Air Guide for front end cooling

-

An air guide system (32) for a vehicle front end structure (20) includes a first air guide (34) and a second air guide (36). Each air guide (34, 36) includes a body (40) attachable to a front-end carrier (28) and a serpentine compression section (28) coupled to the body and configured to project from a frontward facing side (33) of the front-end carrier (44). The first and second air guides (34, 36) project toward a vehicle fascia (26), and each serpentine compression section (44) collapses in response to interference from the vehicle fascia (26) to create a seal between a cooling module (30) and the vehicle fascia (26).

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
TECHNICAL FIELD OF THE INVENTION

The present invention relates to the field of air management in a vehicular front end. More specifically, the present invention relates to an air guide for front end cooling.

BACKGROUND OF THE INVENTION

A motor vehicle, such as an automobile, truck, and the like, typically has an engine compartment located at the front of the vehicle. In general, an internal front end support structure bridges the front of the engine compartment and supports a radiator that is part of the engine's cooling system. When the vehicle is equipped with air conditioning, a condenser mounts in front of the radiator. The condenser and radiator are cooled by air that passes through them. The air may be forced through the condenser and radiator by ram air effect when the vehicle is in forward motion, and/or by being drawn through the condenser and radiator by a cooling fan typically located directly behind the radiator.

In some vehicles the front end support structure is known as a front-end carrier, and is one component of a front end module. The front end module integrates the front-end carrier and several components, including the radiator, air conditioning condenser, electric fan, motor, and air duct into one unit. The functions of the various components are integrated in a front end module to create better performance, and to enhance installation efficiency during vehicle assembly.

The duct, also known as an air guide, is typically integrated with and positioned in front of the front-end carrier. The air guide functions to introduce outside air into the condenser and radiator, while limiting recirculation of hot air from the engine compartment. The vehicle fascia and bumper are located in front of the air guide so that the air guide interfaces with the vehicle fascia and bumper. The vehicle fascia is an aesthetically pleasing component, while offering advantages of stylization freedom, impact resistance, less expense to replace than their metal equivalents, and so forth. The majority of modern plastic car bumper system fascias are made of thermoplastic olefins (TPOs), polycarbonates, polyesters, polypropylene, polyurethanes, polyamides, or blends of these with, for instance, glass fibers for strength and structural rigidity.

A typical air guide is relatively stiff, and some design requirements call for a-gap between the air guide and vehicle fascia. This gap is required so that the relatively stiff air guide does not come into contact with the vehicle fascia which can make vehicle fascia assembly difficult and which can potentially damage the vehicle fascia and/or the air guide during assembly. Unfortunately, this gap allows warm air to recirculate, thus reducing performance of the heating, ventilation, and air conditioning (HVAC) system of the vehicle.

In some instances, a material such as, thermoplastic elastomer, thermoplastic vulcanizate, and other rubber or foam materials, is attached to the edge of the air guide to provide a soft contact to the vehicle fascia. This material also serves to close or fill the aforementioned gap. Unfortunately, addition of a material onto the air guide increases the cost of the air guide in terms of both materials and labor. Moreover, this material may eventually disintegrate or become disengaged from the air guide so that the gap once again becomes problematic in terms of reducing performance of the HVAC system.

Yet another problem with some prior art air guides is that compression of the air guide by the vehicle fascia during assembly can cause the air guide to twist inboard thus reducing the open surface area in front of the condenser/radiator. Of course, any blockage restricts the amount of air that is able to flow through the condenser/radiator thereby further reducing HVAC system performance.

SUMMARY OF THE INVENTION

Accordingly, it is an advantage of the present invention that an air guide for a vehicle is provided.

It is another advantage of the present invention that an air guide is provided that produces a tight seal between a front end support structure and a vehicle component.

Another advantage of the present invention is that an air guide is provided that is resistant to twisting during compression.

Yet another advantage of the present invention is that an air guide is provided that is cost effectively produced and installed onto a front end support structure of a vehicle.

The above and other advantages of the present invention are carried out in one form by an air guide system for a vehicle. The air guide system includes a body attachable to a front end structure of the vehicle, and a serpentine compression section having a first end coupled to the body and a second end displaced from the body.

The above and other advantages of the present invention are carried out in another form by an air guide system for a vehicle. The air guide system includes a body attachable to a front end structure of the vehicle, the body exhibiting a first thickness. The air guide system further includes a serpentine compression section having a first curved portion and a second curved portion. The first curved portion has a first end coupled to the body. The second curved portion is spaced from the first curved portion in a radial direction and has a second end displaced from the body. The serpentine compression section exhibits a second thickness, the second thickness being less than the first thickness.

BRIEF DESCRIPTION OF THE DRAWINGS

A more complete understanding of the present invention may be derived by referring to the detailed description and claims when considered in connection with the Figures, wherein like reference numbers refer to similar items throughout the Figures, and:

FIG. 1 shows an exploded perspective view of a portion of a vehicle front end;

FIG. 2 shows a front view of an air guide of the vehicle front end in accordance with a preferred embodiment of the present invention; and

FIG. 3 shows a sectional view of the air guide along section lines 3-3 in FIG. 2.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS

FIG. 1 shows an exploded perspective view of a portion of a vehicle front end 20. Vehicle front end 20 includes a front end module 22, a front bumper 24, and a vehicle fascia 26. Front bumper 24 is positioned in front of front end module 22, and vehicle fascia 26 is positioned in front of front bumper 24, thus in front of front end module 22. Of course, those skilled in the art will recognize that vehicle front end 20 includes various conventional parts including, but not limited to headlights, headlight housings, horn, hood lock, sensors, structural members, and so forth, not shown for clarity of illustration.

Front end module 22 includes a front end structure typically known as a front-end carrier 28, a cooling module 30 assembled to a rearward facing side 31 of front-end carrier 28, and an air guide system 32 assembled to and projecting from a frontward facing side 33 of front-end carrier 28. Cooling module 30 includes a radiator, and may optionally include an air conditioning condenser. Front end module 22 can include additional components, not illustrated herein for simplicity, such as an electric fan, motor, and the like known to those skilled in the art.

Air guide system 32 includes a first air guide 34 and a second air guide 36 formed as mirror image of first air guide 34. First and second air guides 34 and 36, respectively, are shaped to accommodate placement of front bumper 24. Each of air guides 32 couples to a periphery 38 about central openings 39 of front-end carrier 28 and projects toward vehicle fascia 26 to form a seal between front-end carrier 28 and vehicle fascia 26. Air is guided by air guide system 32 through central openings 39 of front-end carrier 28 and is forced through cooling module 30 by ram air effect when the vehicle is in forward motion, and/or by being drawn through cooling module 30 by a cooling fan (not shown) typically located directly behind cooling module 30.

Referring to FIGS. 2-3, FIG. 2 shows a front view of first air guide 34 of vehicle front end 20 (FIG. 1) in accordance with a preferred embodiment of the present invention. FIG. 3 shows a sectional view of first air guide 34 along section lines 3-3 in FIG. 2. Since air guides 32 (FIG. 1) are formed as a mirror image of one another, the following discussion applies equally to second air guide 36 (FIG. 1).

First air guide 34 includes a body 40 having clips 42 attachable of periphery 38 (FIG. 1) of front-end carrier 28 (FIG. 1). First air guide 34 further includes a serpentine compression section.44 having a first edge 46 coupled to body 40 and a second edge 48 displaced from body 40. First air guide 34 may be formed from thermoplastic olefin (TPO), a saturated polymer blend typically consisting of some fraction of polypropylene, polyethylene, rubber, and a reinforcing filler, or other rubber-like materials known to those skilled in the art.

In a preferred embodiment, serpentine compression section 44 is an S-shaped member that includes a first curved portion 50 having first edge 46 and a second curved portion 52 having second edge 48. More descriptively, first curved portion 50 exhibits a first concave surface 54. Second curved portion 52 exhibits a second concave surface 56 arranged in opposing relation (i.e., facing) first concave surface and spaced from first curved portion 50 in a radial direction 58.

The term “serpentine” used in connection with compression section 44 signifies the wave-like or zigzag profile of compression section 44. The serpentine shape of compression section 44 enables compression section 44 to collapse behind vehicle fascia 26 (FIG. 1), i.e., like an accordion, when fascia 26 and/or front bumper 24 presses on second edge 48. This provides a tight seal between first air guide 34 and vehicle fascia 26 thereby preventing the recirculation of hot air. In addition, the serpentine shape of compression section 44 largely prevents the twisting problem seen in some prior art air guides.

Although the S-shaped profile of serpentine compression section 44 only includes two curved portions, i.e., first curved portion 50 and second curved portion 52, it should be understood that in an alternative embodiment, serpentine compression section 44 may include more than two contiguous curved portions, or may include a zigzag pattern of multiple reversing acute angles.

First curved portion 50 includes a third edge 60, and second curved portion 52 includes a fourth edge 62. First and third edges 46 and 60, respectively, of first curved portion 50 are generally aligned with second and fourth edges 48 and 62, respectively, of second curved portion 52 and a transverse dimension 63 of body 40 to facilitate the non-twisting compression attribute of serpentine compression section 44.

First curved portion 50 of serpentine compression section 44 exhibits a first depth 64 and a first width 66. Similarly, second curved portion 52 of serpentine compression section 44 exhibits a second depth 68 and a second width 70. In this exemplary embodiment, first depth 64 is substantially equivalent to first width 66, and second depth 68 is substantially equivalent to second width 70. Moreover, second depth 68 is greater than first depth 64 (approximately twice as deep) and second width 70 is greater than first width 66 (again approximately twice as wide). These dimensions enhance the compressibility of serpentine compression section 44 without expanding wide enough during its collapse to block central openings 39 (FIG. 1) and adversely affect air flow through cooling module 30 (FIG. 1). Those skilled in the art will recognize that the depth and width of first and second curved portions 50 and 52, respectively, can take on different dimensions that readily enable compression without blocking central opening 39.

Body 40 exhibits a first thickness 72, and serpentine compression section 44 exhibits a second thickness 74 that is less than first thickness 72. For example, first thickness 72 may be one and a half millimeters, and second thickness 74 may be only one millimeter. This reduction of material thickness between body 40 and serpentine compression section 44 advantageously enables significant collapse of serpentine compression section 44 when assembling vehicle fascia 26 (FIG. 1) to vehicle front end 20. Furthermore, the greater thickness of body 40 relative to serpentine compression section 44 largely prevents deflections of body 40 that could potentially restrict airflow through central openings 39.

First air guide 34 may further optionally include relief cuts 76 to soften first air guide 34 locally. When there is interference with vehicle fascia 26, the ready collapse and soft contact of serpentine compression section 44 eliminates the need for a gap between the air guide and vehicle fascia. Moreover, a seal is created without the need for the attachment of additional material to the edge of first air guide 34 to provide a soft contact to the vehicle fascia. Consequently, the single piece construction, decreases materials and labor costs for assembly.

In summary, the present invention teaches of an air guide for a vehicle. The air guide includes a serpentine compression section that readily collapses when there is an interference with a vehicle component, such as the vehicle fascia, to produce a tight seal between a vehicular front end support structure and the vehicle component. Moreover, the wave-like or zigzag cross-sectional shape of serpentine compression section and the thinner profile of compression section relative to the body cause the compression section to readily collapse with very little twist. The one-piece construction of the air guide can be cost effectively produced and installed onto a front-end carrier of a vehicle.

Although the preferred embodiments of the invention have been illustrated and described in detail, it will be readily apparent to those skilled in the art that various modifications may be made therein without departing from the spirit of the invention or from the scope of the appended claims.

Claims

1. An air guide system for a vehicle comprising:

a body attachable to a front end structure of said vehicle; and
a serpentine compression section having a first edge coupled to said body and a second edge displaced from said body.

2. An air guide system as claimed in claim 1 wherein said serpentine compression section is an S-shaped member.

3. An air guide system as claimed in claim 1 wherein said serpentine compression section includes:

a first curved portion having said first edge; and
a second curved portion spaced from said first curved portion in a radial direction, said second curved portion having said second edge.

4. An air guide system as claimed in claim 3 wherein:

said first curved portion exhibits a first concave surface; and
said second curved portion exhibits a second concave surface arranged in opposing relation to said first concave surface.

5. An air guide system as claimed in claim 3 wherein:

said first curved portion includes a third edge; and
said second curved portion includes a fourth edge, said first and third edges of said first curved portion being in alignment with said second and fourth edges of said second curved portion and a transverse dimension of said body.

6. An air guide system as claimed in claim 3 wherein:

said first curved portion exhibits a first depth and a first width; and
said second curved portion exhibits a second depth and a second width, said second depth being greater than said first depth and said second width being greater than said first width.

7. An air guide system as claimed in claim 3 wherein:

said first curved portion exhibits a first depth and a first width substantially equivalent to said first depth; and
said second curved portion exhibits a second depth and a second width substantially equivalent to said second depth.

8. An air guide system as claimed in claim 1 wherein:

said body exhibits a first thickness; and
said serpentine compression section exhibits a second thickness, said second thickness being less than said first thickness.

9. An air guide system as claimed in claim 1 wherein said serpentine compression section is configured to project from a frontward facing side of said front end structure.

10. An air guide system as claimed in claim 1 wherein said front end structure is a front-end carrier for supporting a cooling module, said vehicle further includes fascia positioned in front of said front-end carrier, and said serpentine compression section is configured to project toward said fascia to form a seal between said cooling module and said fascia.

11. An air guide system as claimed in claim 10 wherein said air guide is a first air guide attachable to a first edge of said front-end carrier, and said air guide system further comprises a second air guide having a second serpentine compression section formed as a mirror image of said serpentine compression section, said second air guide being attachable to a second edge of said front-end carrier, and said second air guide being configured to project toward said fascia to form said seal between said cooling module and said fascia.

12. An air guide system for a vehicle comprising:

a body attachable to a front end structure of said vehicle, said body exhibiting a first thickness; and
a serpentine compression section having a first curved portion and a second curved portion, said first curved portion having a first edge coupled to said body, said second curved portion being spaced from said first curved portion in a radial direction and having a second edge displaced from said body, and said serpentine compression section exhibiting a second thickness, said second thickness being less than said first thickness.

13. An air guide system as claimed in claim 12 said first curved portion exhibits a first concave surface; and

said second curved portion exhibits a second concave surface arranged in opposing relation to said first concave surface.

14. An air guide system as claimed in claim 12 wherein:

said first curved portion includes a third edge; and
said second curved portion includes a fourth edge, said first and third edges of said first curved portion being in alignment with said second and fourth edges of said second curved portion and a transverse dimension of said body.

15. An air guide system as claimed in claim 12 wherein:

said first curved portion exhibits a first depth and a first width; and
said second curved portion exhibits a second depth and a second width, said second depth being greater than said first depth and said second-width being greater than said first width.

16. An air guide system as claimed in claim 12 wherein:

said first curved portion exhibits a first depth and a first width substantially equivalent to said first depth; and
said second curved portion exhibits a second depth and a second width substantially equivalent to said second depth.

17. An air guide system for a vehicle comprising:

a body attachable to a front end structure of said vehicle; and
an S-shaped compression section having a first edge coupled to said body and a second edge displaced from said body, said S-shaped compression section being configured to project from a frontward facing side of said front end structure.

18. An air guide system as claimed in claim 17 wherein said front end structure is a front-end carrier for supporting a cooling module, said vehicle further includes fascia positioned in front of said front-end carrier, and said S-shaped compression section is configured to project toward said fascia to form a seal between said cooling module and said fascia.

19. An air guide system as claimed in claim 18 wherein said air guide is a first air guide attachable to a first edge of said front-end carrier, and said air guide system further comprises a second air guide having a second S-shaped compression section formed as a mirror image of said S-shaped compression section, said second air guide being attachable to a second edge of said front-end carrier, and said second air guide being configured to project toward said fascia to form said seal between said cooling module and said fascia.

Patent History
Publication number: 20070243818
Type: Application
Filed: Mar 30, 2006
Publication Date: Oct 18, 2007
Applicant:
Inventor: Devlin Clarke (Canton, MI)
Application Number: 11/395,615
Classifications
Current U.S. Class: 454/320.000
International Classification: F24F 13/14 (20060101);