GRIP HANGER
A load carrying apparatus. The apparatus has a rod section with a cross-section which extends along a rod section length. The rod section has a series of bends which define the following: a load carrying portion, cantilevered arm portion, an anchor portion. The anchor portion attaches to a pole which is arranged along a vertical axis perpendicular to a longitudinal and transverse axis. The cantilevered arm portion extends from the vertical pole and the anchor portion. The load carrying portion extends from the cantilevered arm portion and maintains a payload at an offset location from the longitudinal axis. The offset location of the payload results in a torque about the cantilevered arm portion. The cantilevered arm portion transfers to the anchor portion a first moment and a second moment. The first and second moments couple about the vertical pole to maintain the load carrying apparatus on the vertical pole while supporting the payload.
This application claims priority benefit of U.S. Ser. No. 60/796,316, filed Apr. 28, 2006 (a Saturday) which accordingly under 35 U.S.C. § 119 (e) (3), extends the period of pendency of the provisional application to the next succeeding secular or business, that day being Apr. 30, 2007.
BACKGROUNDU.S. Pat. No. 6,231,018 discloses a guitar hanger. In the Summary of the Invention section in col. 1 around line 40, “the present invention includes a base member operable to attach to a substantially vertically oriented plane; and a hanger member including two spaced apart substantially longitudinally disposed rods, the rods having respective ends terminating at a coupling portion and respective distal ends defining an opening region for receiving a guitar neck, wherein the coupling portion is operable to engage the aperture such that hanger member removably connects to the base member, the rod extending outward from the plane and the coupling portion engages the aperture.”
U.S. Pat. No. 6,204,440 discloses a guitar holder device. In the Summary of the Invention section in col. 1 around line 13 the main purpose is “to provide a guitar holder device which can be hung on a rack. In addition, the present invention is to provide a guitar holder which has a disk to be rotated to any predetermined angle. To accomplish these purposes, the device has a U-shaped hanger, an L-shaped rod on the U-shaped hangar, a holderjoint at one end of the L-shaped rod, a disk inserted in the holderjoint pivotably and a U-shape bar connected to the disk. The U-shaped hanger can be adjusted angularly about the disk in the horizontal plane.”
U.S. Pat. No. 5,941,490 discloses a holder for musical instrument, or the like, such as a guitar where the instrument is not in use by the owner. The holder has three points of impingement, one on the front of the instrument, a second on the rear of the instrument, and a third on a support means such as a shelf, where the three points of impingement are interconnected. In the Summary of the Invention section in col. 1 around line 38, “the holder of the invention needs only a ledge, shelf or protrusion, approximately ¼ inch to ½ inch wide in order to give it the purchase to hold a guitar.” Furthermore at line 53 in the same column, “the guitar neck is placed in between a V-shaped member, impinging on the back of the neck with the guitar neck cradled in the ‘V’ and a lower member impinging on the front of neck. This provides essentially a three-point retaining system”.
U.S. Pat. No. 4,991,809 discloses a musical instrument support. Referring to col. 1 around line 50, “a musical instruments support is movably connected to a support or an amplifier. The support is adapted to support a guitar.” A back clip is connected to a front clip with springs connecting the front and back clip together so that the support can be stretched over the top face of the amplifier and maintained in a relatively static position while it is supporting the musical instrument.
U.S. Pat. No. 4,182,505 discloses a musical instrument hanger and cover therefore. The hangar portion is attached (as seen in col. 2 around line 17) to an aperture board, where the hangar has a horizontal rod connected at its outer extremity by a rivet to a cross plate. A stiff U-shaped wire is welded to the upper surface of the plate providing the hangar with a pair of longitudinal extensions. The space between the legs is adapted to receive a musical instrument such as a guitar neck. As seen in column one around line 38, this invention is “directed to a protective device for covering the musical instrument hangar which has a lateral base and a pair of longitudinal extensions providing space for receiving a musical instrument. The device includes at least one tubular body connected to an elongated flexible retaining means. The tubular body covers a longitudinal extension of the hangar and a retaining means wraps around the lateral base portion to retain the tubular body.”
U.S. Pat. No. 1,170,684 discloses a violin supporting attachment for musical stands. Referring to col. 1 around line 44, “the main feature of the invention is the swiveling of a fork member where the member can be readily swung about its axis when a violin is supported. A body part configured as a cylindrical block has a transverse cylindrical passage to receive the tubular section of the musical stand. A threaded screw is aligned along the central axis of the tubular body at the aft end of the tubular body and extends into the transverse cylindrical passageway to impinge upon the music stand. A fork member made of a U-shaped wire frame receives the neck of a violin to engage and strings or the pin.”
The present device acts as a load carrying or holding device which can easily attach to any suitable stable vertical metal rod, for example, musician stage poles or playing venue poles which support musical sheets etc.
Generally speaking, the device uses a coupling action about the rod and applies a braking force in combination with frictional vertical resistance along the vertically aligned pole using, in one embodiment, a high-coefficient friction coating which may be latex rubber tubing and which is installed over the metal rod portion. The metal rod section is a single continuous piece of solid or hollow tubing. An offset load is maintained relative to the vertical central axis of the support pole, offset from the longitudinal/vertical plane (as discussed below) and running parallel to the cantilevered arm portion. The offset load is maintained by, in one embodiment, a U-hanger, which is arranged through bending of the single continuous piece of rod section. The offset load creates major coupling forces and minor coupling forces due to the offset location of the vertical load. Loads as high as 30 lbs. are supported in various embodiments. The material used for the rod section may consist of aluminum cross-section, steel cross-section, copper cross-section, or any other suitable metallic, polycarbonate, fiberglass, plastic or PVC, graphite, or any other material suitable to maintain the load its present position. Furthermore, the present embodiment utilizes an outer layer of high frictional coefficient resisting material, such as the latex rubber tubing, but in some embodiments, the latex rubber tubing is not required in order to maintain the load carrying device in any vertical position on the vertical pole.
Referring to
The anchor portion 20 maintains the musical instrument 12 in position with the vertical pole 22 by resisting both a major moment and a minor moment. The major moment is resultant of the load carried in a longitudinally offset position which is located along the cantilevered portion 18, and the minor moment a result of the load carried in a transversely offset location from the longitudinal axis which results in a torsional moment about the cantilevered portion. The anchor portion 20, as will be discussed below, has a support origin seat 68 which is also considered a first seat 30 or the upper bearing seat 30 and a leverage seat 32, also referred to as a second seat or lower bearing seat 32, as shown in
The third main portion of this particular embodiment is the load carrying portion 16 as shown in
The entire load carrying device 10 is constructed of a single continuous rod-section member 14. In the present embodiment, as discussed above, the rod section member 14 is made of a single continuous piece of aluminum. The aluminum rod section is solid, although in some embodiments utilizing a different material; for example, a steel tubing-type configuration would likely support the desired load carrying characteristics.
All of the major portions of the load carrying device 10 are defined by the single continuous rod section piece 14. A series of reverse bends provide for the definition of the major portions of the load carrying device 10. Discussion of these bends will now be provided.
Referring to
Referring first to
In order to adequately define the U-shaped configuration, discussion will be made referring to an axial system. The vertically aligned pole 22 has a vertical central axis 24, and a longitudinal axis 40 extends perpendicularly away from the central axis and defines a vertical. Parallel with the longitudinal axis 40 is a cantilevered longitudinal axis 42 which is substantially centered along the cantilevered arm portion 18. Perpendicular to the longitudinal axis 40 is a transverse axis 41 which originates from the same central vertical axis 24 as the longitudinal axis 40.
In the present embodiment (
The cantilevered arm portion 18 then transitions into the first of two anchor seats. The first anchor or origin seat 30 is defined by a third 180-degree U-bend 31 (arranged substantially horizontally). Immediately after the third 180 degree U-bend 31, the rod section transitions to the lever arm portion 66 through a third 90-degree bend 94 (arranged substantially vertical). The lever arm in this particular embodiment maintains a substantially S-shaped configuration 96 while still providing a vertically planar orientation parallel with the longitudinal axis 40. The right section then transitions to a fourth 90-degree bend 98, and then immediately transitions into the substantially horizontally (longitudinal and transverse plane) aligned fourth 180-degree reverse u-bend 100 which forms the second anchor seat or leverage seat 32. The rod section terminates at the second terminal end 82.
A brief discussion will now be provided of a second embodiment (as seen in
After the rod section 14 completes the cantilevered arm portion 18, the rod section transitions into the origin seat 30, which in this case this a third 180 degree reverse U-band 156 which is orientated in a vertically downward angular direction. This angular direction ranges from 30-60 degrees from the horizontal, but in the present embodiment is about 45 degrees. After completing the 180 degree bend, the rod section then transitions into a fourth 180 degree U-bend 160 which completes a second downward angular direction spiraling around the vertical pole 22. The leverage seat 32 in this case is the fourth 180 degree U-bend 160.
Discussion will now be provided with regard to the carrying capacity of the load-carrying device 10 as seen in
The offset load center of gravity 44 is located somewhere around the midpoint between the transversely positioned longitudinally aligned U-shaped legs 86 and 87. Because the load-carrying portion 16 acts as a transversely aligned cantilever extending perpendicular to the cantilevered arm portion 18 (arranged longitudinally parallel with the longitudinal axis 40), the load 44 exerts a torque about the central longitudinal axis 42 of the cantilever. In this particular embodiment, this torque acts in a counterclockwise direction. As seen in
An equal but opposite lower minor braking force 52 is exerted in the opposite transverse direction against the opposite side of the vertical pole by the leverage seat 32 exerting the minor lower braking force 52 against a minor lower braking force bearing surface 53 of the outer surface of the vertical pole.
The leverage arm 66 transmits the shear forces generated by the torsional force about the cantilevered central longitudinal axis 42 and applies the shear forces to the leverage seat 32 thus substantially balancing the minor lower braking force 52 against the minor lower bearing surface 53.
Acting concurrently with the minor coupling moment 72 is a major coupling moment 70 which is generated by the offset load 44 combined with the cantilevered longitudinal load arm 60 which extends from the center of gravity of the offset load to the vertical central axis 24. The sum of the moments is taken about the coupling origin point 56 which results in a major upper braking force 62 and a major lower braking force 64. These two braking forces combined together with the coupling distance 54 to equal the offset load 44 in combination with the cantilevered longitudinal load arm 60. To provide continuity and connection between the leverage seat 32 and origin seat 30, the leverage arm 66 transmits the shear forces generated by the major coupling moment 70 to the origin seat 30 and the leverage seat 32.
The major coupling moment 70 exerts the major and minor breaking forces 62 and 64, against the vertical pole in equal and opposite directions. The support origin seat 30 exerts the major upper breaking force 62 against an outer surface of the vertically aligned pole, or in other words the major breaking force upper bearing surface 61. In the opposite longitudinal direction, the major lower breaking force 64 exerted by the leverage seat 32 is distributed over the major breaking force lower surface or in other words the major breaking force lower bearing surface 63.
The upper bearing surface 61 a is a resultant combination of the major upper bearing surface 61 and the minor upper bearing surface 51. Similarly, the lower bearing surface 63a is a combination of the major lower bearing surface 63 and the minor lower bearing surface 53. Because the rod section 14 has as previously discussed above an outer surface layer which has a high coefficient of frictional resistance, this material friction coefficient combined with the major and minor breaking forces at the upper and the lower location and distributed over the major and minor upper and lower bearing surfaces resists the transposed vertical load 44 as it acts along the vertical pole pulling the load carrying device downwards due to the gravitational pull.
Referring to
Referring to
The minor coupling distance 152 is the distance between the upper minor braking force 50 and the lower minor braking force 52 which are centered about the minor coupling moment 72. Here the minor coupling distance 152 is a smaller distance than the previously mentioned coupling distance 54 as seen in
Along the same lines, the major coupling moment 70 is applied by the payload 44 exerted downwards on the cantilevered portion 18 and is equal to the payload times the cantilevered longitudinal load arm 60. The major coupling moment 70 is resolved into the previously mentioned upper major braking force 62 and the lower major braking force 64. The major coupling distance 154 is somewhat of a smaller distance than the coupling distance 54 as seen previously in
Additionally, the lower bearing seat 174 distributes the major lower braking force 64 against the major lower bearing surface 183. This force is distributed fairly uniformly along the outer surface of the vertically aligned pole where the anchor spiral leg comes in contact with the vertical aligned pole at the bearing seat locations as previously discussed. The tail bearing surface 180 continues to wrap itself around the vertically aligned pole and provides a bearing surface to maintain a locking couple 181 which resists minor upward forces placed against the cantilevered portion 18 or the load carrying portion 16.
In addition to the previously mentioned embodiments, other types of load carrying portion arrangements for the load carrying portion 16 can be configured. For example, multiple payload carrying arrangements for the load carrying portion 16 can be bent into shape utilizing the rod section 14.
Referring to
Referring to
Referring to
Referring to
In an alternative embodiment, the upper portions or the outermost longitudinal portions of the legs are kept vertically higher than the origin 236 so that the load carrying device maintains its position within the hangar portion 16.
Referring to
Referring to
Referring to
Referring to
Referring to
A brief discussion of a method of manufacture of the load carrying device 10 will now be provided. A 36-inch length of ⅜-inch aluminum rod in one embodiment is provided and placed in a position of a rod bender with a 2-inch radius die and the initial load carrying portion 16 as seen in
While the present invention is illustrated by description of several embodiments and while the illustrative embodiments are described in detail, it is not the intention of the applicants to restrict or in any way limit the scope of the appended claims to such detail. Additional advantages and modifications within the scope of the appended claims will readily appear to those sufficed in the art. The invention in its broader aspects is therefore not limited to the specific details, representative apparatus and methods, and illustrative examples shown and described. Accordingly, departures may be made from such details without departing from the spirit or scope of applicants' general concept.
Claims
1. A load carrying apparatus, said apparatus comprising:
- a. a rod section comprising a single uniform cross-section extending along a rod section length, said rod section comprising a series of bends defining a load carrying portion, a cantilevered arm portion, an anchor portion;
- b. said anchor portion configured to attach to a substantially vertical pole, said vertical pole arranged along a vertical axis, perpendicular to a longitudinal axis and a transverse axis;
- c. said cantilevered arm portion arranged about a cantilevered longitudinal axis, said cantilevered arm portion extending from said anchor portion;
- d. said load carrying portion extending from said cantilevered arm portion to maintain a pay-load at an offset location from said longitudinal axis, resulting in a torque about said cantilevered arm portion;
- e. said cantilevered arm portion transferring to said anchor portion a first moment and a second moment applied to said vertical pole, said first and second moments coupling said anchor portion to said vertical pole.
2. The apparatus according to claim 1 wherein said anchor portion further comprises: a first bearing seat and a second bearing seat, said first and second bearing seats connected together by a leverage arm, said leverage arm maintaining said first and second bearing seats a coupling distance apart.
3. The apparatus according to claim 2 above wherein said anchor portion further comprises: said first bearing seat further comprising a first frictional resistant component; said second bearing seat further comprising a second frictional resistance component.
4. The apparatus according to claim 1 wherein said cantilevered arm portion further comprises: a longitudinally parallel configuration to maintain a substantially parallel alignment with said longitudinal axis when said load carrying apparatus is attached to said vertical pole.
5. The apparatus according to claim 3 wherein said first moment further comprises a major moment resulting from said cantilevered arm supporting said load carrying portion maintaining said pay-load.
6. The apparatus according to claim 5 wherein said second moment further comprises a minor moment resulting from said load carrying portion asserting a torque about said cantilevered arm portion.
7. The apparatus according to claim 6 wherein said minor moment is resolved into an upper minor breaking force and a lower minor breaking force against said vertically aligned pole when said load carrying apparatus is attached to said pole.
8. The apparatus according to claim 7 wherein said major moment is resolved into an upper major breaking force and a lower major breaking force against said vertically aligned pole when said load carrying apparatus is attached to said pole.
9. The apparatus according to claim 8 wherein said upper minor breaking force is applied onto said vertical pole within a first bearing location by said first bearing seat; said lower minor braking force is applied onto said vertical pole within a second bearing location by said second bearing seat.
10. The apparatus according to claim 9 wherein said upper major breaking force is applied onto said vertical pole within a first bearing location by said first bearing seat; said lower major braking force is applied onto said vertical pole within a second bearing location by said second bearing seat.
11. The apparatus according to claim 10 wherein said first frictional resistance component in combination with said upper minor breaking force and said upper major breaking force provide a first frictional resistance force.
12. The apparatus according to claim 11 wherein said second frictional resistance component in combination with said lower minor breaking force and said lower major breaking force provide a second frictional resistance force.
13. The apparatus according to claim 12 wherein said first frictional resistance force and said second frictional resistance force combine to resist a vertical component of said pay-load and maintain said load carrying apparatus on said vertical pole.
14. The apparatus according to claim 13 wherein said payload has a weight capacity range between about 0 lbs and not more than about 50 lbs.
15. The apparatus according to claim 1 wherein said anchor portion further comprises: said rod section comprising a high coefficient frictional coating.
16. The apparatus according to claim 15 wherein said high coefficient frictional coating further comprises latex rubber tubing.
17. The apparatus according to claim 15 wherein said high coefficient frictional coating further comprises one or more of the following: a silicon material; a butel rubber material; a natural rubber material.
18. The apparatus according to claim 1 wherein said rod section single uniform cross-section further comprises: a circular cross-section.
19. The apparatus according to claim 1 wherein said rod section single uniform cross-section further comprises one or more of the following: a rectilinear cross-section; an oval cross-section; a semi-circular cross-section.
20. The apparatus according to claim 1 wherein said rod section single uniform cross-section further comprises: a tubular cross-section, said tubular cross-section further comprising an inner radius and an outer radius.
21. The apparatus according to claim 1 wherein said rod section single uniform cross-section further comprises: a solid core material and an outer coating layer.
22. The apparatus according to claim 1 wherein said load carrying portion further comprises a first carrying arrangement configured to maintain a single payload item at said offset position.
23. The apparatus according to claim 22 wherein said load carrying portion further comprises a second carrying arrangement configured to maintain a second payload in a second offset position.
24. The apparatus according to claim 23 wherein said load carrying portion further comprises a third carrying arrangement configured to maintain a third payload in a third offset position.
25. The apparatus according to claim 1 wherein said load carrying portion further comprises a substantially U-shaped bend to maintain said payload in an offset position.
26. The apparatus according to claim 1 wherein said load carrying portion further comprises a substantially V-shaped bend to maintain said payload in an offset position.
27. The apparatus according to claim 1 wherein said load carrying portion further comprises a substantially semicircular bend to maintain said payload in an offset position.
28. The apparatus according to claim 1 wherein said load carrying portion further comprises a substantially oval shape bend to maintain said payload in an offset position.
29. The apparatus according to claim 1 wherein said load carrying portion further comprises a substantially rectilinear shaped bend to maintain said payload in an offset position.
30. The apparatus according to claim 1 wherein said load carrying portion further comprises a substantially S-shaped configuration to maintain said payload in an offset position.
31. The apparatus according to claim 1 wherein said payload further comprises: a musical instrument; a bottle beverage and musical paraphernalia.
32. The apparatus according to claim 1 wherein said anchor portion further comprises: an opposing U-shaped configuration.
33. The apparatus according to claim 1 wherein said anchor portion further comprises: a spiral-like configuration with a locking leg.
34. The apparatus according to claim 1 wherein said cantilevered arm portion extends from an upper bearing seat location of said anchor portion.
35. The apparatus according to claim 1 wherein said cantilever portion extends from a lower bearing seat location of said anchor portion.
36. The apparatus according to claim 2 wherein said cantilever portion extends from intermediate location between said first bearing seat and said second bearing seat of said anchor portion.
37. The apparatus according to claim 1 wherein said rod section further comprises: an aluminum cross-section material.
38. The apparatus according to claim 1 wherein said rod section further comprises one or more of the following: a steel material; a copper material; a polycarbonate material; a fiberglass material; a polyvinylchloride material; a graphite material.
39. A method of forming a load carrying apparatus, said method comprising:
- a. providing a rod section comprising a single uniform cross-section extending along a rod section length;
- b. bending said rod section into a load carrying portion, a cantilevered arm portion, an anchor portion;
- c. bending said anchor portion to attach to a substantially vertical pole, said vertical pole arranged along a vertical axis, perpendicular to a longitudinal axis and a transverse axis;
- d. bending said cantilevered arm portion to be alinged along a cantilevered longitudinal axis;
- e. bending said cantilevered arm portion to extend from said anchor portion;
- f. bending said load carrying portion to extend from said cantilevered arm portion to maintain a pay-load at an offset location from said longitudinal axis, resulting in a torque about said cantilevered arm portion;
- g. said cantilevered arm portion transferring to said anchor portion a first moment and a second moment applied to said vertical pole, said first and second moments coupling said anchor portion to said vertical pole.
40. A load carrying apparatus, said apparatus comprising:
- a. means for providing a rod section comprising a single uniform cross-section extending along a rod section length;
- b. means for bending said rod section into a load carrying portion, a cantilevered arm portion, an anchor portion;
- c. means for bending said anchor portion to attach to a substantially vertical pole, said vertical pole arranged along a vertical axis, perpendicular to a longitudinal axis and a transverse axis;
- d. means for bending said cantilevered arm portion to be alinged along a cantilevered longitudinal axis;
- e. means for bending said cantilevered arm portion to extend from said anchor portion;
- f. means for bending said load carrying portion to extend from said cantilevered arm portion to maintain a pay-load at an offset location from said longitudinal axis, resulting in a torque about said cantilevered arm portion;
- g. said cantilevered arm portion transferring to said anchor portion a first moment and a second moment applied to said vertical pole, said first and second moments coupling said anchor portion to said vertical pole.
41. A load carrying apparatus, said apparatus comprising:
- a. a rod section comprising a single uniform cross-section extending along a rod section length, said rod section comprising a series of bends defining a load carrying portion, a cantilevered arm portion, an anchor portion;
- b. said anchor portion configured to interoperably attach to a substantially vertical pole, said vertical pole arranged along a vertical axis, perpendicular to a longitudinal axis and a transverse axis;
- c. said anchor portion further comprising a first bearing seat and a second bearing seat, said first and second bearing seats connected together by a leverage arm, said leverage arm maintaining said first and second bearing seats a coupling distance apart;
- d. said cantilevered arm portion arranged about a cantilevered longitudinal axis, said cantilevered arm portion extending from said first bearing seat, said cantilevered arm portion configured to maintain a substantially parallel alignment with said longitudinal axis when said load carrying apparatus is attached to said vertical pole;
- e. said load carrying portion extending from said cantilevered arm portion to maintain said load at an offset location from said longitudinal axis;
- f. said load carrying portion asserting a torque about said cantilevered arm portion resulting in a minor moment resolved into a upper minor breaking force and a lower minor breaking force against said vertically aligned pole;
- g. said cantilevered arm portion supporting said load carrying portion resulting in a major moment on said vertical pole resolved into an upper major breaking force and a lower major breaking force against said vertically aligned pole;
- h. said upper minor breaking force and said upper major breaking force applied onto said vertical pole at a first bearing location by said first bearing seat;
- i. said lower minor breaking force and said lower major breaking force applied onto said vertical pole at a second bearing location by said second bearing seat;
- j. said first bearing seat comprising a first frictional resistance component;
- k. said second bearing seat comprising a second frictional resistance component;
- l. said first frictional resistance component in combination with said upper minor breaking force and said upper major breaking force providing a first frictional resistance force;
- m. said second frictional resistance component in combination with said lower minor breaking force and said lower major breaking force providing a second frictional resistance force;
- n. said first frictional resistance force and said second frictional resistance force combining to resists said load and maintain said load carrying apparatus on said vertical pole.
Type: Application
Filed: Apr 30, 2007
Publication Date: Nov 1, 2007
Inventors: Robin Laurence Feetham (Concrete, WA), Darla Surray Feetham (Concrete, WA)
Application Number: 11/742,428