Container having blown pour spout

A one-piece plastic container includes a body defining a longitudinal axis. The body includes an upper portion, a sidewall portion and a base portion. The upper portion includes a spout defining an opening into the container. The sidewall portion may be integrally formed with and extend from the upper portion to the base portion. The base portion closes off an end of the container. The opening defines a first plurality of discontinuous radial pour surfaces.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD

This disclosure generally relates to plastic containers for retaining a commodity, such as a solid or liquid commodity. More specifically, this disclosure relates to a one-piece blown container having a multi-surface pour spout.

BACKGROUND

As a result of environmental and other concerns, plastic containers, more specifically polyester and even more specifically polyethylene terephthalate (PET) containers are now being used more than ever to package numerous commodities previously supplied in glass containers. Manufacturers and fillers, as well as consumers, have recognized that PET containers are lightweight, inexpensive, recyclable and manufacturable in large quantities.

Blow-molded plastic containers have become commonplace in packaging numerous commodities. PET is a crystallizable polymer, meaning that it is available in an amorphous form or a semi-crystalline form. The ability of a PET container to maintain its material integrity relates to the percentage of the PET container in crystalline form, also known as the “crystallinity” of the PET container. The following equation defines the percentage of crystallinity as a volume fraction: % Crystallinity = ( ρ - ρ a ρ c - ρ a ) × 100
where ρ is the density of the PET material; ρa is the density of pure amorphous PET material (1.333 g/cc); and ρc is the density of pure crystalline material (1.455 g/cc).

Container manufacturers use mechanical processing and thermal processing to increase the PET polymer crystallinity of a container. Mechanical processing involves orienting the amorphous material to achieve strain hardening. This processing commonly involves stretching an injection molded PET preform along a longitudinal axis and expanding the PET preform along a transverse or radial axis to form a PET container. The combination promotes what manufacturers define as biaxial orientation of the molecular structure in the container. Manufacturers of PET containers currently use mechanical processing to produce PET containers having approximately 20% crystallinity in the container's sidewall.

Thermal processing involves heating the material (either amorphous or semi-crystalline) to promote crystal growth. On amorphous material, thermal processing of PET material results in a spherulitic morphology that interferes with the transmission of light. In other words, the resulting crystalline material is opaque, and thus, generally undesirable. Used after mechanical processing, however, thermal processing results in higher crystallinity and excellent clarity for those portions of the container having biaxial molecular orientation. The thermal processing of an oriented PET container, which is known as heat setting, typically includes blow molding a PET preform against a mold heated to a temperature of approximately 250° F.-350° F. (approximately 121° C.-177° C.), and holding the blown container against the heated mold for approximately two (2) to five (5) seconds. Manufacturers of PET juice bottles, which must be hot-filled at approximately 185° F. (85° C.), currently use heat setting to produce PET bottles having an overall crystallinity in the range of approximately 25% -35%.

Typically, an upper portion of the plastic container defines an opening. This upper portion is commonly referred to as a finish and includes some means for engaging a cap or closure to close off the opening. In the traditional injection-stretch blow molding process, the finish remains substantially in its injection molded state while the container body is formed below the finish. The finish may include at least one thread extending radially outwardly around an annular sidewall defining a thread profile. In one application a closure member or cap may define a complementary thread, or threads, that are adapted to cooperatively mate with the threads of the finish.

In addition, an alternative method may be used to form the finish portion of the container. This alternative method is known as a blown finish. During this alternative process, the finish portion of the container is created in the blow mold utilizing a process similar to the blow molding process described above. This alternative process enables production of a lighter-weight finish portion, and thus container, than is possible through the traditional injection molding production method. Additionally, when produced utilizing a heat setting process, a blown finish may provide superior heat resistance characteristics as compared to traditional injection molded finishes.

In some applications it may be desirable to provide a spout at the opening of the container. In one example, a spout may be formed as a secondary component and subsequently connected to a container after the container has been blown. In some instances, the spout, once connected to the container, may define a generally circular opening oriented at an angle relative to a longitudinal axis of the container to facilitate pouring. While a container having such a spout improves functionality of the container such as during pouring, the two piece design requires significant material and manufacturing costs. Thus, there is a need for a one-piece container design that has a pourable spout feature incorporated into the finish of the container.

SUMMARY

Accordingly, the present disclosure provides a one-piece plastic container having a body defining a longitudinal axis. The body includes an upper portion, a sidewall portion and a base portion. The upper portion includes a spout defining an opening into the container. The sidewall portion may be integrally formed with and extend from the upper portion to the base portion. The base portion closes off an end of the container. The opening defines a first plurality of discontinuous radial pour surfaces.

According to additional features, the container opening includes a second plurality of discontinuous radial pour surfaces, wherein each of the second plurality of discontinuous radial pour surfaces are alternately arranged with each of the first plurality of discontinuous radial pour surfaces. The first and second plurality of discontinuous radial pour surfaces may be co-planar and substantially transverse to the longitudinal axis. According to one example, each of the first plurality of discontinuous radial pour surfaces defines a smaller radius than each of the second plurality of discontinuous radial pour surfaces.

Additional benefits and advantages of the present disclosure will become apparent to those skilled in the art to which the present disclosure relates from the subsequent description and the appended claims, taken in conjunction with the accompanying drawings. It will also be appreciated by those skilled in the art to which the present disclosure relates that the container of the present disclosure may be manufactured utilizing alternative blow molding processes to those disclosed above.

BRIEF DESCRIPTION OF THE DRAWINGS

FIG. 1 is a side elevational view of a one-piece plastic container constructed in accordance with the teachings of the present disclosure.

FIG. 2 is an elevational perspective view of an upper portion of the container of FIG. 1.

FIG. 3 is a side view of the upper portion of FIG. 2.

FIG. 4 is a top view of the container of FIG. 1; and

FIG. 5 is a sectional view of an exemplary mold cavity used during formation of the container of FIG. 1 and shown with a preform positioned therein.

DETAILED DESCRIPTION

The following description is merely exemplary in nature, and is in no way intended to limit the disclosure or its application or uses.

FIGS. 1-4 show one preferred embodiment of the present container. In the Figures, reference number 10 designates a one-piece plastic, e.g. polyethylene terephthalate (PET), container. As shown in FIG. 1, the container 10 has an overall height A of about 209 mm (8.26 inch). As shown in FIGS. 2-4, the container 10 is substantially cylindrical in cross section. In this particular embodiment, the container 10 has a volume capacity of about 38 fl. oz. (1125 cc). Those of ordinary skill in the art would appreciate that the following teachings of the present disclosure are applicable to other containers, such as rectangular, triangular, hexagonal, octagonal or square shaped containers, which may have different dimensions and volume capacities. It is also contemplated that other modifications can be made depending on the specific application and environmental requirements.

As shown in FIGS. 1-4, the one-piece plastic container 10 according to the present teachings defines a body 12, and includes an upper portion 14 having a spout 18 and a finish 20. Integrally formed with the finish 20 and extending downward therefrom is a shoulder region 22. The shoulder region 22 merges into and provides a transition between the finish 20 and a sidewall portion 24. The sidewall portion 24 extends downward from the shoulder region 22 to a base portion 28 having a base 30. An upper bumper portion 32 may be defined at a transition between the shoulder region 22 and the sidewall portion 24. A lower bumper portion 34 may be defined at a transition between the base portion 28 and the sidewall portion 24.

The exemplary container 10 may also have a neck 36 (FIG. 1). The neck 36 may have an extremely short height, that is, becoming a short extension from the finish 20, or an elongated height, extending between the finish 20 and the shoulder region 22. The plastic container 10 has been designed to retain a commodity. The commodity may be in any form such as a solid or liquid product. In one example, a liquid commodity may be introduced into the container during a thermal process, typically a hot-fill process. For hot-fill bottling applications, bottlers generally fill the container 10 with a liquid or product at an elevated temperature between approximately 155° F. to 205° F. (approximately 68° C. to 96° C.) and seal the container 10 with a closure (not illustrated) before cooling. In addition, the plastic container 10 may be suitable for other high-temperature pasteurization or retort filling processes or other thermal processes as well. In another example, the commodity may be introduced into the container under ambient temperatures.

The plastic container 10 of the present invention is a blow molded, biaxially oriented container with a unitary construction from a single or multi-layer material. A well-known stretch-molding, heat-setting process for making the one-piece plastic container 10 generally involves the manufacture of a preform 40 (FIG. 5) of a polyester material, such as polyethylene terephthalate (PET), having a shape well known to those skilled in the art similar to a test-tube with a generally cylindrical cross section and a length typically approximately fifty percent (50%) that of the resultant container height. An exemplary method of manufacturing the plastic container 10 will be described in greater detail later.

Returning now to FIGS. 1-4, the spout 18 defines an opening 42. The spout 18 assists in channeling, funneling and/or metering the commodity as it is poured from the container 10 through the opening 42. In one example, the opening 42 may define a plane perpendicular to a longitudinal axis 44 of the container 10. It is contemplated however, that the opening 42 may define a plane tilted at an angle relative to the longitudinal axis 44.

The finish 20 of the plastic container 10 may include a threaded region 46 having threads 48, and a lower sealing ridge 50. The threaded region 46 provides a means for attachment of a similarly threaded closure or cap (not illustrated). Alternatives may include other suitable devices that engage the finish 20 of the plastic container 10, such as a press-fit or snap-fit cap for example. Accordingly, the closure or cap (not illustrated) engages the finish 20 to preferably provide a hermetical seal of the plastic container 10. The closure or cap (not illustrated) is preferably of a plastic or metal material conventional to the closure industry and suitable for subsequent thermal processing, including high temperature pasteurization and retort.

A land 52 is formed radially at a transition between the finish 20 and the spout 18. In this way, the spout 18 is radially stepped inward relative to the finish 20. The spout 18 defines a continuous radial sidewall 56 extending from the land 52 toward the opening 42.

With specific reference to FIGS. 2-4, the opening 42 of the spout 18 generally defines a triangular shape. Explained further, the opening 42 generally includes a first plurality of discontinuous radial pour surfaces 60 and a second plurality of discontinuous radial pour surfaces 62. As used herein, the term discontinuous has been used to identify that the opening 42 defines a non-uniform radius. Explained differently, each of the first plurality of discontinuous radial pour surfaces 60 are segmented and terminate at an adjacent second plurality of discontinuous radial pour surfaces 62.

In one example, each of the first plurality of discontinuous radial pour surfaces 60 may be geometrically distinct from each of the second plurality of discontinuous radial pour surfaces 62. According to the example shown, each of the first plurality of discontinuous radial pour surfaces 60 defines a first radius R1, while each of the second plurality of discontinuous radial pour surfaces 62 defines a second radius R2. As illustrated, the first radius R1 is less than the second radius R2. In one example, the first radius R1 may define 2-12 mm (0.08-0.47 inch), while the second radius R2 may define 15-30 mm (0.59-1.18 inch). While each of the first radii R1 shown is equivalent, it is contemplated that some or all of the first radii R1 may be distinct from each other. Likewise, while each of the second radii R2 shown is equivalent, it is contemplated that some or all of the second radii R2 may be distinct from each other.

Each of the first plurality of discontinuous radial pour surfaces 60 cooperates with the radial sidewall 56 to define a first plurality of annular pouring grooves 66. Each of the second plurality of discontinuous radial pour surfaces 62 cooperates with the radial sidewall 56 to define a second plurality of annular pouring grooves 68.

As will become appreciated, the opening 42 of the spout 18 provides a user with multiple pouring options. In one example, a user may tilt the container 10, such as along the longitudinal axis 44, thereby defining a tilt angle in a direction toward one of the first plurality of discontinuous radial pour surfaces 60 (or first plurality of annular pouring grooves 66). In another example, when tilting the container 10 in a direction toward one of the first plurality of annular pouring grooves 66, a portion or all of the commodity may be directed toward one of the first plurality of annular pouring grooves 66 by an adjacent one of the second plurality of annular pouring grooves 68. In this way, the selected first plurality of annular pouring grooves 66 of the spout 18 may direct the commodity in a controlled, metered manner when poured from the container 10.

Explained further, a commodity may be directed out of the opening 42 in a relatively compact stream by utilizing one of the first plurality of annular pouring grooves 66. If a user desires to pour contents out of the container 10 more rapidly and/or in a wider stream, the container 10 may be tilted in a direction toward one of the second plurality of annular pouring grooves 68.

In another advantage, each of the respective first and second plurality of discontinuous radial pour surfaces 60, 62 (or respective first and second plurality of annular pouring grooves 66, 68) are arranged at about 120 degrees from each other around the opening 42. As a result, a user may grasp the container 10 and arbitrarily choose a direction to tilt the container 10 during pouring. If the resultant stream, or control of pour is unsatisfactory, a user may simply rotate the container about 60 degrees (about its axis 44) to align with another one of the first and second plurality of discontinuous radial pour surfaces 60, 62 (or respective first and second plurality of annular pouring grooves 66, 68). It is appreciated that altering the tilt angle during pouring will also influence the effect of the respective first and second plurality of annular pouring grooves 66, 68, and the flow rate as a whole.

With continued reference now to FIGS. 1-3, exemplary dimensions for the upper portion 14 will be described. It is appreciated that other dimensions may be used. A diameter D1 of the spout 18 may be 61.5 mm (2.42 inch). A diameter D2 of the finish 20 may be 67.46 mm (2.66 inch). A diameter D3 of the lower sealing ridge 50 may be 73.91 mm (2.91 inch). The body 12 may define a diameter D4 of 83.42 mm (3.30 inch) at a label portion. A diameter D5 of the upper and lower bumper portions 32 and 34, respectively, may be 88.09 mm (3.50 inch). An angle α2 at which the lower sealing ridge 50 extends from a line perpendicular to the finish 20 may be about 45 degrees. An angle α3 at which the shoulder region 22/neck 36 extends from a line perpendicular to the finish 20 may be about 62 degrees. A radius R3 between the land 52 and the spout 18 may be 3.00 mm (0.12 inch). Radii R4 and R5 defined at the transition between the finish 20 and the lower sealing ridge 50 may be 1.52 mm (0.06 inch).

Turning now to FIG. 5, an exemplary method of forming the container 10 will be described. The preform 40 includes a support ring 78, which may be used to carry or orient the preform 40 through and at various stages of manufacture. For example, the preform 40 may be carried by the support ring 78, the support ring 78 may be used to aid in positioning the preform 40 in the mold cavity 80, or the support ring 78 may be used to carry an intermediate container once molded. At the outset, the preform 40 may be placed into a mold cavity 80 such that the support ring 78 is captured at an upper end of the mold cavity 80. In general, the mold cavity 80 has an interior surface corresponding to a desired outer profile of the blown container. More specifically, the mold cavity 80 according to the present teachings defines a body forming region 82, a moil forming region 84 and a spout forming region 86. Once the resultant structure, hereinafter referred to as an intermediate container, has been formed, a moil created by the moil forming region 84 may be severed and discarded. It is appreciated that the step of severing the moil defines the opening 42 of the container 10.

In one example, a machine (not illustrated) places the preform 40 heated to a temperature between approximately 190° F. to 250° F. (approximately 88° C. to 121° C. ) into the mold cavity 80. The mold cavity 80 may be heated to a temperature between approximately 250° F. to 350° F. (approximately 121° C. to 177° C.). A stretch rod apparatus (not illustrated) stretches or extends the heated preform 40 within the mold cavity 80 to a length approximately that of the intermediate container thereby molecularly orienting the polyester material in an axial direction generally corresponding with the central longitudinal axis 44 of the container 10. While the stretch rod extends the perform 40, air having a pressure between 300 PSI to 600 PSI (2.07 MPa to 4.14 MPa) assists in extending the preform 40 in the axial direction and in expanding the preform 40 in a circumferential or hoop direction thereby substantially conforming the polyester material to the shape of the mold cavity 80 and further molecularly orienting the polyester material in a direction generally perpendicular to the axial direction, thus establishing the biaxial molecular orientation of the polyester material in most of the intermediate container. The pressurized air holds the mostly biaxial molecularly oriented polyester material against the mold cavity 80 for a period of approximately two (2) to five (5) seconds before removal of the intermediate container from the mold cavity 80. This process is known as heat setting and results in a heat-resistant container suitable for filling with a product at high temperatures.

In another example, a machine (not illustrated) places the preform 40 heated to a temperature between approximately 185° F. to 239° F. (approximately 85° C. to 115° C.) into the mold cavity 80. The mold cavity 80 may be chilled to a temperature between approximately 32° F. to 75° F. (approximately 0° C. to 24° C.). A stretch rod apparatus (not illustrated) stretches or extends the heated preform 40 within the mold cavity 80 to a length approximately that of the intermediate container thereby molecularly orienting the polyester material in an axial direction generally corresponding with the central longitudinal axis 44 of the container 10. While the stretch rod extends the preform 40, air having a pressure between 300 PSI to 600 PSI (2.07 MPa to 4.14 MPa) assists in extending the preform 40 in the axial direction and in expanding the preform 40 in a circumferential or hoop direction thereby substantially conforming the polyester material to the shape of the mold cavity 80 and further molecularly orienting the polyester material in a direction generally perpendicular to the axial direction, thus establishing the biaxial molecular orientation of the polyester material in most of the intermediate container. The pressurized air holds the mostly biaxial molecularly oriented polyester material against the mold cavity 80 for a period of approximately two (2) to five (5) seconds before removal of the intermediate container from the mold cavity 80. This process is utilized to produce containers suitable for filling with product under ambient conditions or cold temperatures.

Alternatively, other manufacturing methods using other conventional materials including, for example, polyethylene naphthalate (PEN), a PET/PEN blend or copolymer, and various multilayer structures may be suitable for the manufacture of plastic container 10. Those having ordinary skill in the art will readily know and understand plastic container manufacturing method alternatives.

One advantage of the present disclosure is that the mold cavity 80 may be easily manipulated to alter the geometry of any of the first and second plurality of annular pouring grooves 66, 68 and/or the size of the generally triangular opening 42 as a whole. This size adjustment capability will allow for a simple design change when a determination of the pour rate is either known or needs to be determined. Those skilled in the art will appreciate that the pour rate can easily be determined for a given solid or liquid commodity based on the molecular properties of the solid or liquid commodity, size of the opening, angle of descent and other properties. In this way, the size of the generally triangular opening 42 may be specifically determined for a given commodity and be easily incorporated into the mold cavity 80 design.

While the above description constitutes the present disclosure, it will be appreciated that the disclosure is susceptible to modification, variation and change without departing from the proper scope and fair meaning of the accompanying claims.

Claims

1. A one-piece plastic container comprising:

a body defining a longitudinal axis and having an upper portion, a sidewall portion and a base portion, said upper portion having a spout defining an opening into said container, said sidewall portion integrally formed with and extending from said upper portion to said base portion, said base portion closing off an end of said container, wherein said opening defines a first plurality of discontinuous radial pour surfaces.

2. The one-piece plastic container of claim 1 wherein said opening further defines a second plurality of discontinuous radial pour surfaces, each of said second plurality of discontinuous radial pour surfaces being alternately arranged with each of said first plurality of discontinuous radial pour surfaces.

3. The one-piece plastic container of claim 2 wherein said first and second plurality of discontinuous radial pour surfaces are co-planar.

4. The one-piece plastic container of claim 3 wherein said first and second plurality of discontinuous radial pour surfaces are each substantially transverse to said longitudinal axis.

5. The one-piece plastic container of claim 4 wherein each of said first plurality of discontinuous radial pour surfaces defines a smaller radius than each of said second plurality of discontinuous radial pour surfaces.

6. The one-piece plastic container of claim 2 wherein a transition between one of said first plurality of discontinuous radial pour surfaces and an adjacent one of said second plurality of discontinuous radial pour surfaces defines a convex surface relative to said longitudinal axis.

7. The one-piece plastic container of claim 6 wherein said first plurality of discontinuous radial pour surfaces consists of three discontinuous radial pour surfaces equidistantly spaced about said opening.

8. The one-piece plastic container of claim 1 wherein said upper portion includes a finish defining a means for attaching a closure thereon.

9. The one-piece plastic container of claim 1 wherein said upper portion defines a continuous radially tapering wall extending from said finish to said opening.

10. The one-piece plastic container of claim 9 wherein said spout extends from a land formed at a transition between said finish and said spout.

11. The one-piece plastic container of claim 10 wherein said spout extends radially from said land.

12. The one-piece plastic container of claim 2 wherein said container is composed of polyethylene terephthlate.

13. The one-piece plastic container of claim 12 wherein each of said upper portion, said sidewall portion, and said base portion are biaxially oriented.

14. A one-piece plastic container comprising:

an upper portion having a spout defining an opening into the container;
a shoulder region integrally formed with and extending from said upper portion; and
a sidewall portion extending from said shoulder region to a base portion, said base portion closing off an end of the container;
wherein said spout defines a first plurality of annular pouring grooves alternatively oriented between a second plurality of annular pouring grooves, wherein each of said first and second plurality of annular pouring grooves are adapted to channel product out of the container during pouring.

15. The one-piece plastic container of claim 14 wherein each of said first and second plurality of annular pouring grooves define a concave surface relative to a longitudinal axis defined by the container.

16. The one-piece plastic container of claim 15 wherein a transition between one of said first plurality of annular pouring grooves to an adjacent one of said second plurality of annular pouring grooves defines a convex surface relative to said longitudinal axis.

17. The one-piece plastic container of claim 14 wherein said upper portion includes a finish defining a means for attaching a closure thereon.

18. The one-piece plastic container of claim 16 wherein said upper portion defines a continuous radially tapering wall extending from said finish to said opening.

19. The one-piece plastic container of claim 18 wherein said spout extends radially from a land formed at a transition between said finish and said spout.

20. The one-piece plastic container of claim 19 wherein said first and second plurality of annular pouring grooves are co-planar.

21. The one-piece plastic container of claim 20 wherein said first and second plurality of annular pouring grooves define a plane substantially transverse to said longitudinal axis.

22. A one-piece plastic container comprising:

a body defining a longitudinal axis and having an upper portion, a sidewall portion and a base portion, said upper portion having a spout defining an opening into said container, said sidewall portion integrally formed with and extending from said upper portion to said base portion, said base portion closing off an end of said container, wherein said opening defines a first plurality of radial pour surfaces having a first radius and a second plurality of radial pour surfaces having a second radius, said first radius being smaller than said second radius.
Patent History
Publication number: 20070235477
Type: Application
Filed: Apr 11, 2006
Publication Date: Oct 11, 2007
Inventors: Michael Penny (Saline, MI), Walter Strasser (Cement City, MI)
Application Number: 11/402,314
Classifications
Current U.S. Class: 222/566.000
International Classification: B65D 35/38 (20060101);