Bracket for attaching column to a structural support

A connecting bracket, for attaching a columnar building member to a structural support member, includes a horizontal ring-shaped base surface having an inner perimeter and an outer perimeter, with a plurality of spaced non-uniform apertures disposed along the horizontal ring-shaped surface. A vertical ring-shaped surface extends from the inner perimeter of the horizontal surface, with the perimeter of the vertical surface conforming to the inner perimeter of the horizontal surface, and with a plurality of spaced non-uniform apertures disposed along the vertical ring-shaped surface. The columnar building member is attached to the connecting bracket via a fastening device through one or more of the spaced apertures disposed along the vertical ring-shaped surface. The columnar building member and connecting bracket are attached to the structural support member via a fastening device through one or more of the spaced apertures disposed along the horizontal ring-shaped surface.

Skip to: Description  ·  Claims  · Patent History  ·  Patent History
Description
BACKGROUND OF THE INVENTION

1. Field of the Invention

The present invention relates generally to brackets or connectors for building materials, and more particularly to a connecting bracket providing a comprehensive positive connection between a support column and a slab, pier, girder or structural frame of a building.

2. Description of the Related Art

With the escalating costs of building materials, especially lumber, many companies have developed pre-engineered polymer and fiberglass materials for use as support structures in commercial and residential construction.

At the same time, the monumental costs for rebuilding inferior structures after natural disasters has caused communities to enact tougher building codes and standards to minimize damage from future natural disasters, thereby hopefully lowering replacement costs and saving lives. Accordingly, building designers and engineers must now factor both cost and safety requirements into their new designs.

In particular, hollowed polymer and fiberglass columns are used extensively for porches, porticos, decks, as well as interior design appurtenances. A problem arises when a contractor seeks to secure these columns to the structural counterparts they transfer the loads to. While the particular column manufacturing company typically supplies a technical data sheet for installation, such data sheets are often incomplete, or provide minimal guidelines. Frequently, the contractor is instructed to check with local state and/or federal building codes for proper installation. In a bit of circular logic, many of the building codes themselves (e.g., the International Building Code or IBC) will state that a product should be installed in accordance with the manufacturer's product specification.

Left with minimal guidance and subjective standards, many contractors/installers resort to ad hoc or self-created connection mechanisms, with the result that such structures are not in compliance with building codes, and are inadequate to properly withstand the wind, seismic or other destructive forces experienced in natural disasters.

For example, as shown in FIGS. 1A and 1B, installers generally use “L” shaped brackets 90 to connect the support column 80 to wherever they can get an attachment point on the structural frame 95. In some cases, there may be three (or more) attachment points, but in other cases there are two attachment points, and in egregious cases, only one attachment point. The attachments points are usually covered with a decorative collar, so it is difficult for anyone to determine the structural integrity of the project.

In any case, these “L” brackets provide limited axial load support, load transfer, lateral support and shear value from the column 80 to the structural counterpart 95. These concentrated point connections do not transfer the load around the entire circumference of the column, severely reducing the load transfer capabilities for wind, snow, seismic and lateral forces.

In another typical installation shown in FIG. 2, a lag bolt 140 or concrete bolt is fastened to the end of a strap or cable 145. This device is threaded through the hollow column 80 and then secured to the structural component above the column. This method limits the lateral impact to the column and is also harder to install. That is because the process involves jacking (in the direction denoted by the arrow 150) of the upper load to slide the structural hollow column 80 into its final location.

What is needed, therefore, is a connecting bracket that provides a shear connection around the entire circumference or perimeter of the column. What is also needed is a device that can connect and transfer the loads efficiently and with stronger lateral integrity.

SUMMARY OF THE INVENTION

To overcome the above described and other disadvantages of the prior art, embodiments of the invention provide for a collar-type connecting device with two surfaces; a vertical for attaching a support column to the connecting device and a horizontal surface for attaching the connecting device to a structural member.

More specifically, embodiments of the invention described herein provide for a connecting bracket, for attaching a columnar building member to a structural support member, including a horizontal ring-shaped base surface having an inner perimeter and an outer perimeter, with a plurality of spaced non-uniform apertures disposed along the entire horizontal ring-shaped surface. A vertical ring-shaped surface extends from the inner perimeter of the horizontal surface, with the perimeter of the vertical surface conforming to the inner perimeter of the horizontal surface, and with a plurality of spaced non-uniform apertures disposed along the entire vertical ring-shaped surface. The columnar building member is attached to the connecting bracket via a fastening device through one or more of the spaced apertures disposed along the entire vertical ring-shaped surface. The columnar building member and connecting bracket are attached to the structural support member via a fastening device through one or more of the spaced apertures disposed along the entire horizontal ring-shaped surface.

BRIEF DESCRIPTION OF THE DRAWINGS

The above objects and other advantages of the present invention will become more apparent by describing in detail the preferred embodiments thereof with reference to the attached drawings in which:

FIG. 1A is a perspective view of a conventional system for connecting a column to a structural member employing “L” brackets;

FIG. 1B is a plan view of the installation in FIG. 1A;

FIG. 2 is a side view of a different conventional system for connecting a column to a structural member;

FIG. 3 is a side view and partial cross-sectional view illustrating the a load path and employing the novel connecting bracket disclosed herein;

FIG. 4A is a more detailed perspective view of the connecting bracket illustrated in FIG. 3, and FIG. 4B is a bottom view of the connecting bracket in FIG. 4A;

FIGS. 4C, 4D and 4E illustrate bottom and perspective views of alternate embodiments of the connecting bracket;

FIGS. 5A and 5B are alternate embodiments of the connecting brackets of FIGS. 4A and 4B, depicting multiple-piece construction;

FIGS. 6A and 6B illustrate a perspective view and detailed side view, respectively, of the connecting bracket with additional reinforcing straps or cables attached;

FIG. 7 is a side view of a method for mating the connecting brackets to a support column prior to positioning the support column for attachment; and

FIG. 8 is a perspective view of a decorative base covering the connecting bracket of the present invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention will now be described more fully with reference to the accompanying drawings, in which preferred embodiments of the invention are shown. The invention may, however, be embodied in many different forms and should not be construed as being limited to the embodiments set forth herein; rather, these embodiments are provided so that this disclosure will be thorough and complete, and will fully convey the concept of the invention to those skilled in the art.

Broadly described, an embodiment of the invention provides a means for connecting a support column to a slab pier, girder or structural frame of a building. Support columns used in construction today may be hollow or not, but the connecting bracket of the present invention can be used with any support column installation.

FIG. 3 depicts a load path employing the connecting bracket 60 disclosed herein. The International Building Code (IBC) describes a load path as in FIG. 3 where the individual framing members are not continuous from the foundation sill to the roof. In such instances, the framing members must be secured to ensure a continuous load path. Foundation anchors 10, post-foundation anchors 20, post to girder brackets 30, floor joist hangers 40, and hurricane clips 50, address many wood-to-wood and wood-to-masonry connections.

The connecting bracket 60 of the present invention provides a positive, secure and circumferential connection between the respective upper or lower ends of the support column 80 and the slab, pier, girder or other structural component. The connecting bracket 60 is designed to provide a connection that meets or exceeds the building code requirements, while still making it easier and quicker to install than existing methods and apparatus. The connecting bracket 60 can be used to secure any type of material, including but not limited to wood, polymer and aluminum materials. The connecting bracket 60 is secured to the column 80 and the structural member using a suitable fastening means 70, for example, nails, screws, lag bolts, nut/bolt combinations and other equivalent means.

FIGS. 4A and 4B provide a more detailed perspective view and bottom view, respectively, of the connecting bracket 60 of the present invention. The connecting bracket 60 comprises a horizontal ring-shaped base surface 62 integrated with a vertical surface 64. Note that the inner diameter 61 (or inner perimeter if the shape in non-circular) of the horizontal surface would conform to the outer diameter or perimeter of the support column 80 to which it will be attached.

While shown in a circular, collar-type configuration in FIGS. 4A and 4B, the invention is not limited thereto. One of ordinary skill in the art would understand that other connecting bracket shapes are contemplated that would conform to the shape of the column, for example, square, rectangular, triangular, octagonal, etc. In any of such cases, the inner diameter (or perimeter) 61 of the horizontal 62 and vertical surfaces 64 is what conforms to the outer diameter or perimeter of the support column 80 (see FIG. 4C).

Note that the outer diameter or shape 63 of the horizontal ring-shaped surface 62 may be of a different shape to conform to a specific location. For example, if attaching a cylindrical column 80 at a corner structural location, the outer perimeter of the horizontal surface 62 may be triangular, while the inner diameter 61 would be circular to conform to the circumference of the column 80 (see FIG. 4D).

While FIG. 4A illustrates a perpendicular vertical surface 64, the invention is not limited thereto. The vertical surface 64 may be oriented at any angle to conform to any required non-perpendicular support installation requirements (see FIG. 4E).

Also, the connecting bracket 60 shown in FIG. 4 is comprised of one-piece construction. However, the bracket can be manufactured in more than one piece as shown in FIGS. 5A and 5B. The pieces then can be mated after positioning the bracket in place, at both the horizontal member joint 68 (in FIG. 5B) and the vertical member joint 69 (in FIG. 5A). Lag bolts, nails, shear screws and like fastening means 70 could be used to mate the two halves. Such an embodiment would facilitate retrofitting or replacing existing columnar connections without having to remove and reinstall the support column 80. One of ordinary skill in the art would understand that the pieces may also overlap at a single junction, or as shown in FIGS. 5A and 5B, at multiple overlapping junction points 68 and 69 to securing adapt to the perimeter of the column.

In each of FIGS. 4 and 5, a plurality of apertures 67 of various sizes and spacing are provided along the entire horizontal 62 and vertical surfaces 64, not just at certain discrete points dictated by the manufacturer. This flexibility to choose the precise attachment point enables the installer to secure and transfer the load path at optimum points around the entire perimeter of the structural column. This assures the installer always has a positive connection using a nail, screw shear, lag bolt, nut and bolt, or other equivalent fastening means 70. This attachment point flexibility is equally applicable to the connection between the vertical surface 64 of the connecting bracket 60 and the support column 80, and the horizontal surface 62 of the connecting bracket 60 and the support structure.

In addition, as shown in FIGS. 6A and 6B, the connecting bracket 60 can be used in conjunction with other straps 200 or cables 180 and 190, to provide additional load points to counteract larger contemplated seismic or wind loads. Since the connector bracket 60 conforms to the outer perimeter of the column 80, the load is transferred more proportionally around the column perimeter. The plurality of apertures 67 provide the installer with flexibility to attached the additional straps 200 or cables 180 and 190 at precise locations to ensure optimum load transfer.

FIG. 7 illustrates one convenient way to install the connecting bracket 60 when the column 80 is on a horizontal work surface. The connecting brackets 60 are merely slid into place at either end of the column 80, after which the column 80 is vertically positioned in place for attachment.

As described herein, the connecting bracket 60 can be used to install and secure the attachment point between similar or dissimilar building materials, whether conventional wood and aluminum, or modern polymers and fiberglass. The connecting device 60 also facilitates inspection and maintenance of the structural attachment point.

The connecting device 60 can be made of many different materials and material thicknesses, depending on the end use, environmental factors, and the anticipated load. For example, the connecting bracket can be manufactured with all gauges of stainless steel, hot-dipped zinc-coated galvanized steel, silicone, bronze, copper, fiberglass and plastics.

The vertical height and horizontal width of the bracket should be dimensioned to ensure the decorative base 210 (see FIG. 8) of the column 80 adequately covers the connecting bracket 60 so that it remains inconspicuous. The vertical height and horizontal width of the bracket are also dimensioned to ensure the installer has sufficient surface area to secure the attachment point in the workspace allotted. In other words, a very short vertical dimension, or horizontal dimension, would not allow the installer sufficient room to properly attached the connecting bracket 60, especially in tight workspaces.

By spreading the load along and around the entire the circumference of the column, and providing a plurality of attachment points to thereby increase the shear connection, the present invention is also well suited for those circumstances where the center point load of a roof girder, for instance, is offset from the center point load of the columnar support.

While the present invention has been described in detail with reference to the preferred embodiments thereof, it should be understood to those skilled in the art that various changes, substitutions and alterations can be made hereto without departing from the scope of the invention as defined by the appended claims.

Claims

1. A connecting bracket for attaching a columnar building member to a structural support member, comprising;

a horizontal ring-shaped base surface having an inner perimeter and an outer perimeter, with a plurality of spaced apertures disposed along the entire horizontal ring-shaped surface; and
a vertical ring-shaped surface extending from the inner perimeter of the horizontal surface, with the perimeter of the vertical surface conforming to the inner perimeter of the horizontal surface, and with a plurality of spaced apertures disposed along the entire vertical ring-shaped surface;
wherein the inner perimeter of the horizontal surface, and the perimeter of the vertical surface conform to an outer perimeter shape of the columnar building member, and
wherein the columnar building member is attached to the connecting bracket via a fastening means through one or more of the spaced apertures disposed along the entire vertical ring-shaped surface, and
wherein the columnar building member and connecting bracket are attached to the structural support member via a fastening means through one or more of the spaced apertures disposed along the entire horizontal ring-shaped surface.

2. The bracket of claim 1, wherein the spaced apertures of the horizontal and vertical surfaces comprise uniform openings, and are uniformly spaced along the entirety of the respective surfaces.

3. The bracket of claim 1, wherein the spaced apertures of the horizontal and vertical surfaces comprise non-uniform openings, and are non-uniformly spaced along the entirety of the respective surfaces.

4. The bracket of claim 1, wherein the vertical ring-shaped surface extends for the horizontal ring-shaped base at perpendicular angle.

5. The bracket of claim 1, wherein the vertical ring-shaped surface extends for the horizontal ring-shaped base at non-perpendicular angle.

6. The bracket of claim 1, wherein the connecting bracket is comprised of a plurality of pieces.

7. The bracket of claim 6, wherein the pieces overlap at predetermined horizontal and vertical junctions, and are secured with a fastening means after placing the bracket in position around the columnar member.

Patent History
Publication number: 20070246623
Type: Application
Filed: Apr 20, 2006
Publication Date: Oct 25, 2007
Inventor: Joesph Ehrhardt (Leonardo, NJ)
Application Number: 11/407,240
Classifications
Current U.S. Class: 248/218.400
International Classification: A47B 96/06 (20060101);