular portion; an intermediate tubular portion coupled between the first and second tubular portions; and a sealing member coupled to the exterior surface of the intermediate tubular portion; wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion; and wherein the inside diameter of the first tubular portion is greater than the inside diameter of the second tubular portion. In an exemplary embodiment, the inside diameter of the first tubular portion is about 5% greater than the inside diameter of the second tubular portion. In an exemplary embodiment, the wall thicknesses of the first and second tubular portions are greater than the wall thickness of the intermediate tubular portion. In an exemplary embodiment, the liner further comprises a first tubular tapered transitionary portion coupled between the first tubular portion and the intermediate tubular portion; and a second tubular tapered transitionary portion coupled between the second tubular portion and the intermediate tubular portion; wherein the angles of inclination of the first and second tapered tubular transitionary portions relative to the intermediate tubular portion ranges from greater than 0 to about 30 degrees. In an exemplary embodiment, the outside diameter of the intermediate tubular portion ranges from about 75 percent to about 98 percent of the outside diameter of the second tubular portion. In an exemplary embodiment, the ratio of the inside diameter of the second tubular portion to the interior diameter of the intermediate tubular portion ranges from greater than 100 to about 120 percent.

It is understood that variations may be made in the foregoing without departing from the scope of the invention. For example, the system 10 and/or the system 710 may be used to form or repair a wellbore casing, an underground pipeline, a structural support, or a tubing. Furthermore, the system 10 and/or the system 710 may include one or more expandable tubular members and one or more other tubular members. In addition, the system 10 and/or the system 710 may include a plurality of expandable tubular members, and the other tubular members may be interleaved among the expandable tubular members.

Although illustrative embodiments of the invention have been shown and described, a wide range of modification, changes and substitution is contemplated in the foregoing disclosure. In some instances, some features of the present invention may be employed without a corresponding use of the other features. Accordingly, it is appropriate that the appended claims be construed broadly and in a manner consistent with the scope of the invention.

Claims

1. A system for lining a wellbore casing, comprising:

a tubular support member defining a first passage;
a tubular expansion cone defining a second passage fluidicly coupled to the first passage coupled to an end of the tubular support member and comprising a tapered end;
a tubular liner coupled to and supported by the tapered end of the tubular expansion cone; and
a shoe defining a valveable passage coupled to an end of the tubular liner;
wherein the tubular liner comprises an expandable tubular member that comprises: first and second tubular portions; an intermediate tubular portion coupled between the first and second tubular portions; and a sealing member coupled to the exterior surface of the intermediate tubular portion; wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion; and wherein the inside diameter of the first tubular portion is greater than the inside diameter of the second tubular portion.

2. The system of claim 1 wherein the inside diameter of the first tubular portion is about 5% greater than the inside diameter of the second tubular portion.

3. The system of claim 1 wherein the wall thicknesses of the first and second tubular portions are greater than the wall thickness of the intermediate tubular portion.

4. The system of claim 1 wherein the expandable tubular member further comprises:

a first tubular tapered transitionary portion coupled between the first tubular portion and the intermediate tubular portion; and
a second tubular tapered transitionary portion coupled between the second tubular portion and the intermediate tubular portion;
wherein the angles of inclination of the first and second tapered tubular transitionary portions relative to the intermediate tubular portion ranges from greater than 0 to about 30 degrees.

5. The system of claim 1 wherein the outside diameter of the intermediate tubular portion ranges from about 75 percent to about 98 percent of the outside diameters of the second tubular portion.

6. The system of claim 1 wherein the burst strength of the first and second tubular portions is substantially equal to the burst strength of the intermediate tubular portion.

7. The system of claim 1 wherein the ratio of the inside diameter of the second tubular portion to the interior diameter of the intermediate tubular portion ranges from greater than 100 to about 120 percent.

8. The system of claim 1 wherein the tapered end of the tubular expansion cone comprises a plurality of adjacent discrete tapered sections.

9. The system of claim 8 wherein the angle of attack of the adjacent discrete tapered sections increases in a continuous manner from one end of the tubular expansion cone to the opposite end of the tubular expansion cone.

10. The system of claim 1 wherein the tapered end of the tubular expansion cone comprises a paraboloid body.

11. The system of claim 10 wherein the angle of attack of the outer surface of the paraboloid body increases in a continuous manner from one end of the paraboloid body to the opposite end of the paraboloid body.

12. The system of claim 1 wherein the tubular liner comprises a plurality of expandable tubular members and a plurality of other tubular members, and wherein the other tubular members are interleaved among the expandable tubular members.

13. A method of lining a wellbore casing, comprising:

positioning a tubular liner within the wellbore casing; and
radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing;
wherein the tubular liner comprises an expandable tubular member that comprises: first and second tubular portions; an intermediate tubular portion coupled between the first and second tubular portions; and a sealing member coupled to the exterior surface of the intermediate tubular portion; wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion; and wherein the inside diameter of the first tubular portion is greater than an inside diameter of the second tubular portion.

14. The method of claim 13 wherein the inside diameter of the first tubular portion is about 5% greater than an inside diameter of the second tubular portion.

15. The method of claim 13 wherein a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing.

16. The method of claim 15 wherein the remaining portions of the tubular liner are not radially expanded.

17. The method of claim 15 wherein the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner.

18. The method of claim 13 wherein the tubular liner comprises a plurality of expandable tubular members, wherein one or more of the expandable tubular members are radially expanded into engagement with the wellbore casing, and wherein a plurality of the expandable tubular members are not radially expanded into engagement with the well bore casing.

19. A system for lining a wellbore casing, comprising:

means for positioning a tubular liner within the wellbore casing; and
means for radially expanding one or more discrete portions of the tubular liner into engagement with the wellbore casing;
wherein the tubular liner comprises an expandable tubular member that comprises: first and second tubular portions; an intermediate tubular portion coupled between the first and second tubular portions; and a sealing member coupled to the exterior surface of the intermediate tubular portion; wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion; and wherein the inside diameter of the first tubular portion is greater than the inside diameter of the second tubular portion.

20. The system of claim 19 wherein the inside diameter of the first tubular portion is about 5% greater than the inside diameter of the second tubular portion.

21. The system of claim 19 wherein a plurality of discrete portions of the tubular liner are radially expanded into engagement with the wellbore casing.

22. The system of claim 21 wherein remaining portions of the tubular liner are not radially expanded.

23. The system of claim 21 wherein the discrete portions of the tubular liner are radially expanded by injecting a fluidic material into the tubular liner.

24. The system of claim 19 wherein the tubular liner comprises a plurality of tubular members, wherein one or more of the tubular members are radially expanded into engagement with the wellbore casing, and wherein a plurality of the tubular members are not radially expanded into engagement with the wellbore casing.

25. An apparatus, comprising:

a subterranean formation defining a borehole;
a casing positioned in and coupled to the borehole; and
a tubular liner positioned in and coupled to the casing at one or more discrete locations;
wherein the tubular liner comprises a radially expanded and plastically deformed tubular member that comprises: first and second tubular portions; an intermediate tubular portion coupled between the first and second tubular portions; and a sealing member coupled to the exterior surface of the intermediate tubular portion that engages the interior surface of the casing; wherein the intermediate tubular portion is radially expanded and plastically deformed; wherein the first and second tubular portions are not radially expanded and plastically deformed; and wherein the first tubular portion is greater in diameter than the second tubular portion.

26. The apparatus of claim 25 wherein the inside diameter of the first tubular portion is about 5% greater than an inside diameter of the second tubular portion.

27. The system of claim 25 wherein the tubular liner comprises a plurality of radially expanded and plastically deformed tubular members.

28. A system for lining a wellbore casing, comprising:

a support member;
an expansion device coupled to an end of the support member; and
a tubular liner coupled to the expansion device that comprises: a first expandable tubular member that comprises: first and second tubular portions; a first intermediate tubular portion coupled between the first and second tubular portions; and a first sealing member coupled to the exterior surface of the first intermediate tubular portion; wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion; and wherein the inside diameter of the first tubular portion is greater than an inside diameter of the second tubular portion; and one or more second expandable tubular members that each comprise: third and fourth tubular portions; a second intermediate tubular portion coupled between the third and fourth tubular portions; and a second sealing member coupled to the exterior surface of the second intermediate tubular portion; wherein the inside diameters of the first, second, third and fourth tubular portions are greater than the inside diameters of the first and second intermediate tubular portions.

29. The system of claim 28 wherein the inside diameter of the first tubular portion is about 5% greater than an inside diameter of the second tubular portion.

30. The system of claim 28 wherein the wall thicknesses of the first, second, third and fourth tubular portions are greater than the wall thicknesses of the first and second intermediate tubular portions.

31. The system of claim 28 wherein the first expandable tubular member further comprises:

a first tubular tapered transitionary portion coupled between the first tubular portion and the first intermediate tubular portion; and
a second tubular tapered transitionary portion coupled between the second tubular portion and the first intermediate tubular portion;
wherein the angles of inclination of the first and second tapered tubular transitionary portions relative to the first intermediate tubular portion ranges from greater than 0 to about 30 degrees.

32. The system of claim 31 wherein each of the second expandable tubular members further comprise:

a third tubular tapered transitionary portion coupled between the third tubular portion and the second intermediate tubular portion; and
a fourth tubular tapered transitionary portion coupled between the fourth tubular portion and the second intermediate tubular portion;
wherein the angles of inclination of the third and fourth tapered tubular transitionary portions relative to the second intermediate tubular portion ranges from greater than 0 to about 30 degrees.

33. The system of claim 28 wherein the outside diameters of the first and second intermediate tubular portions each range from about 75 percent to about 98 percent of the outside diameters of the second, third and fourth tubular portions.

34. The system of claim 28 wherein the burst strength of the first, second, third and fourth tubular portions is substantially equal to the burst strength of the first and second intermediate tubular portions.

35. The system of claim 28 wherein the ratio of the inside diameters of the second, third and fourth tubular portions to the interior diameters of the first and second intermediate tubular portions ranges from greater than 100 to about 120 percent.

36. The system of claim 28 wherein the expansion device comprises a plurality of adjacent discrete tapered sections.

37. The system of claim 36 wherein the angle of attack of the adjacent discrete tapered sections increases in a continuous manner from one end of the expansion device to the opposite end of the expansion device.

38. The system of claim 28 wherein the expansion device comprises an paraboloid body.

39. The system of claim 38 wherein the angle of attack of the outer surface of the paraboloid body increases in a continuous manner from one end of the paraboloid body to the opposite end of the paraboloid body.

40. A liner for lining a wellbore casing, comprising:

a first tubular portion;
a second tubular portion;
an intermediate tubular portion coupled between the first and second tubular portions; and
a sealing member coupled to the exterior surface of the intermediate tubular portion;
wherein the inside diameters of the first and second tubular portions are greater than the inside diameter of the intermediate tubular portion; and
wherein the inside diameter of the first tubular portion is greater than the inside diameter of the second tubular portion.

41. The liner of claim 40 wherein the inside diameter of the first tubular portion is about 5% greater than the inside diameter of the second tubular portion.

42. The liner of claim 40 wherein the wall thicknesses of the first and second tubular portions are greater than the wall thickness of the intermediate tubular portion.

43. The liner of claim 40 further comprising:

a first tubular tapered transitionary portion coupled between the first tubular portion and the intermediate tubular portion; and
a second tubular tapered transitionary portion coupled between the second tubular portion and the intermediate tubular portion;
wherein the angles of inclination of the first and second tapered tubular transitionary portions relative to the intermediate tubular portion ranges from greater than 0 to about 30 degrees.

44. The liner of claim 40 wherein the outside diameter of the intermediate tubular portion ranges from about 75 percent to about 98 percent of the outside diameter of the second tubular portion.

45. The liner of claim 40 wherein the ratio of the inside diameter of the second tubular portion to the interior diameter of the intermediate tubular portion ranges from greater than 100 to about 120 percent.

46. A method of lining a wellbore casing, comprising:

positioning a tubular liner within the wellbore casing, wherein the tubular liner comprises first and second discrete portions coupled by a conventional threaded connection; and
radially expanding the first and second discrete portions of the tubular liner, including the conventional threaded connection, providing a fluid tight seal between the radially expanded first and second discrete portions.

47. The method of claim 46 wherein radially expanding the first and second discrete portions of the tubular liner and the conventional threaded connection includes radially expanding a diameter of an inner passage extending through the first and second discrete portions and the conventional threaded connection up to about 5%.

48. A system for lining a wellbore casing, comprising:

means for positioning a tubular liner within the wellbore casing, wherein the tubular liner comprises first and second discrete portions coupled by a conventional threaded connection; and
means for radially expanding the first and second discrete portions of the tubular liner, including the conventional threaded connection, providing a fluid tight seal between the radially expanded first and second discrete portions.

49. The system of claim 48 wherein the radially expanding means includes is configured to radially expand a diameter of an inner passage extending through the first and second discrete portions and the conventional threaded connection up to about 5%.

50. A liner for lining a wellbore casing, comprising:

a first tubular portion; and
a second tubular portion;
wherein the first and second tubular portions are coupled by a conventional threaded connection;
wherein the first and second tubular portions and the conventional threaded connection are radially expanded up to about 5%; and
wherein a fluid tight seal is provided between the radially expanded first and second tubular portions by the radially expanded conventional threaded connection.
Patent History
Publication number: 20070169944
Type: Application
Filed: Jan 9, 2007
Publication Date: Jul 26, 2007
Applicant: Enventure Global Technology, L.L.C. (Houston, TX)
Inventors: William Parker (Katy, TX), Charles Butterfield (Cypress, TX)
Application Number: 11/621,245
Classifications
Current U.S. Class: 166/380.000; 166/207.000
International Classification: E21B 23/00 (20060101);