ORTHOTIC FOR CLEAT
An orthotic insert for use in a shoe to support a wearer's foot. The orthotic insert includes a cushion layer having a heel portion adapted to receive a heel of the foot and a toe portion adapted to receive a toe of the foot. A bottom layer extends substantially the length of the cushion layer. A support layer resides between the cushion layer and the bottom layer and extends from about the heel portion toward the toe portion of the cushion layer. The support layer ends in an edge that extends at least partially across a width of the cushion layer. The support layer includes a multilayer carbon fiber and polymer composite having a specified shape adapted to impart support to the foot. The bottom layer substantially covers the edge of the support layer.
This application claims the benefit of and priority to U.S. Provisional Patent Application No. 60/789,867 filed Apr. 6, 2006, the technical disclosures of which are hereby incorporated herein by reference.
STATEMENT REGARDING FEDERALLY SPONSORED RESEARCH OR DEVELOPMENTNot Applicable
THE NAMES OF THE PARTIES TO A JOINT RESEARCH AGREEMENTNot Applicable
INCORPORATION-BY-REFERENCE OF MATERIAL SUBMITTED ON A COMPACT DISCNot Applicable
BACKGROUND OF THE INVENTION1. Field of the Invention
The present disclosure relates to orthotic devices, and more particularly to orthotic inserts for use within footwear.
An orthotic insert or insole may be used in controlling foot function within footwear, such as a wearer's footwear. The orthotic insert may adjust, for example, the angle, the position, the support, or other properties of the foot relative to the insole of the wearer's footwear. By adjusting the foot's angle or position within the footwear, the wearer may experience improved posture, a reduction in pain, or both. Further, when combined with a wearer's footwear, the orthotic insert may relieve pain and improve posture by supporting, for example, the ligaments, the joints, the muscles and the bones of the feet.
2. Description of Related Art
BRIEF SUMMARY OF THE INVENTIONThe present disclosure relates to orthotic devices, and more particularly to orthotic inserts for use within footwear.
In one aspect, an orthotic insert is provided for use in a shoe to support a wearer's foot. The orthotic insert includes a cushion layer having a heel portion adapted to receive the heel of the foot and a toe portion adapted to receive a toe of the foot. A bottom layer extends substantially the length of the cushion layer. A support layer resides between the cushion layer and the bottom layer and extends from about the heel portion toward the toe portion of the cushion layer. The support layer ends in an edge that extends at least partially across a width of the cushion layer. The support layer includes a multilayer carbon fiber and polymer composite having a specified shape adapted to impart support to the foot. The bottom layer substantially covers the edge of the support layer.
The details of one or more embodiments of the invention are set forth in the accompanying drawings and the description below. Other features, objects, and advantages of the invention will be apparent from the description and drawings, and from the claims.
BRIEF DESCRIPTION OF THE SEVERAL VIEWS OF THE DRAWINGSA more complete understanding of the method and apparatus of the present invention may be had by reference to the following detailed description when taken in conjunction with the accompanying drawings, wherein:
Where used in the various figures of the drawing, the same numerals designate the same or similar parts. Furthermore, when the terms “top,” “bottom,” “first,” “second,” “upper,” “lower,” “height,” “width,” “length,” “end,” “side,” “horizontal,” “vertical,” and similar terms are used herein, it should be understood that these terms have reference only to the structure shown in the drawing and are utilized only to facilitate describing the invention.
DETAILED DESCRIPTION OF THE INVENTION Referring to
Additionally, the orthotic device 100 may provide additional impact absorption and dampening to the wearer. The impact absorption and dampening may be provided by an elastic or viscoelastic material. The elastic or viscoelastic material layer may be embedded as one or more layers that may comprise the inner construct of the orthotic device 100 (described in detail with reference to
Referring to
The configuration of the orthotic device 100 may be further described by partitioning the orthotic device 100 into a front portion 130 and a rear portion 140. The front portion 130 of the orthotic device 100 typically comprises a flat, broad section 150. The rear portion 140 of the orthotic device 100 typically comprises an elongated section 160 and an upturned section 170. The front and rear portions 130 and 140 may be further subdivided into sections that correspond to the different areas of the sole of the wearer's foot. The areas of the sole of the wearer's foot comprise the toes, the metatarsal heads, the ball, the midfoot, and the rearfoot. The front portion 130 of the orthotic device 100 may include a toe section 180, a metatarsal head section 190, and a ball section 200. The front portion 130 of the orthotic device 100 may provide support to the wearer's toes, metatarsal heads, and ball. The elongated section 160 and the upturned section 170 of the rear portion 140 of the orthotic device 100 may include a midfoot section 210 and a rearfoot or heel section 220. The rear portion 140 of the orthotic device 100 may provide support to the wearer's midfoot and rearfoot.
In the embodiment shown in
Referring to
As previously mentioned, the elongated and upturned sections 160 and 170 of the rear portion 140 of the orthotic device 100 may be configured so as to provide support to the midfoot and the rearfoot sections of the wearer's foot. Combined, the elongated and upturned sections 160 and 170 may be configured so as to form a plurality of distinct support zones in the rear portion 140 of the orthotic device 100. In the embodiment of
The shape of the four support zones 230, 280, 290, and 300 maybe determined by the support requirements needed to counteract and/or correct a biomechanical condition present in the wearer's foot. The shape of the four support zones 230, 280, 290, and 300 may then be transferred to a support layer 310 that may be configured to counteract or correct the biomechanical condition present in the wearer's foot. The degree of predetermined support and flexibility in the current embodiment of the support layer 310 may be selectively altered from one wearer to another. For example, flexibility and support provided by the support layer 310 may be selected for the wearer based on the wearer's weight, foot size, and the expected activity.
Referring to
The covering layer 320 comprises a flexible material layer that may substantially overlay the entire cushion layer 330 of the orthotic device 100. The covering layer 320 may be fixedly attached, for example, by lamination or adhesive to the cushion layer 330. The covering layer 320 material may comprise, for example, artificial leather as sold under the trademark NAUGAHYDE, neoprene, buff leather, nylon polyester, artificial suede as sold under the trademark ULTRASUEDE, or the like. In the embodiment of
Still referring to
Referring to
The support layer 310 may be formed by selectively angling the carbon fibers of one of the laminate layers in relationship to the orientation of the carbon fibers of one or more of the plurality of laminate layers. By layering multiple sheets of carbon fiber on top of one another at varying fiber orientations and angles (with respect to one another), the support layer 310 may be configured so as to provide flexibility in one area and rigidity in another area. For example, the support layer 310 may be configured such that the flexibility increases towards the front of the support layer 310, i.e. increasing in flexibility toward the ball 200 of the wearer's foot. The support layer may be further configured to be partially flexible in the zone surrounding the arcuate medial arch 230 and substantially rigid in the zone surrounding the axially-extending lateral arch 290. Additionally, the overall flexibility of the support layer 310 can be reduced (i.e. the support layer 310 generally stiffened) for heavier wearers or higher impact applications.
The bottom layer 340 comprises a flexible material layer that may substantially underlie the entire length of the orthotic device 100. The bottom layer 340 may be fixedly attached, for example, by lamination or adhesive to the support and cushion layers 310 and 330. In the embodiment of
Although the invention hereof has been described by way of a preferred embodiment, it will be evident that other adaptations and modifications can be employed without departing from the spirit and scope thereof. For example, some of the steps in the system procedure could be conducted mechanically in addition to those conducted electrically. The terms and expressions employed herein have been used as terms of description and not of limitation; and thus, there is no intent of excluding equivalents, but on the contrary it is intended to cover any and all equivalents that may be employed without departing from the spirit and scope of the invention.
Claims
1. An orthotic insert for use in a shoe to support a wearer's foot, comprising:
- a cushion layer having a heel portion adapted to receive a heel of the foot and a toe portion adapted to receive a toe of the foot;
- a bottom layer extending substantially the length of the cushion layer; and
- a support layer between the cushion layer and the bottom layer and extending from about the heel portion toward the toe portion of the cushion layer and ending in an edge that extends at least partially across a width of the cushion layer, the support layer having a specified shape adapted to impart support to the foot, the bottom layer substantially covering the edge of the support layer.
2. The orthotic insert of claim 1 wherein the support layer comprises a multilayer carbon fiber and polymer composite.
3. The orthotic insert of claim 1 wherein the bottom layer is adapted to resist sticking to the interior of the shoe.
4. The orthotic insert of claim 1 wherein the bottom layer is adapted to substantially prevent contact of the support layer with the shoe.
5. The orthotic insert of claim 1 further comprising a covering layer adjacent the cushion layer and opposite the support layer.
6. The orthotic insert of claim 4 wherein the bottom layer is adhered to the covering layer.
7. The orthotic insert of claim 4 wherein the covering layer is antimicrobial, antibacterial, or antifungal.
8. The orthotic insert of claim 1 wherein the bottom layer is selected from the group consisting of vinyl, leather, artificial leather, and neoprene.
9. The orthotic insert of claim 1 wherein the cushion layer is selected from the group consisting of polystyrene foam, microporous plastic, ethyl vinyl acetate foam, and leather.
10. The orthotic insert of claim 1 wherein the support layer comprises a multilayer polymer composite selected from the group consisting of carbon, carbon fiber, fiberglass, and aramid fiber.
11. The orthotic insert of claim 1 wherein the cushion layer material is specifically chosen to provide predetermined degrees of vibration damping and impact absorption.
12. The orthotic insert of claim 1 wherein the support layer material is specifically chosen to provide predetermined degrees of support and flexibility.
13. The orthotic insert of claim 1 wherein the bottom layer material has a predetermined combination of static and dynamic coefficients of friction such that friction between the bottom layer and the shoe increases with increased pressure applied by the wearer's foot, substantially preventing movement between the shoe and the insert.
Type: Application
Filed: Apr 4, 2007
Publication Date: Oct 11, 2007
Inventor: John Crates (Plano, TX)
Application Number: 11/696,317
International Classification: A43B 13/38 (20060101);